Explore a subset of the FreezeCasting.net database using the column visibility selector below. The full database may be downloaded here.
FreezeCasting.net Databse DOI 10.5281/zenodo.545853
Scotti, K. L., & Dunand, D. C. (2018). Freeze Casting–A Review of Processing, Microstructure and Properties via the Open Data Repository, FreezeCasting. net. Progress in Materials Science.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.Citation | Year | Paper ID | DOI | Sample ID | Group | Material | Fluid 1 | %Fluid 1 | Fluid 2 | %Fluid 2 | Volume fraction (%) | Particle ID | %Particle 1 | Particle shape | Particle diameter (um) | Binder wt.% | Dispersant wt.% | Cryoprotectant wt.% | Temperature cold plate (K) | Applied cooling rate (K/min) | Measured cooling rate (K/min) | Solidification technique | Cooling technique | Average velocity (μm/s) | Measured velocity (μm/s) | Volumetric shrinkage (%) | Diametric shrinkage (%) | Linear shrinkage (%) | Pore structure | State | Porosity (%) | Spacing (μm) | Pore (μm) | Wall (μm) | Pore aspect ratio | Compressive strength (MPa) | Flexural strength (MPa) | Elastic modulus (MPa) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ahmed, A., Clowes, R., Myers, P., & Zhang, H. (2011). Hierarchically porous silica monoliths with tuneable morphology, porosity, and mechanical stability. Journal of Materials Chemistry, 21(15), 5753-5763. | 2011 | 1 | 10.1039/c0jm02664f | 1 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 13.89 | 25.0 | 100 | powder | 1.0 | 5 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 83.3 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ahmed, A., Clowes, R., Myers, P., & Zhang, H. (2011). Hierarchically porous silica monoliths with tuneable morphology, porosity, and mechanical stability. Journal of Materials Chemistry, 21(15), 5753-5763. | 2011 | 1 | 10.1039/c0jm02664f | 2 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 13.89 | 25.0 | 100 | powder | 1.0 | 5 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 83.3 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ahmed, A., Clowes, R., Myers, P., & Zhang, H. (2011). Hierarchically porous silica monoliths with tuneable morphology, porosity, and mechanical stability. Journal of Materials Chemistry, 21(15), 5753-5763. | 2011 | 1 | 10.1039/c0jm02664f | 3 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 13.89 | 25.0 | 100 | powder | 1.0 | 5 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 83.3 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 4.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ahmed, A., Clowes, R., Myers, P., & Zhang, H. (2011). Hierarchically porous silica monoliths with tuneable morphology, porosity, and mechanical stability. Journal of Materials Chemistry, 21(15), 5753-5763. | 2011 | 1 | 10.1039/c0jm02664f | 4 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 13.89 | 25.0 | 100 | powder | 1.0 | 5 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 83.3 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 3.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ahmed, A., Clowes, R., Myers, P., & Zhang, H. (2011). Hierarchically porous silica monoliths with tuneable morphology, porosity, and mechanical stability. Journal of Materials Chemistry, 21(15), 5753-5763. | 2011 | 1 | 10.1039/c0jm02664f | 5 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 13.89 | 25.0 | 100 | powder | 1.0 | 5 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 83.3 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 3.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ahmed, A., Clowes, R., Myers, P., & Zhang, H. (2011). Hierarchically porous silica monoliths with tuneable morphology, porosity, and mechanical stability. Journal of Materials Chemistry, 21(15), 5753-5763. | 2011 | 1 | 10.1039/c0jm02664f | 6 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 13.89 | 25.0 | 100 | powder | 1.0 | 5 | 1 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 83.3 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 3.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ahmed, A., Clowes, R., Myers, P., & Zhang, H. (2011). Hierarchically porous silica monoliths with tuneable morphology, porosity, and mechanical stability. Journal of Materials Chemistry, 21(15), 5753-5763. | 2011 | 1 | 10.1039/c0jm02664f | 7 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 13.89 | 25.0 | 100 | powder | 1.0 | 5 | 1 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 83.3 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 3.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ahmed, A., Clowes, R., Myers, P., & Zhang, H. (2011). Hierarchically porous silica monoliths with tuneable morphology, porosity, and mechanical stability. Journal of Materials Chemistry, 21(15), 5753-5763. | 2011 | 1 | 10.1039/c0jm02664f | 8 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 13.89 | 25.0 | 100 | powder | 1.0 | 5 | 1 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 83.3 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 3.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ahmed, A., Clowes, R., Myers, P., & Zhang, H. (2011). Hierarchically porous silica monoliths with tuneable morphology, porosity, and mechanical stability. Journal of Materials Chemistry, 21(15), 5753-5763. | 2011 | 1 | 10.1039/c0jm02664f | 9 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 13.89 | 25.0 | 100 | powder | 1.0 | 5 | 1 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 83.3 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 3.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ahmed, A., Clowes, R., Myers, P., & Zhang, H. (2011). Hierarchically porous silica monoliths with tuneable morphology, porosity, and mechanical stability. Journal of Materials Chemistry, 21(15), 5753-5763. | 2011 | 1 | 10.1039/c0jm02664f | 10 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 13.89 | 25.0 | 100 | powder | 1.0 | 5 | 1 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 83.3 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 3.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ahmed, A., Clowes, R., Myers, P., & Zhang, H. (2011). Hierarchically porous silica monoliths with tuneable morphology, porosity, and mechanical stability. Journal of Materials Chemistry, 21(15), 5753-5763. | 2011 | 1 | 10.1039/c0jm02664f | 11 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 13.89 | 25.0 | 100 | powder | 1.0 | 5 | 1 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 83.3 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 3.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ahmed, A., Clowes, R., Myers, P., & Zhang, H. (2011). Hierarchically porous silica monoliths with tuneable morphology, porosity, and mechanical stability. Journal of Materials Chemistry, 21(15), 5753-5763. | 2011 | 1 | 10.1039/c0jm02664f | 12 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 13.89 | 25.0 | 100 | powder | 1.0 | 5 | 1 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 83.3 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 3.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ahmed, A., Clowes, R., Myers, P., & Zhang, H. (2011). Hierarchically porous silica monoliths with tuneable morphology, porosity, and mechanical stability. Journal of Materials Chemistry, 21(15), 5753-5763. | 2011 | 1 | 10.1039/c0jm02664f | 13 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 13.89 | 25.0 | 100 | powder | 1.0 | 5 | 1 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 83.3 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 4.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Colard, C. A., Cave, R. A., Grossiord, N., Covington, J. A., & Bon, S. A. (2009). Conducting Nanocomposite Polymer Foams from Ice?Crystal?Templated Assembly of Mixtures of Colloids. Advanced Materials, 21(28), 2894-2898. | 2009 | 61 | 10.1002/adma.200803007 | 447 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 4.0 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Colard, C. A., Cave, R. A., Grossiord, N., Covington, J. A., & Bon, S. A. (2009). Conducting Nanocomposite Polymer Foams from Ice?Crystal?Templated Assembly of Mixtures of Colloids. Advanced Materials, 21(28), 2894-2898. | 2009 | 61 | 10.1002/adma.200803007 | 448 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 5.0 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Colard, C. A., Cave, R. A., Grossiord, N., Covington, J. A., & Bon, S. A. (2009). Conducting Nanocomposite Polymer Foams from Ice?Crystal?Templated Assembly of Mixtures of Colloids. Advanced Materials, 21(28), 2894-2898. | 2009 | 61 | 10.1002/adma.200803007 | 449 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 5.5 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 88.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Colard, C. A., Cave, R. A., Grossiord, N., Covington, J. A., & Bon, S. A. (2009). Conducting Nanocomposite Polymer Foams from Ice?Crystal?Templated Assembly of Mixtures of Colloids. Advanced Materials, 21(28), 2894-2898. | 2009 | 61 | 10.1002/adma.200803007 | 450 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 5.6 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 88.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Colard, C. A., Cave, R. A., Grossiord, N., Covington, J. A., & Bon, S. A. (2009). Conducting Nanocomposite Polymer Foams from Ice?Crystal?Templated Assembly of Mixtures of Colloids. Advanced Materials, 21(28), 2894-2898. | 2009 | 61 | 10.1002/adma.200803007 | 451 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 6.0 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 89.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Colard, C. A., Cave, R. A., Grossiord, N., Covington, J. A., & Bon, S. A. (2009). Conducting Nanocomposite Polymer Foams from Ice?Crystal?Templated Assembly of Mixtures of Colloids. Advanced Materials, 21(28), 2894-2898. | 2009 | 61 | 10.1002/adma.200803007 | 452 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 7.0 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 87.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Colard, C. A., Cave, R. A., Grossiord, N., Covington, J. A., & Bon, S. A. (2009). Conducting Nanocomposite Polymer Foams from Ice?Crystal?Templated Assembly of Mixtures of Colloids. Advanced Materials, 21(28), 2894-2898. | 2009 | 61 | 10.1002/adma.200803007 | 453 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 6.0 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 86.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Colard, C. A., Cave, R. A., Grossiord, N., Covington, J. A., & Bon, S. A. (2009). Conducting Nanocomposite Polymer Foams from Ice?Crystal?Templated Assembly of Mixtures of Colloids. Advanced Materials, 21(28), 2894-2898. | 2009 | 61 | 10.1002/adma.200803007 | 454 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 1.0 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 85.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Colard, C. A., Cave, R. A., Grossiord, N., Covington, J. A., & Bon, S. A. (2009). Conducting Nanocomposite Polymer Foams from Ice?Crystal?Templated Assembly of Mixtures of Colloids. Advanced Materials, 21(28), 2894-2898. | 2009 | 61 | 10.1002/adma.200803007 | 455 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 1.0 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 86.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Colard, C. A., Cave, R. A., Grossiord, N., Covington, J. A., & Bon, S. A. (2009). Conducting Nanocomposite Polymer Foams from Ice?Crystal?Templated Assembly of Mixtures of Colloids. Advanced Materials, 21(28), 2894-2898. | 2009 | 61 | 10.1002/adma.200803007 | 459 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 10.0 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Colard, C. A., Cave, R. A., Grossiord, N., Covington, J. A., & Bon, S. A. (2009). Conducting Nanocomposite Polymer Foams from Ice?Crystal?Templated Assembly of Mixtures of Colloids. Advanced Materials, 21(28), 2894-2898. | 2009 | 61 | 10.1002/adma.200803007 | 460 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 4.0 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Colard, C. A., Cave, R. A., Grossiord, N., Covington, J. A., & Bon, S. A. (2009). Conducting Nanocomposite Polymer Foams from Ice?Crystal?Templated Assembly of Mixtures of Colloids. Advanced Materials, 21(28), 2894-2898. | 2009 | 61 | 10.1002/adma.200803007 | 461 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 2.0 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hazan, Y. (2012). Porous ceramics, ceramic/polymer, and metal?doped ceramic/polymer nanocomposites via freeze casting of photo?curable colloidal fluids. Journal of the American Ceramic Society, 95(1), 177-187. | 2012 | 67 | 10.1111/j.1551-2916.2011.04870.x | 4840 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Adrien, J., Maire, E., Scheel, M., & Di Michiel, M. (2013). Time-lapse, three-dimensional in situ imaging of ice crystal growth in a colloidal silica suspension. Acta Materialia, 61(6), 2077-2086. | 2013 | 78 | 10.1016/j.actamat.2012.12.027 | 526 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 16.0 | 25.0 | 100 | powder | 0.1 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 1.58 | 1.58 | 0 | 0 | 0 | lamellar | solidification | 0.0 | 37.8 | 36.0 | 1.8 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Adrien, J., Maire, E., Scheel, M., & Di Michiel, M. (2013). Time-lapse, three-dimensional in situ imaging of ice crystal growth in a colloidal silica suspension. Acta Materialia, 61(6), 2077-2086. | 2013 | 78 | 10.1016/j.actamat.2012.12.027 | 527 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 16.0 | 25.0 | 100 | powder | 0.1 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 2.0 | 2.0 | 0 | 0 | 0 | lamellar | solidification | 0.0 | 36.6 | 35.0 | 1.6 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Adrien, J., Maire, E., Scheel, M., & Di Michiel, M. (2013). Time-lapse, three-dimensional in situ imaging of ice crystal growth in a colloidal silica suspension. Acta Materialia, 61(6), 2077-2086. | 2013 | 78 | 10.1016/j.actamat.2012.12.027 | 528 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 16.0 | 25.0 | 100 | powder | 0.1 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 2.5 | 2.5 | 0 | 0 | 0 | lamellar | solidification | 0.0 | 34.3 | 32.0 | 2.3 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Adrien, J., Maire, E., Scheel, M., & Di Michiel, M. (2013). Time-lapse, three-dimensional in situ imaging of ice crystal growth in a colloidal silica suspension. Acta Materialia, 61(6), 2077-2086. | 2013 | 78 | 10.1016/j.actamat.2012.12.027 | 529 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 16.0 | 25.0 | 100 | powder | 0.1 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 3.5 | 3.5 | 0 | 0 | 0 | lamellar | solidification | 0.0 | 33.5 | 29.0 | 4.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Adrien, J., Maire, E., Scheel, M., & Di Michiel, M. (2013). Time-lapse, three-dimensional in situ imaging of ice crystal growth in a colloidal silica suspension. Acta Materialia, 61(6), 2077-2086. | 2013 | 78 | 10.1016/j.actamat.2012.12.027 | 530 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 16.0 | 25.0 | 100 | powder | 0.1 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 4.5 | 4.5 | 0 | 0 | 0 | lamellar | solidification | 0.0 | 33.2 | 27.0 | 6.2 | 0.0 | 0.0 | 0.0 | 0.0 |
Dhainaut, J., Piana, G., Deville, S., Guizard, C., & Klotz, M. (2014). Freezing-induced ordering of block copolymer micelles. Chemical Communications, 50(83), 12572-12574. | 2014 | 90 | 10.1039/c4cc05556j | 5726 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 2.0 | 25.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 258.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 170.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dutta, A., & Tekalur, S. A. (2013). Synthetic staggered architecture composites. Materials & Design, 46, 802-808. | 2013 | 107 | 10.1016/j.matdes.2012.11.018 | 5210 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 15.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dutta, A., & Tekalur, S. A. (2013). Synthetic staggered architecture composites. Materials & Design, 46, 802-808. | 2013 | 107 | 10.1016/j.matdes.2012.11.018 | 5211 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 21.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 45.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dutta, A., & Tekalur, S. A. (2013). Synthetic staggered architecture composites. Materials & Design, 46, 802-808. | 2013 | 107 | 10.1016/j.matdes.2012.11.018 | 5212 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 35.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2014). Fabrication of highly porous silica thermal insulators prepared by gelation?freezing route. Journal of the American Ceramic Society, 97(3), 713-717. | 2014 | 145 | 10.1111/jace.12723 | 853 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 1.0 | 25.0 | 100 | powder | 0.01 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 88.0 | 25.1 | 24.5 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2014). Fabrication of highly porous silica thermal insulators prepared by gelation?freezing route. Journal of the American Ceramic Society, 97(3), 713-717. | 2014 | 145 | 10.1111/jace.12723 | 854 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 5.0 | 25.0 | 100 | powder | 0.01 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 88.0 | 25.1 | 24.5 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2014). Fabrication of highly porous silica thermal insulators prepared by gelation?freezing route. Journal of the American Ceramic Society, 97(3), 713-717. | 2014 | 145 | 10.1111/jace.12723 | 855 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 10.0 | 25.0 | 100 | powder | 0.01 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 88.0 | 25.1 | 24.5 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2014). Fabrication of highly porous silica thermal insulators prepared by gelation?freezing route. Journal of the American Ceramic Society, 97(3), 713-717. | 2014 | 145 | 10.1111/jace.12723 | 856 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 1.0 | 25.0 | 100 | powder | 0.01 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 88.0 | 25.1 | 24.5 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2014). Fabrication of highly porous silica thermal insulators prepared by gelation?freezing route. Journal of the American Ceramic Society, 97(3), 713-717. | 2014 | 145 | 10.1111/jace.12723 | 857 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 5.0 | 25.0 | 100 | powder | 0.01 | 5 | 0 | 0 | 193.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 94.0 | 22.2 | 20.5 | 1.7 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2014). Fabrication of highly porous silica thermal insulators prepared by gelation?freezing route. Journal of the American Ceramic Society, 97(3), 713-717. | 2014 | 145 | 10.1111/jace.12723 | 858 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 10.0 | 25.0 | 100 | powder | 0.01 | 5 | 0 | 0 | 193.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 94.0 | 22.2 | 20.5 | 1.7 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2014). Fabrication of highly porous silica thermal insulators prepared by gelation?freezing route. Journal of the American Ceramic Society, 97(3), 713-717. | 2014 | 145 | 10.1111/jace.12723 | 859 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 1.0 | 25.0 | 100 | powder | 0.01 | 5 | 0 | 0 | 193.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 94.0 | 22.2 | 20.5 | 1.7 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2014). Fabrication of highly porous silica thermal insulators prepared by gelation?freezing route. Journal of the American Ceramic Society, 97(3), 713-717. | 2014 | 145 | 10.1111/jace.12723 | 860 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 5.0 | 25.0 | 100 | powder | 0.01 | 5 | 0 | 0 | 193.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 94.0 | 22.2 | 20.5 | 1.7 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2014). Fabrication of highly porous silica thermal insulators prepared by gelation?freezing route. Journal of the American Ceramic Society, 97(3), 713-717. | 2014 | 145 | 10.1111/jace.12723 | 861 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 10.0 | 25.0 | 100 | powder | 0.01 | 10 | 0 | 0 | 193.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 98.0 | 19.6 | 17.0 | 2.6 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2014). Fabrication of highly porous silica thermal insulators prepared by gelation?freezing route. Journal of the American Ceramic Society, 97(3), 713-717. | 2014 | 145 | 10.1111/jace.12723 | 862 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 1.0 | 25.0 | 100 | powder | 0.01 | 10 | 0 | 0 | 193.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 98.0 | 19.6 | 17.0 | 2.6 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2014). Fabrication of highly porous silica thermal insulators prepared by gelation?freezing route. Journal of the American Ceramic Society, 97(3), 713-717. | 2014 | 145 | 10.1111/jace.12723 | 863 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 5.0 | 25.0 | 100 | powder | 0.01 | 10 | 0 | 0 | 193.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 98.0 | 19.6 | 17.0 | 2.6 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2014). Fabrication of highly porous silica thermal insulators prepared by gelation?freezing route. Journal of the American Ceramic Society, 97(3), 713-717. | 2014 | 145 | 10.1111/jace.12723 | 864 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 10.0 | 25.0 | 100 | powder | 0.01 | 10 | 0 | 0 | 193.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 98.0 | 19.6 | 17.0 | 2.6 | 0.0 | 0.0 | 0.0 | 0.0 |
Humburg, H., Volkmann, E., Koch, D., & Müssig, J. (2014). Combination of biological mechanisms for a concept study of a fracture-tolerant bio-inspired ceramic composite material. Journal of Materials Science, 49(23), 8040-8050. | 2014 | 231 | 10.1007/s10853-014-8511-x | 4604 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lee, M. K., Chung, N. O., & Lee, J. (2010). Membranes with through-thickness porosity prepared by unidirectional freezing. Polymer, 51(26), 6258-6267. | 2010 | 302 | 10.1016/j.polymer.2010.10.037 | 3353 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.38 | 25.0 | 100 | 0 | 0.02 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 100.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 60.0 | 0.0 | 3.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lee, M. K., Chung, N. O., & Lee, J. (2010). Membranes with through-thickness porosity prepared by unidirectional freezing. Polymer, 51(26), 6258-6267. | 2010 | 302 | 10.1016/j.polymer.2010.10.037 | 3354 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.38 | 25.0 | 100 | 0 | 0.02 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 50.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 60.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lee, M. K., Chung, N. O., & Lee, J. (2010). Membranes with through-thickness porosity prepared by unidirectional freezing. Polymer, 51(26), 6258-6267. | 2010 | 302 | 10.1016/j.polymer.2010.10.037 | 3355 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.38 | 25.0 | 100 | 0 | 0.02 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 20.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 60.0 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lee, M. K., Chung, N. O., & Lee, J. (2010). Membranes with through-thickness porosity prepared by unidirectional freezing. Polymer, 51(26), 6258-6267. | 2010 | 302 | 10.1016/j.polymer.2010.10.037 | 3356 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.38 | 25.0 | 100 | 0 | 0.02 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 15.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 60.0 | 0.0 | 35.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lee, M. K., Chung, N. O., & Lee, J. (2010). Membranes with through-thickness porosity prepared by unidirectional freezing. Polymer, 51(26), 6258-6267. | 2010 | 302 | 10.1016/j.polymer.2010.10.037 | 3357 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 1.95 | 25.0 | 100 | 0 | 0.02 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 13.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 50.0 | 0.0 | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lee, M. K., Chung, N. O., & Lee, J. (2010). Membranes with through-thickness porosity prepared by unidirectional freezing. Polymer, 51(26), 6258-6267. | 2010 | 302 | 10.1016/j.polymer.2010.10.037 | 3358 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 1.95 | 25.0 | 100 | 0 | 0.02 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 18.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 50.0 | 0.0 | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lee, M. K., Chung, N. O., & Lee, J. (2010). Membranes with through-thickness porosity prepared by unidirectional freezing. Polymer, 51(26), 6258-6267. | 2010 | 302 | 10.1016/j.polymer.2010.10.037 | 3359 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 1.95 | 25.0 | 100 | 0 | 0.02 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 50.0 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lee, M. K., Chung, N. O., & Lee, J. (2010). Membranes with through-thickness porosity prepared by unidirectional freezing. Polymer, 51(26), 6258-6267. | 2010 | 302 | 10.1016/j.polymer.2010.10.037 | 3360 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 1.95 | 25.0 | 100 | 0 | 0.02 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 80.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 50.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lee, M. K., Chung, N. O., & Lee, J. (2010). Membranes with through-thickness porosity prepared by unidirectional freezing. Polymer, 51(26), 6258-6267. | 2010 | 302 | 10.1016/j.polymer.2010.10.037 | 3361 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 13.92 | 25.0 | 100 | 0 | 0.02 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 13.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 40.0 | 0.0 | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lee, M. K., Chung, N. O., & Lee, J. (2010). Membranes with through-thickness porosity prepared by unidirectional freezing. Polymer, 51(26), 6258-6267. | 2010 | 302 | 10.1016/j.polymer.2010.10.037 | 3362 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 13.92 | 25.0 | 100 | 0 | 0.02 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 15.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 40.0 | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lee, M. K., Chung, N. O., & Lee, J. (2010). Membranes with through-thickness porosity prepared by unidirectional freezing. Polymer, 51(26), 6258-6267. | 2010 | 302 | 10.1016/j.polymer.2010.10.037 | 3363 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 13.92 | 25.0 | 100 | 0 | 0.02 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 28.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 40.0 | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lee, M. K., Chung, N. O., & Lee, J. (2010). Membranes with through-thickness porosity prepared by unidirectional freezing. Polymer, 51(26), 6258-6267. | 2010 | 302 | 10.1016/j.polymer.2010.10.037 | 3364 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 13.92 | 25.0 | 100 | 0 | 0.02 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 80.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 40.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lee, M. K., Chung, N. O., & Lee, J. (2010). Membranes with through-thickness porosity prepared by unidirectional freezing. Polymer, 51(26), 6258-6267. | 2010 | 302 | 10.1016/j.polymer.2010.10.037 | 3365 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 13.92 | 25.0 | 90 | 0 | 0.02 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 22.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lee, M. K., Chung, N. O., & Lee, J. (2010). Membranes with through-thickness porosity prepared by unidirectional freezing. Polymer, 51(26), 6258-6267. | 2010 | 302 | 10.1016/j.polymer.2010.10.037 | 3366 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 13.92 | 25.0 | 80 | 0 | 0.02 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 17.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lee, M. K., Chung, N. O., & Lee, J. (2010). Membranes with through-thickness porosity prepared by unidirectional freezing. Polymer, 51(26), 6258-6267. | 2010 | 302 | 10.1016/j.polymer.2010.10.037 | 3367 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 13.92 | 25.0 | 64 | 0 | 0.02 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 12.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lee, M. K., Chung, N. O., & Lee, J. (2010). Membranes with through-thickness porosity prepared by unidirectional freezing. Polymer, 51(26), 6258-6267. | 2010 | 302 | 10.1016/j.polymer.2010.10.037 | 3368 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 13.92 | 25.0 | 34 | 0 | 0.02 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Effects of Added Kaolinite on Sintering of Freeze?Cast Kaolinite?Silica Nanocomposite I. Microstructure and Phase Transformation. Journal of the American Ceramic Society, 95(3), 883-891. | 2012 | 318 | 10.1111/j.1551-2916.2011.04908.x | 4292 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 100 | powder | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.03 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Effects of Added Kaolinite on Sintering of Freeze?Cast Kaolinite?Silica Nanocomposite I. Microstructure and Phase Transformation. Journal of the American Ceramic Society, 95(3), 883-891. | 2012 | 318 | 10.1111/j.1551-2916.2011.04908.x | 4297 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 100 | powder | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 79.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Effects of Added Kaolinite on Sintering of Freeze?Cast Kaolinite?Silica Nanocomposite I. Microstructure and Phase Transformation. Journal of the American Ceramic Society, 95(3), 883-891. | 2012 | 318 | 10.1111/j.1551-2916.2011.04908.x | 4302 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 100 | powder | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 79.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.0 |
Li, W., Lu, K., Walz, J. Y., & Anderson, M. (2013). Effects of Rod?like Particles on the Microstructure and Strength of Porous Silica Nanoparticle Composites. Journal of the American Ceramic Society, 96(2), 398-406. | 2013 | 320 | 10.1111/jace.12128 | 4451 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 43 | powder | 0.28 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 81.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.09 | 0.0 |
Li, W., Lu, K., Walz, J. Y., & Anderson, M. (2013). Effects of Rod?like Particles on the Microstructure and Strength of Porous Silica Nanoparticle Composites. Journal of the American Ceramic Society, 96(2), 398-406. | 2013 | 320 | 10.1111/jace.12128 | 4452 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 43 | powder | 0.28 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 81.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.8 | 0.0 |
Li, W., Lu, K., Walz, J. Y., & Anderson, M. (2013). Effects of Rod?like Particles on the Microstructure and Strength of Porous Silica Nanoparticle Composites. Journal of the American Ceramic Society, 96(2), 398-406. | 2013 | 320 | 10.1111/jace.12128 | 4453 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 43 | powder | 0.28 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 81.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.1 | 0.0 |
Li, W., Lu, K., Walz, J. Y., & Anderson, M. (2013). Effects of Rod?like Particles on the Microstructure and Strength of Porous Silica Nanoparticle Composites. Journal of the American Ceramic Society, 96(2), 398-406. | 2013 | 320 | 10.1111/jace.12128 | 4454 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 43 | powder | 0.28 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 81.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.8 | 0.0 |
Li, W., Lu, K., Walz, J. Y., & Anderson, M. (2013). Effects of Rod?like Particles on the Microstructure and Strength of Porous Silica Nanoparticle Composites. Journal of the American Ceramic Society, 96(2), 398-406. | 2013 | 320 | 10.1111/jace.12128 | 4455 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 43 | powder | 0.28 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 81.0 | 25.13 | 22.0 | 0.0 | 3.13 | 0.0 | 0.8 | 0.0 |
Li, W., Lu, K., Walz, J. Y., & Anderson, M. (2013). Effects of Rod?like Particles on the Microstructure and Strength of Porous Silica Nanoparticle Composites. Journal of the American Ceramic Society, 96(2), 398-406. | 2013 | 320 | 10.1111/jace.12128 | 4456 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 43 | powder | 0.28 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 81.0 | 27.2 | 23.0 | 4.2 | 0.0 | 0.0 | 1.1 | 0.0 |
Li, W., Lu, K., Walz, J. Y., & Anderson, M. (2013). Effects of Rod?like Particles on the Microstructure and Strength of Porous Silica Nanoparticle Composites. Journal of the American Ceramic Society, 96(2), 398-406. | 2013 | 320 | 10.1111/jace.12128 | 4457 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 43 | powder | 0.28 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 81.0 | 27.2 | 23.0 | 4.2 | 0.0 | 0.0 | 1.5 | 0.0 |
Li, W., Lu, K., Walz, J. Y., & Anderson, M. (2013). Effects of Rod?like Particles on the Microstructure and Strength of Porous Silica Nanoparticle Composites. Journal of the American Ceramic Society, 96(2), 398-406. | 2013 | 320 | 10.1111/jace.12128 | 4458 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 43 | powder | 0.28 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 81.0 | 32.57 | 29.0 | 3.57 | 3.57 | 0.0 | 2.0 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2013). Effects of Solids Loading on Sintering and Properties of Freeze?Cast Kaolinite?Silica Porous Composites. Journal of the American Ceramic Society, 96(6), 1763-1771. | 2013 | 321 | 10.1111/jace.12355 | 3447 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 12.0 | 25.0 | 34 | 0 | 0.02 | 0 | 0 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 86.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.15 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2013). Effects of Solids Loading on Sintering and Properties of Freeze?Cast Kaolinite?Silica Porous Composites. Journal of the American Ceramic Society, 96(6), 1763-1771. | 2013 | 321 | 10.1111/jace.12355 | 3448 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 12.0 | 25.0 | 34 | 0 | 0.02 | 0 | 0 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 68.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.0 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2013). Effects of Solids Loading on Sintering and Properties of Freeze?Cast Kaolinite?Silica Porous Composites. Journal of the American Ceramic Society, 96(6), 1763-1771. | 2013 | 321 | 10.1111/jace.12355 | 3449 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 12.0 | 25.0 | 34 | 0 | 0.02 | 0 | 0 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9.0 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2013). Effects of Solids Loading on Sintering and Properties of Freeze?Cast Kaolinite?Silica Porous Composites. Journal of the American Ceramic Society, 96(6), 1763-1771. | 2013 | 321 | 10.1111/jace.12355 | 3450 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 12.0 | 25.0 | 34 | 0 | 0.02 | 0 | 0 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 12.5 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2013). Effects of Solids Loading on Sintering and Properties of Freeze?Cast Kaolinite?Silica Porous Composites. Journal of the American Ceramic Society, 96(6), 1763-1771. | 2013 | 321 | 10.1111/jace.12355 | 3451 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 12.0 | 25.0 | 34 | 0 | 0.02 | 0 | 0 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 52.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13.0 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2013). Effects of Solids Loading on Sintering and Properties of Freeze?Cast Kaolinite?Silica Porous Composites. Journal of the American Ceramic Society, 96(6), 1763-1771. | 2013 | 321 | 10.1111/jace.12355 | 3452 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 34 | 0 | 0.02 | 0 | 0 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2013). Effects of Solids Loading on Sintering and Properties of Freeze?Cast Kaolinite?Silica Porous Composites. Journal of the American Ceramic Society, 96(6), 1763-1771. | 2013 | 321 | 10.1111/jace.12355 | 3453 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 34 | 0 | 0.02 | 0 | 0 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.8 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2013). Effects of Solids Loading on Sintering and Properties of Freeze?Cast Kaolinite?Silica Porous Composites. Journal of the American Ceramic Society, 96(6), 1763-1771. | 2013 | 321 | 10.1111/jace.12355 | 3454 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 34 | 0 | 0.02 | 0 | 0 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 63.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.0 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2013). Effects of Solids Loading on Sintering and Properties of Freeze?Cast Kaolinite?Silica Porous Composites. Journal of the American Ceramic Society, 96(6), 1763-1771. | 2013 | 321 | 10.1111/jace.12355 | 3455 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 34 | 0 | 0.02 | 0 | 0 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 62.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2013). Effects of Solids Loading on Sintering and Properties of Freeze?Cast Kaolinite?Silica Porous Composites. Journal of the American Ceramic Society, 96(6), 1763-1771. | 2013 | 321 | 10.1111/jace.12355 | 3456 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 34 | 0 | 0.02 | 0 | 0 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.2 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2013). Effects of Solids Loading on Sintering and Properties of Freeze?Cast Kaolinite?Silica Porous Composites. Journal of the American Ceramic Society, 96(6), 1763-1771. | 2013 | 321 | 10.1111/jace.12355 | 3457 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 24.0 | 25.0 | 34 | 0 | 0.02 | 0 | 0 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2013). Effects of Solids Loading on Sintering and Properties of Freeze?Cast Kaolinite?Silica Porous Composites. Journal of the American Ceramic Society, 96(6), 1763-1771. | 2013 | 321 | 10.1111/jace.12355 | 3458 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 24.0 | 25.0 | 34 | 0 | 0.02 | 0 | 0 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 63.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2013). Effects of Solids Loading on Sintering and Properties of Freeze?Cast Kaolinite?Silica Porous Composites. Journal of the American Ceramic Society, 96(6), 1763-1771. | 2013 | 321 | 10.1111/jace.12355 | 3459 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 24.0 | 25.0 | 34 | 0 | 0.02 | 0 | 0 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 57.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.0 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2013). Effects of Solids Loading on Sintering and Properties of Freeze?Cast Kaolinite?Silica Porous Composites. Journal of the American Ceramic Society, 96(6), 1763-1771. | 2013 | 321 | 10.1111/jace.12355 | 3460 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 24.0 | 25.0 | 34 | 0 | 0.02 | 0 | 0 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 57.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.5 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2013). Effects of Solids Loading on Sintering and Properties of Freeze?Cast Kaolinite?Silica Porous Composites. Journal of the American Ceramic Society, 96(6), 1763-1771. | 2013 | 321 | 10.1111/jace.12355 | 3461 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 24.0 | 25.0 | 34 | 0 | 0.02 | 0 | 0 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.0 | 0.0 |
Liu, Q., Richards, V. L., Daut, K. P., & Leu, M. C. (2006). Curing kinetics of ceramic slurries used in investment casting with ice patterns. International Journal of Cast Metals Research, 19(3), 195-200. | 2006 | 338 | 10.1179/136404606225023462 | 5286 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mori, H., Aotani, K., Sano, N., & Tamon, H. (2011). Synthesis of a hierarchically micro?macroporous structured zeolite monolith by ice-templating. Journal of Materials Chemistry, 21(15), 5677-5681. | 2011 | 397 | 10.1039/c0jm04124f | 5519 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 93.8 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Murakami, K., Hashimoto, M., & Satoh, Y. Development of a Water Tolerant Solid Acid Catalyst with a Low Hydraulic Resistance Using the Ice Templating Method. | 2011 | 405 | 10.3303/cet1124019 | 4777 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., & Tamon, H. (2004). Formation of monolithic silica gel microhoneycombs (SMHs) using pseudosteady state growth of microstructural ice crystals. Chemical communications, (7), 874-875. | 2004 | 407 | 10.1039/b316597c | 4778 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., & Tamon, H. (2006). Porous microfibers and microhoneycombs synthesized by ice templating. Catalysis surveys from Asia, 10(3-4), 161-171. | 2006 | 409 | 10.1007/s10563-006-9015-8 | 5499 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., & Tamon, H. (2006). Porous microfibers and microhoneycombs synthesized by ice templating. Catalysis surveys from Asia, 10(3-4), 161-171. | 2006 | 409 | 10.1007/s10563-006-9015-8 | 5500 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., & Tamon, H. (2006). Porous microfibers and microhoneycombs synthesized by ice templating. Catalysis surveys from Asia, 10(3-4), 161-171. | 2006 | 409 | 10.1007/s10563-006-9015-8 | 5501 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 16.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., & Tamon, H. (2006). Porous microfibers and microhoneycombs synthesized by ice templating. Catalysis surveys from Asia, 10(3-4), 161-171. | 2006 | 409 | 10.1007/s10563-006-9015-8 | 5502 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 18.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., & Tamon, H. (2006). Porous microfibers and microhoneycombs synthesized by ice templating. Catalysis surveys from Asia, 10(3-4), 161-171. | 2006 | 409 | 10.1007/s10563-006-9015-8 | 5503 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Onodera, K., & Yamada, I. (2011). Studies on the growth of ice crystal templates during the synthesis of a monolithic silica microhoneycomb using the ice templating method. Adsorption, 17(1), 49-54. | 2011 | 411 | 10.1007/s10450-010-9286-2 | 5003 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Onodera, K., & Yamada, I. (2011). Studies on the growth of ice crystal templates during the synthesis of a monolithic silica microhoneycomb using the ice templating method. Adsorption, 17(1), 49-54. | 2011 | 411 | 10.1007/s10450-010-9286-2 | 5004 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Onodera, K., & Yamada, I. (2011). Studies on the growth of ice crystal templates during the synthesis of a monolithic silica microhoneycomb using the ice templating method. Adsorption, 17(1), 49-54. | 2011 | 411 | 10.1007/s10450-010-9286-2 | 5005 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Onodera, K., & Yamada, I. (2011). Studies on the growth of ice crystal templates during the synthesis of a monolithic silica microhoneycomb using the ice templating method. Adsorption, 17(1), 49-54. | 2011 | 411 | 10.1007/s10450-010-9286-2 | 5006 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Onodera, K., & Yamada, I. (2011). Studies on the growth of ice crystal templates during the synthesis of a monolithic silica microhoneycomb using the ice templating method. Adsorption, 17(1), 49-54. | 2011 | 411 | 10.1007/s10450-010-9286-2 | 5007 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Onodera, K., & Yamada, I. (2011). Studies on the growth of ice crystal templates during the synthesis of a monolithic silica microhoneycomb using the ice templating method. Adsorption, 17(1), 49-54. | 2011 | 411 | 10.1007/s10450-010-9286-2 | 5008 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Onodera, K., & Yamada, I. (2011). Studies on the growth of ice crystal templates during the synthesis of a monolithic silica microhoneycomb using the ice templating method. Adsorption, 17(1), 49-54. | 2011 | 411 | 10.1007/s10450-010-9286-2 | 5009 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Onodera, K., & Yamada, I. (2011). Studies on the growth of ice crystal templates during the synthesis of a monolithic silica microhoneycomb using the ice templating method. Adsorption, 17(1), 49-54. | 2011 | 411 | 10.1007/s10450-010-9286-2 | 5010 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Onodera, K., & Yamada, I. (2011). Studies on the growth of ice crystal templates during the synthesis of a monolithic silica microhoneycomb using the ice templating method. Adsorption, 17(1), 49-54. | 2011 | 411 | 10.1007/s10450-010-9286-2 | 5011 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nishihara, H., Iwamura, S., & Kyotani, T. (2008). Synthesis of silica-based porous monoliths with straight nanochannels using an ice-rod nanoarray as a template. Journal of Materials Chemistry, 18(31), 3662-3670. | 2008 | 433 | 10.1039/b806005c | 4011 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 20.1 | 25.0 | 100 | 0 | 0.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 17.0 | 0.0 | 0 | 0 | 0 | 0 | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nishihara, H., Iwamura, S., & Kyotani, T. (2008). Synthesis of silica-based porous monoliths with straight nanochannels using an ice-rod nanoarray as a template. Journal of Materials Chemistry, 18(31), 3662-3670. | 2008 | 433 | 10.1039/b806005c | 4012 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 20.1 | 25.0 | 100 | 0 | 0.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.84 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nishihara, H., Iwamura, S., & Kyotani, T. (2008). Synthesis of silica-based porous monoliths with straight nanochannels using an ice-rod nanoarray as a template. Journal of Materials Chemistry, 18(31), 3662-3670. | 2008 | 433 | 10.1039/b806005c | 4013 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 20.1 | 25.0 | 100 | 0 | 0.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.65 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nishihara, H., Iwamura, S., & Kyotani, T. (2008). Synthesis of silica-based porous monoliths with straight nanochannels using an ice-rod nanoarray as a template. Journal of Materials Chemistry, 18(31), 3662-3670. | 2008 | 433 | 10.1039/b806005c | 4014 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 20.1 | 25.0 | 100 | 0 | 0.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 5.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nishihara, H., Iwamura, S., & Kyotani, T. (2008). Synthesis of silica-based porous monoliths with straight nanochannels using an ice-rod nanoarray as a template. Journal of Materials Chemistry, 18(31), 3662-3670. | 2008 | 433 | 10.1039/b806005c | 4015 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 20.1 | 25.0 | 100 | 0 | 0.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.99 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nishihara, H., Iwamura, S., & Kyotani, T. (2008). Synthesis of silica-based porous monoliths with straight nanochannels using an ice-rod nanoarray as a template. Journal of Materials Chemistry, 18(31), 3662-3670. | 2008 | 433 | 10.1039/b806005c | 4016 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 20.1 | 25.0 | 100 | 0 | 0.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.79 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nishihara, H., Iwamura, S., & Kyotani, T. (2008). Synthesis of silica-based porous monoliths with straight nanochannels using an ice-rod nanoarray as a template. Journal of Materials Chemistry, 18(31), 3662-3670. | 2008 | 433 | 10.1039/b806005c | 4017 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 20.1 | 25.0 | 100 | 0 | 0.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.53 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nishihara, H., Iwamura, S., & Kyotani, T. (2008). Synthesis of silica-based porous monoliths with straight nanochannels using an ice-rod nanoarray as a template. Journal of Materials Chemistry, 18(31), 3662-3670. | 2008 | 433 | 10.1039/b806005c | 4018 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 20.1 | 25.0 | 100 | 0 | 0.0 | 5 | 1 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.79 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nishihara, H., Iwamura, S., & Kyotani, T. (2008). Synthesis of silica-based porous monoliths with straight nanochannels using an ice-rod nanoarray as a template. Journal of Materials Chemistry, 18(31), 3662-3670. | 2008 | 433 | 10.1039/b806005c | 4019 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 20.1 | 25.0 | 100 | 0 | 0.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.34 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nishihara, H., Iwamura, S., & Kyotani, T. (2008). Synthesis of silica-based porous monoliths with straight nanochannels using an ice-rod nanoarray as a template. Journal of Materials Chemistry, 18(31), 3662-3670. | 2008 | 433 | 10.1039/b806005c | 4020 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 20.1 | 25.0 | 100 | 0 | 0.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.77 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nishihara, H., Iwamura, S., & Kyotani, T. (2008). Synthesis of silica-based porous monoliths with straight nanochannels using an ice-rod nanoarray as a template. Journal of Materials Chemistry, 18(31), 3662-3670. | 2008 | 433 | 10.1039/b806005c | 4021 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 20.1 | 25.0 | 100 | 0 | 0.0 | 5 | 1 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 6.24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nishihara, H., Iwamura, S., & Kyotani, T. (2008). Synthesis of silica-based porous monoliths with straight nanochannels using an ice-rod nanoarray as a template. Journal of Materials Chemistry, 18(31), 3662-3670. | 2008 | 433 | 10.1039/b806005c | 4022 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 20.1 | 25.0 | 100 | 0 | 0.0 | 5 | 1 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 1.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nishihara, H., Iwamura, S., & Kyotani, T. (2008). Synthesis of silica-based porous monoliths with straight nanochannels using an ice-rod nanoarray as a template. Journal of Materials Chemistry, 18(31), 3662-3670. | 2008 | 433 | 10.1039/b806005c | 4023 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 20.1 | 25.0 | 100 | 0 | 0.0 | 5 | 1 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.54 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nishihara, H., Iwamura, S., & Kyotani, T. (2008). Synthesis of silica-based porous monoliths with straight nanochannels using an ice-rod nanoarray as a template. Journal of Materials Chemistry, 18(31), 3662-3670. | 2008 | 433 | 10.1039/b806005c | 4024 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 20.1 | 25.0 | 100 | 0 | 0.0 | 5 | 1 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.33 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nishihara, H., Iwamura, S., & Kyotani, T. (2008). Synthesis of silica-based porous monoliths with straight nanochannels using an ice-rod nanoarray as a template. Journal of Materials Chemistry, 18(31), 3662-3670. | 2008 | 433 | 10.1039/b806005c | 4025 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 20.1 | 25.0 | 100 | 0 | 0.0 | 5 | 1 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nishihara, H., Iwamura, S., & Kyotani, T. (2008). Synthesis of silica-based porous monoliths with straight nanochannels using an ice-rod nanoarray as a template. Journal of Materials Chemistry, 18(31), 3662-3670. | 2008 | 433 | 10.1039/b806005c | 4026 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 20.1 | 25.0 | 100 | 0 | 0.0 | 10 | 1 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.18 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nishihara, H., Iwamura, S., & Kyotani, T. (2008). Synthesis of silica-based porous monoliths with straight nanochannels using an ice-rod nanoarray as a template. Journal of Materials Chemistry, 18(31), 3662-3670. | 2008 | 433 | 10.1039/b806005c | 4027 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 20.1 | 25.0 | 100 | 0 | 0.0 | 5 | 1 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nishihara, H., Mukai, S. R., Yamashita, D., & Tamon, H. (2005). Ordered macroporous silica by ice templating. Chemistry of materials, 17(3), 683-689. | 2005 | 434 | 10.1021/cm048725f | 4028 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 1.0 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 3.88 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nishihara, H., Mukai, S. R., Yamashita, D., & Tamon, H. (2005). Ordered macroporous silica by ice templating. Chemistry of materials, 17(3), 683-689. | 2005 | 434 | 10.1021/cm048725f | 4029 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 1.0 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 55.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 5.02 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nishihara, H., Mukai, S. R., Yamashita, D., & Tamon, H. (2005). Ordered macroporous silica by ice templating. Chemistry of materials, 17(3), 683-689. | 2005 | 434 | 10.1021/cm048725f | 4030 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 1.0 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 7.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 17.74 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nishihara, H., Mukai, S. R., Yamashita, D., & Tamon, H. (2005). Ordered macroporous silica by ice templating. Chemistry of materials, 17(3), 683-689. | 2005 | 434 | 10.1021/cm048725f | 4031 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 1.0 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 7.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 44.13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nishihara, H., Mukai, S. R., Yamashita, D., & Tamon, H. (2005). Ordered macroporous silica by ice templating. Chemistry of materials, 17(3), 683-689. | 2005 | 434 | 10.1021/cm048725f | 4032 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.15 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 55.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 5.12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nishihara, H., Mukai, S. R., Yamashita, D., & Tamon, H. (2005). Ordered macroporous silica by ice templating. Chemistry of materials, 17(3), 683-689. | 2005 | 434 | 10.1021/cm048725f | 4033 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.01 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 7.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 19.62 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pannier, A., Mkandawire, M., Soltmann, U., Pompe, W., & Böttcher, H. (2012). Biological activity and mechanical stability of sol?gel-based biofilters using the freeze-gelation technique for immobilization of Rhodococcus ruber. Applied microbiology and biotechnology, 93(4), 1755-1767. | 2012 | 457 | 10.1007/s00253-011-3489-7 | 4786 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Papa, E., Medri, V., Benito, P., Vaccari, A., Bugani, S., Jaroszewicz, J., & Landi, E. (2016). Insights into the macroporosity of freeze-cast hierarchical geopolymers. RSC Advances, 6(29), 24635-24644. | 2016 | 458 | 10.1039/c6ra02232d | 5480 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 36.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 64.0 | 0.0 | 30.0 | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Papa, E., Medri, V., Benito, P., Vaccari, A., Bugani, S., Jaroszewicz, J., & Landi, E. (2016). Insights into the macroporosity of freeze-cast hierarchical geopolymers. RSC Advances, 6(29), 24635-24644. | 2016 | 458 | 10.1039/c6ra02232d | 5481 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 25.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 62.0 | 0.0 | 65.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Papa, E., Medri, V., Benito, P., Vaccari, A., Bugani, S., Jaroszewicz, J., & Landi, E. (2016). Insights into the macroporosity of freeze-cast hierarchical geopolymers. RSC Advances, 6(29), 24635-24644. | 2016 | 458 | 10.1039/c6ra02232d | 5482 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 27.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 71.0 | 0.0 | 125.0 | 250.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Papa, E., Medri, V., Benito, P., Vaccari, A., Bugani, S., Jaroszewicz, J., & Landi, E. (2016). Insights into the macroporosity of freeze-cast hierarchical geopolymers. RSC Advances, 6(29), 24635-24644. | 2016 | 458 | 10.1039/c6ra02232d | 5483 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 35.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 65.0 | 0.0 | 60.0 | 150.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Papa, E., Medri, V., Benito, P., Vaccari, A., Bugani, S., Jaroszewicz, J., & Landi, E. (2016). Insights into the macroporosity of freeze-cast hierarchical geopolymers. RSC Advances, 6(29), 24635-24644. | 2016 | 458 | 10.1039/c6ra02232d | 5484 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 25.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 73.0 | 0.0 | 85.0 | 170.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Papa, E., Medri, V., Benito, P., Vaccari, A., Bugani, S., Jaroszewicz, J., ... & Landi, E. (2015). Synthesis of porous hierarchical geopolymer monoliths by ice-templating. Microporous and Mesoporous Materials, 215, 206-214. | 2015 | 459 | 10.1016/j.micromeso.2015.05.043 | 4077 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 43.0 | 25.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 43.0 | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Papa, E., Medri, V., Benito, P., Vaccari, A., Bugani, S., Jaroszewicz, J., ... & Landi, E. (2015). Synthesis of porous hierarchical geopolymer monoliths by ice-templating. Microporous and Mesoporous Materials, 215, 206-214. | 2015 | 459 | 10.1016/j.micromeso.2015.05.043 | 4078 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 33.0 | 25.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 53.0 | 0.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Papa, E., Medri, V., Benito, P., Vaccari, A., Bugani, S., Jaroszewicz, J., ... & Landi, E. (2015). Synthesis of porous hierarchical geopolymer monoliths by ice-templating. Microporous and Mesoporous Materials, 215, 206-214. | 2015 | 459 | 10.1016/j.micromeso.2015.05.043 | 4079 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 20.0 | 25.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 70.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Papa, E., Medri, V., Benito, P., Vaccari, A., Bugani, S., Jaroszewicz, J., ... & Landi, E. (2015). Synthesis of porous hierarchical geopolymer monoliths by ice-templating. Microporous and Mesoporous Materials, 215, 206-214. | 2015 | 459 | 10.1016/j.micromeso.2015.05.043 | 4080 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 11.0 | 25.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 83.0 | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qian, L., Ahmed, A., Foster, A., Rannard, S. P., Cooper, A. I., & Zhang, H. (2009). Systematic tuning of pore morphologies and pore volumes in macroporous materials by freezing. Journal of Materials Chemistry, 19(29), 5212-5219. | 2009 | 505 | 10.1039/b903461g | 5442 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qian, L., Ahmed, A., Foster, A., Rannard, S. P., Cooper, A. I., & Zhang, H. (2009). Systematic tuning of pore morphologies and pore volumes in macroporous materials by freezing. Journal of Materials Chemistry, 19(29), 5212-5219. | 2009 | 505 | 10.1039/b903461g | 5443 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qian, L., Ahmed, A., Glennon-Alty, L., Yang, Y., Murray, P., & Zhang, H. (2015). Patterned substrates fabricated by a controlled freezing approach and biocompatibility evaluation by stem cells. Materials Science and Engineering: C, 49, 390-399. | 2015 | 506 | 10.1016/j.msec.2015.01.034 | 4198 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 2.0 | 25.0 | 100 | 0 | 0.01 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qian, L., Ahmed, A., Glennon-Alty, L., Yang, Y., Murray, P., & Zhang, H. (2015). Patterned substrates fabricated by a controlled freezing approach and biocompatibility evaluation by stem cells. Materials Science and Engineering: C, 49, 390-399. | 2015 | 506 | 10.1016/j.msec.2015.01.034 | 4199 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 2.0 | 25.0 | 100 | 0 | 0.01 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 17.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qian, L., Ahmed, A., Glennon-Alty, L., Yang, Y., Murray, P., & Zhang, H. (2015). Patterned substrates fabricated by a controlled freezing approach and biocompatibility evaluation by stem cells. Materials Science and Engineering: C, 49, 390-399. | 2015 | 506 | 10.1016/j.msec.2015.01.034 | 4200 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 2.0 | 25.0 | 100 | 0 | 0.01 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qian, L., Ahmed, A., Glennon-Alty, L., Yang, Y., Murray, P., & Zhang, H. (2015). Patterned substrates fabricated by a controlled freezing approach and biocompatibility evaluation by stem cells. Materials Science and Engineering: C, 49, 390-399. | 2015 | 506 | 10.1016/j.msec.2015.01.034 | 4201 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 2.0 | 25.0 | 100 | 0 | 0.01 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 22.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qian, L., Ahmed, A., Glennon-Alty, L., Yang, Y., Murray, P., & Zhang, H. (2015). Patterned substrates fabricated by a controlled freezing approach and biocompatibility evaluation by stem cells. Materials Science and Engineering: C, 49, 390-399. | 2015 | 506 | 10.1016/j.msec.2015.01.034 | 4202 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 2.0 | 25.0 | 100 | 0 | 0.01 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qian, L., Ahmed, A., Glennon-Alty, L., Yang, Y., Murray, P., & Zhang, H. (2015). Patterned substrates fabricated by a controlled freezing approach and biocompatibility evaluation by stem cells. Materials Science and Engineering: C, 49, 390-399. | 2015 | 506 | 10.1016/j.msec.2015.01.034 | 4203 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 2.0 | 25.0 | 100 | 0 | 0.01 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 42.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schollick, J. M., Style, R. W., Curran, A., Wettlaufer, J. S., Dufresne, E. R., Warren, P. B., ... & Aarts, D. G. (2016). Segregated Ice Growth in a Suspension of Colloidal Particles. The Journal of Physical Chemistry B, 120(16), 3941-3949. | 2016 | 547 | 10.1021/acs.jpcb.6b00742 | 3047 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 31.0 | 25.0 | 100 | 0 | 1.5 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | bridgman | constant | 1.0 | 0.0 | 0 | 0 | 0 | lenses | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schollick, J. M., Style, R. W., Curran, A., Wettlaufer, J. S., Dufresne, E. R., Warren, P. B., ... & Aarts, D. G. (2016). Segregated Ice Growth in a Suspension of Colloidal Particles. The Journal of Physical Chemistry B, 120(16), 3941-3949. | 2016 | 547 | 10.1021/acs.jpcb.6b00742 | 3048 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 41.0 | 25.0 | 100 | 0 | 1.5 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | bridgman | constant | 1.5 | 0.0 | 0 | 0 | 0 | lenses | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schollick, J. M., Style, R. W., Curran, A., Wettlaufer, J. S., Dufresne, E. R., Warren, P. B., ... & Aarts, D. G. (2016). Segregated Ice Growth in a Suspension of Colloidal Particles. The Journal of Physical Chemistry B, 120(16), 3941-3949. | 2016 | 547 | 10.1021/acs.jpcb.6b00742 | 3049 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 31.0 | 25.0 | 100 | 0 | 1.5 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | bridgman | constant | 2.0 | 0.0 | 0 | 0 | 0 | lenses | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schollick, J. M., Style, R. W., Curran, A., Wettlaufer, J. S., Dufresne, E. R., Warren, P. B., ... & Aarts, D. G. (2016). Segregated Ice Growth in a Suspension of Colloidal Particles. The Journal of Physical Chemistry B, 120(16), 3941-3949. | 2016 | 547 | 10.1021/acs.jpcb.6b00742 | 3050 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 41.0 | 25.0 | 100 | 0 | 1.5 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | bridgman | constant | 1.5 | 0.0 | 0 | 0 | 0 | lenses | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schollick, J. M., Style, R. W., Curran, A., Wettlaufer, J. S., Dufresne, E. R., Warren, P. B., ... & Aarts, D. G. (2016). Segregated Ice Growth in a Suspension of Colloidal Particles. The Journal of Physical Chemistry B, 120(16), 3941-3949. | 2016 | 547 | 10.1021/acs.jpcb.6b00742 | 3051 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 31.0 | 25.0 | 100 | 0 | 1.5 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | bridgman | constant | 1.5 | 0.0 | 0 | 0 | 0 | lenses | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schollick, J. M., Style, R. W., Curran, A., Wettlaufer, J. S., Dufresne, E. R., Warren, P. B., ... & Aarts, D. G. (2016). Segregated Ice Growth in a Suspension of Colloidal Particles. The Journal of Physical Chemistry B, 120(16), 3941-3949. | 2016 | 547 | 10.1021/acs.jpcb.6b00742 | 3052 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 41.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | bridgeman | constant | 0.0 | 0.0 | 0 | 0 | 0 | lenses | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shi, Q., An, Z., Tsung, C. K., Liang, H., Zheng, N., Hawker, C. J., & Stucky, G. D. (2007). Ice?Templating of Core/Shell Microgel Fibers through ?Bricks?and?Mortar?Assembly. Advanced Materials, 19(24), 4539-4543. | 2007 | 570 | 10.1002/adma.200700819 | 4797 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tamon, H., Akatsua, T., Mori, H., & Sano, N. (2013). Synthesis of zeolite monolith with hierarchical micro/macropores by ice-templating and steam-assisted crystallization. Chem. Eng. Trans, 32, 2059-2064. | 2013 | 606 | 10.3303/cet1332344 | 4799 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 14.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, J., Chen, Y. F., Liu, H. L., Huo, Y. L., & Wang, C. P. (2012). Preparation and Microstructures of Nano-Porous SiO2 Thermal Insulation Materials by Freeze-Casting of SiO2 in TBA/H2O Suspensions. In Key Engineering Materials (Vol. 512, pp. 315-318). Trans Tech Publications. | 2012 | 608 | 10.4028/www.scientific.net/KEM.512-515.315 | 2908 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 5.34 | 25.0 | 100 | spherical | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, J., Chen, Y. F., Liu, H. L., Huo, Y. L., & Wang, C. P. (2012). Preparation and Microstructures of Nano-Porous SiO2 Thermal Insulation Materials by Freeze-Casting of SiO2 in TBA/H2O Suspensions. In Key Engineering Materials (Vol. 512, pp. 315-318). Trans Tech Publications. | 2012 | 608 | 10.4028/www.scientific.net/KEM.512-515.315 | 2909 | ceramic | SiO2 | water | 60 | TBA | 40 | 5.34 | 25.0 | 100 | spherical | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, J., Chen, Y. F., Liu, H. L., Huo, Y. L., & Wang, C. P. (2012). Preparation and Microstructures of Nano-Porous SiO2 Thermal Insulation Materials by Freeze-Casting of SiO2 in TBA/H2O Suspensions. In Key Engineering Materials (Vol. 512, pp. 315-318). Trans Tech Publications. | 2012 | 608 | 10.4028/www.scientific.net/KEM.512-515.315 | 2910 | ceramic | SiO2 | water | 30 | TBA | 69 | 5.34 | 25.0 | 100 | spherical | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, J., Chen, Y. F., Liu, H. L., Huo, Y. L., & Wang, C. P. (2012). Preparation and Microstructures of Nano-Porous SiO2 Thermal Insulation Materials by Freeze-Casting of SiO2 in TBA/H2O Suspensions. In Key Engineering Materials (Vol. 512, pp. 315-318). Trans Tech Publications. | 2012 | 608 | 10.4028/www.scientific.net/KEM.512-515.315 | 2911 | ceramic | SiO2 | TBA | 100 | 0.0 | 0 | 5.34 | 25.0 | 100 | spherical | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, J., Chen, Y. F., Liu, H. L., Huo, Y. L., & Wang, C. P. (2012). Preparation and Microstructures of Nano-Porous SiO2 Thermal Insulation Materials by Freeze-Casting of SiO2 in TBA/H2O Suspensions. In Key Engineering Materials (Vol. 512, pp. 315-318). Trans Tech Publications. | 2012 | 608 | 10.4028/www.scientific.net/KEM.512-515.315 | 2912 | ceramic | SiO2 | water | 60 | TBA | 40 | 5.34 | 25.0 | 100 | spherical | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 83.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tomeckova, V., & Halloran, J. W. (2012). Porous ceramics by photopolymerization with terpene?acrylate vehicles. Journal of the American Ceramic Society, 95(12), 3763-3768. | 2012 | 624 | 10.1111/j.1551-2916.2012.05444.x | 4274 | ceramic | SiO2 | camphene | 40 | camphor | 20 | 3.0 | 25.0 | 100 | powder | 2.0 | 0 | 2 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 7.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tomeckova, V., & Halloran, J. W. (2012). Porous ceramics by photopolymerization with terpene?acrylate vehicles. Journal of the American Ceramic Society, 95(12), 3763-3768. | 2012 | 624 | 10.1111/j.1551-2916.2012.05444.x | 4275 | ceramic | SiO2 | camphene | 40 | camphor | 20 | 15.0 | 25.0 | 100 | powder | 2.0 | 0 | 2 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 5.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tomeckova, V., & Halloran, J. W. (2012). Porous ceramics by photopolymerization with terpene?acrylate vehicles. Journal of the American Ceramic Society, 95(12), 3763-3768. | 2012 | 624 | 10.1111/j.1551-2916.2012.05444.x | 4276 | ceramic | SiO2 | camphene | 40 | camphor | 20 | 25.0 | 25.0 | 100 | powder | 2.0 | 0 | 2 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 4.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tomeckova, V., & Halloran, J. W. (2012). Porous ceramics by photopolymerization with terpene?acrylate vehicles. Journal of the American Ceramic Society, 95(12), 3763-3768. | 2012 | 624 | 10.1111/j.1551-2916.2012.05444.x | 4277 | ceramic | SiO2 | camphene | 40 | camphor | 20 | 35.0 | 25.0 | 100 | powder | 2.0 | 0 | 2 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tomeckova, V., & Halloran, J. W. (2012). Porous ceramics by photopolymerization with terpene?acrylate vehicles. Journal of the American Ceramic Society, 95(12), 3763-3768. | 2012 | 624 | 10.1111/j.1551-2916.2012.05444.x | 4278 | ceramic | SiO2 | camphene | 40 | camphor | 20 | 3.0 | 25.0 | 100 | powder | 36.8 | 0 | 2 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 6.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tomeckova, V., & Halloran, J. W. (2012). Porous ceramics by photopolymerization with terpene?acrylate vehicles. Journal of the American Ceramic Society, 95(12), 3763-3768. | 2012 | 624 | 10.1111/j.1551-2916.2012.05444.x | 4279 | ceramic | SiO2 | camphene | 40 | camphor | 20 | 15.0 | 25.0 | 100 | powder | 36.8 | 0 | 2 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 5.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tomeckova, V., & Halloran, J. W. (2012). Porous ceramics by photopolymerization with terpene?acrylate vehicles. Journal of the American Ceramic Society, 95(12), 3763-3768. | 2012 | 624 | 10.1111/j.1551-2916.2012.05444.x | 4280 | ceramic | SiO2 | camphene | 40 | camphor | 20 | 25.0 | 25.0 | 100 | powder | 36.8 | 0 | 2 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 4.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tomeckova, V., & Halloran, J. W. (2012). Porous ceramics by photopolymerization with terpene?acrylate vehicles. Journal of the American Ceramic Society, 95(12), 3763-3768. | 2012 | 624 | 10.1111/j.1551-2916.2012.05444.x | 4281 | ceramic | SiO2 | camphene | 40 | camphor | 20 | 35.0 | 25.0 | 100 | powder | 36.8 | 0 | 2 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 3.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Verma, J., Vijayakumar, M., & Mitra, R. (2015). Processing and microstructure of freeze-cast silica foams. Materials Letters, 153, 168-170. | 2015 | 630 | 10.1016/j.matlet.2015.04.019 | 2984 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 38.0 | 25.0 | 0 | 0 | 10.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 85.0 | 0.0 | 125.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Liu, J., Du, H., Guo, A., & Hou, Z. (2012). Preparation of porous silica ceramics with relatively high strength by a TBA-based gel-casting method. Chemical Engineering Journal, 183, 504-509. | 2012 | 686 | 10.1016/j.cej.2011.12.049 | 2536 | ceramic | SiO2 | TBA | 100 | 0.0 | 0 | 7.0 | 25.0 | 100 | spherical | 0.05 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 72.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Liu, J., Du, H., Guo, A., & Hou, Z. (2012). Preparation of porous silica ceramics with relatively high strength by a TBA-based gel-casting method. Chemical Engineering Journal, 183, 504-509. | 2012 | 686 | 10.1016/j.cej.2011.12.049 | 2537 | ceramic | SiO2 | TBA | 100 | 0.0 | 0 | 10.0 | 25.0 | 100 | spherical | 0.05 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Liu, J., Du, H., Guo, A., & Hou, Z. (2012). Preparation of porous silica ceramics with relatively high strength by a TBA-based gel-casting method. Chemical Engineering Journal, 183, 504-509. | 2012 | 686 | 10.1016/j.cej.2011.12.049 | 2538 | ceramic | SiO2 | TBA | 100 | 0.0 | 0 | 13.0 | 25.0 | 100 | spherical | 0.05 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 68.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Liu, J., Du, H., Guo, A., & Hou, Z. (2012). Preparation of porous silica ceramics with relatively high strength by a TBA-based gel-casting method. Chemical Engineering Journal, 183, 504-509. | 2012 | 686 | 10.1016/j.cej.2011.12.049 | 2539 | ceramic | SiO2 | TBA | 100 | 0.0 | 0 | 16.0 | 25.0 | 100 | spherical | 0.05 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Liu, J., Du, H., Guo, A., & Hou, Z. (2012). Preparation of porous silica ceramics with relatively high strength by a TBA-based gel-casting method. Chemical Engineering Journal, 183, 504-509. | 2012 | 686 | 10.1016/j.cej.2011.12.049 | 2540 | ceramic | SiO2 | TBA | 100 | 0.0 | 0 | 19.0 | 25.0 | 100 | spherical | 0.05 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 64.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Liu, J., Du, H., Guo, A., & Hou, Z. (2012). Preparation of porous silica ceramics with relatively high strength by a TBA-based gel-casting method. Chemical Engineering Journal, 183, 504-509. | 2012 | 686 | 10.1016/j.cej.2011.12.049 | 2541 | ceramic | SiO2 | TBA | 100 | 0.0 | 0 | 7.0 | 25.0 | 100 | spherical | 0.05 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 23 | cellular | sintered | 70.1 | 0.0 | 0.0 | 0.0 | 0.0 | 4.32 | 0.0 | 0.0 |
Xu, H., Liu, J., Du, H., Guo, A., & Hou, Z. (2012). Preparation of porous silica ceramics with relatively high strength by a TBA-based gel-casting method. Chemical Engineering Journal, 183, 504-509. | 2012 | 686 | 10.1016/j.cej.2011.12.049 | 2542 | ceramic | SiO2 | TBA | 100 | 0.0 | 0 | 10.0 | 25.0 | 100 | spherical | 0.05 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 19 | cellular | sintered | 66.3 | 0.0 | 0.0 | 0.0 | 0.0 | 5.16 | 0.0 | 0.0 |
Xu, H., Liu, J., Du, H., Guo, A., & Hou, Z. (2012). Preparation of porous silica ceramics with relatively high strength by a TBA-based gel-casting method. Chemical Engineering Journal, 183, 504-509. | 2012 | 686 | 10.1016/j.cej.2011.12.049 | 2543 | ceramic | SiO2 | TBA | 100 | 0.0 | 0 | 13.0 | 25.0 | 100 | spherical | 0.05 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 18 | cellular | sintered | 63.4 | 0.0 | 0.0 | 0.0 | 0.0 | 7.38 | 0.0 | 0.0 |
Xu, H., Liu, J., Du, H., Guo, A., & Hou, Z. (2012). Preparation of porous silica ceramics with relatively high strength by a TBA-based gel-casting method. Chemical Engineering Journal, 183, 504-509. | 2012 | 686 | 10.1016/j.cej.2011.12.049 | 2544 | ceramic | SiO2 | TBA | 100 | 0.0 | 0 | 16.0 | 25.0 | 100 | spherical | 0.05 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 15 | cellular | sintered | 62.3 | 0.0 | 0.0 | 0.0 | 0.0 | 8.03 | 0.0 | 0.0 |
Xu, H., Liu, J., Du, H., Guo, A., & Hou, Z. (2012). Preparation of porous silica ceramics with relatively high strength by a TBA-based gel-casting method. Chemical Engineering Journal, 183, 504-509. | 2012 | 686 | 10.1016/j.cej.2011.12.049 | 2545 | ceramic | SiO2 | TBA | 100 | 0.0 | 0 | 19.0 | 25.0 | 100 | spherical | 0.05 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 13 | cellular | sintered | 72.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.82 | 0.0 | 0.0 |
Xu, H., Liu, J., Du, H., Guo, A., & Hou, Z. (2012). Preparation of porous silica ceramics with relatively high strength by a TBA-based gel-casting method. Chemical Engineering Journal, 183, 504-509. | 2012 | 686 | 10.1016/j.cej.2011.12.049 | 2546 | ceramic | SiO2 | TBA | 100 | 0.0 | 0 | 7.0 | 25.0 | 100 | spherical | 0.05 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Liu, J., Du, H., Guo, A., & Hou, Z. (2012). Preparation of porous silica ceramics with relatively high strength by a TBA-based gel-casting method. Chemical Engineering Journal, 183, 504-509. | 2012 | 686 | 10.1016/j.cej.2011.12.049 | 2547 | ceramic | SiO2 | TBA | 100 | 0.0 | 0 | 10.0 | 25.0 | 100 | spherical | 0.05 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 68.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Liu, J., Du, H., Guo, A., & Hou, Z. (2012). Preparation of porous silica ceramics with relatively high strength by a TBA-based gel-casting method. Chemical Engineering Journal, 183, 504-509. | 2012 | 686 | 10.1016/j.cej.2011.12.049 | 2548 | ceramic | SiO2 | TBA | 100 | 0.0 | 0 | 13.0 | 25.0 | 100 | spherical | 0.05 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Liu, J., Du, H., Guo, A., & Hou, Z. (2012). Preparation of porous silica ceramics with relatively high strength by a TBA-based gel-casting method. Chemical Engineering Journal, 183, 504-509. | 2012 | 686 | 10.1016/j.cej.2011.12.049 | 2549 | ceramic | SiO2 | TBA | 100 | 0.0 | 0 | 16.0 | 25.0 | 100 | spherical | 0.05 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 64.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Liu, J., Du, H., Guo, A., & Hou, Z. (2012). Preparation of porous silica ceramics with relatively high strength by a TBA-based gel-casting method. Chemical Engineering Journal, 183, 504-509. | 2012 | 686 | 10.1016/j.cej.2011.12.049 | 2550 | ceramic | SiO2 | TBA | 100 | 0.0 | 0 | 19.0 | 25.0 | 100 | spherical | 0.05 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 58.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Liu, J., Du, H., Guo, A., & Hou, Z. (2012). Preparation of porous silica ceramics with relatively high strength by a TBA-based gel-casting method. Chemical Engineering Journal, 183, 504-509. | 2012 | 686 | 10.1016/j.cej.2011.12.049 | 2551 | ceramic | SiO2 | TBA | 100 | 0.0 | 0 | 7.0 | 25.0 | 100 | spherical | 0.05 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Liu, J., Du, H., Guo, A., & Hou, Z. (2012). Preparation of porous silica ceramics with relatively high strength by a TBA-based gel-casting method. Chemical Engineering Journal, 183, 504-509. | 2012 | 686 | 10.1016/j.cej.2011.12.049 | 2552 | ceramic | SiO2 | TBA | 100 | 0.0 | 0 | 10.0 | 25.0 | 100 | spherical | 0.05 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 38.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Liu, J., Du, H., Guo, A., & Hou, Z. (2012). Preparation of porous silica ceramics with relatively high strength by a TBA-based gel-casting method. Chemical Engineering Journal, 183, 504-509. | 2012 | 686 | 10.1016/j.cej.2011.12.049 | 2553 | ceramic | SiO2 | TBA | 100 | 0.0 | 0 | 13.0 | 25.0 | 100 | spherical | 0.05 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 27.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Liu, J., Du, H., Guo, A., & Hou, Z. (2012). Preparation of porous silica ceramics with relatively high strength by a TBA-based gel-casting method. Chemical Engineering Journal, 183, 504-509. | 2012 | 686 | 10.1016/j.cej.2011.12.049 | 2554 | ceramic | SiO2 | TBA | 100 | 0.0 | 0 | 16.0 | 25.0 | 100 | spherical | 0.05 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 26.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Liu, J., Du, H., Guo, A., & Hou, Z. (2012). Preparation of porous silica ceramics with relatively high strength by a TBA-based gel-casting method. Chemical Engineering Journal, 183, 504-509. | 2012 | 686 | 10.1016/j.cej.2011.12.049 | 2555 | ceramic | SiO2 | TBA | 100 | 0.0 | 0 | 19.0 | 25.0 | 100 | spherical | 0.05 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, H., Long, J., & Cooper, A. I. (2005). Aligned porous materials by directional freezing of solutions in liquid CO2. Journal of the American Chemical Society, 127(39), 13482-13483. | 2005 | 759 | 0 | 5805 | ceramic | SiO2 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 7.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bahrami, A., Simon, U., Soltani, N., Zavareh, S., Schmidt, J., Pech-Canul, M. I., & Gurlo, A. (2017). Eco-fabrication of hierarchical porous silica monoliths by ice-templating of rice husk ash. Green Chemistry, 19(1), 188-195. | 2017 | 821 | 10.1039/c6gc02153k | 4822 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 4.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 10.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bahrami, A., Simon, U., Soltani, N., Zavareh, S., Schmidt, J., Pech-Canul, M. I., & Gurlo, A. (2017). Eco-fabrication of hierarchical porous silica monoliths by ice-templating of rice husk ash. Green Chemistry, 19(1), 188-195. | 2017 | 821 | 10.1039/c6gc02153k | 4823 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 4.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bahrami, A., Simon, U., Soltani, N., Zavareh, S., Schmidt, J., Pech-Canul, M. I., & Gurlo, A. (2017). Eco-fabrication of hierarchical porous silica monoliths by ice-templating of rice husk ash. Green Chemistry, 19(1), 188-195. | 2017 | 821 | 10.1039/c6gc02153k | 4824 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 21.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bahrami, A., Simon, U., Soltani, N., Zavareh, S., Schmidt, J., Pech-Canul, M. I., & Gurlo, A. (2017). Eco-fabrication of hierarchical porous silica monoliths by ice-templating of rice husk ash. Green Chemistry, 19(1), 188-195. | 2017 | 821 | 10.1039/c6gc02153k | 4825 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 21.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 3.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bahrami, A., Simon, U., Soltani, N., Zavareh, S., Schmidt, J., Pech-Canul, M. I., & Gurlo, A. (2017). Eco-fabrication of hierarchical porous silica monoliths by ice-templating of rice husk ash. Green Chemistry, 19(1), 188-195. | 2017 | 821 | 10.1039/c6gc02153k | 4826 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 48.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 9.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bahrami, A., Simon, U., Soltani, N., Zavareh, S., Schmidt, J., Pech-Canul, M. I., & Gurlo, A. (2017). Eco-fabrication of hierarchical porous silica monoliths by ice-templating of rice husk ash. Green Chemistry, 19(1), 188-195. | 2017 | 821 | 10.1039/c6gc02153k | 4827 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 48.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 5.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Grebenyuk, Y., Zhang, H. X., Wilhelm, M., Rezwan, K., & Dreyer, M. E. (2017). Wicking into porous polymer-derived ceramic monoliths fabricated by freeze-casting. Journal of the European Ceramic Society, 37(5), 1993-2000. | 2016 | 854 | 10.1016/j.jeurceramsoc.2016.11.049 | 4989 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.13 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 53.2 | 0.0 | 17.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Grebenyuk, Y., Zhang, H. X., Wilhelm, M., Rezwan, K., & Dreyer, M. E. (2017). Wicking into porous polymer-derived ceramic monoliths fabricated by freeze-casting. Journal of the European Ceramic Society, 37(5), 1993-2000. | 2016 | 854 | 10.1016/j.jeurceramsoc.2016.11.049 | 4990 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.13 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 53.2 | 0.0 | 17.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Grebenyuk, Y., Zhang, H. X., Wilhelm, M., Rezwan, K., & Dreyer, M. E. (2017). Wicking into porous polymer-derived ceramic monoliths fabricated by freeze-casting. Journal of the European Ceramic Society, 37(5), 1993-2000. | 2016 | 854 | 10.1016/j.jeurceramsoc.2016.11.049 | 4991 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.13 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 54.8 | 0.0 | 3.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Grebenyuk, Y., Zhang, H. X., Wilhelm, M., Rezwan, K., & Dreyer, M. E. (2017). Wicking into porous polymer-derived ceramic monoliths fabricated by freeze-casting. Journal of the European Ceramic Society, 37(5), 1993-2000. | 2016 | 854 | 10.1016/j.jeurceramsoc.2016.11.049 | 4992 | ceramic | SiO2 | water | 100 | 0.0 | 0 | 0.13 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 54.8 | 0.0 | 3.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ahmed, A., Hearn, J., Abdelmagid, W., & Zhang, H. (2012). Dual-tuned drug release by nanofibrous scaffolds of chitosan and mesoporous silica microspheres. Journal of Materials Chemistry, 22(48), 25027-25035. | 2012 | 2 | 10.1039/c2jm35569h | 14 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.67 | 39.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 98.0 | 90.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ahmed, A., Hearn, J., Abdelmagid, W., & Zhang, H. (2012). Dual-tuned drug release by nanofibrous scaffolds of chitosan and mesoporous silica microspheres. Journal of Materials Chemistry, 22(48), 25027-25035. | 2012 | 2 | 10.1039/c2jm35569h | 15 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.67 | 39.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 88.0 | 80.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ahmed, A., Hearn, J., Abdelmagid, W., & Zhang, H. (2012). Dual-tuned drug release by nanofibrous scaffolds of chitosan and mesoporous silica microspheres. Journal of Materials Chemistry, 22(48), 25027-25035. | 2012 | 2 | 10.1039/c2jm35569h | 16 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.67 | 39.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 88.0 | 80.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ahmed, A., Hearn, J., Abdelmagid, W., & Zhang, H. (2012). Dual-tuned drug release by nanofibrous scaffolds of chitosan and mesoporous silica microspheres. Journal of Materials Chemistry, 22(48), 25027-25035. | 2012 | 2 | 10.1039/c2jm35569h | 17 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.67 | 39.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 87.0 | 79.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ahmed, A., Hearn, J., Abdelmagid, W., & Zhang, H. (2012). Dual-tuned drug release by nanofibrous scaffolds of chitosan and mesoporous silica microspheres. Journal of Materials Chemistry, 22(48), 25027-25035. | 2012 | 2 | 10.1039/c2jm35569h | 18 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.67 | 39.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 89.0 | 81.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dinu, M. V., P?ádný, M., Dr?gan, E. S., & Michálek, J. (2013). Ice-templated hydrogels based on chitosan with tailored porous morphology. Carbohydrate polymers, 94(1), 170-178. | 2013 | 92 | 10.1016/j.carbpol.2013.01.084 | 4620 | polymer | chitosan | water | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 94.87 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dinu, M. V., P?ádný, M., Dr?gan, E. S., & Michálek, J. (2013). Morphogical and swelling properties of porous hydrogels based on poly (hydroxyethyl methacrylate) and chitosan modulated by ice-templating process and porogen leaching. Journal of Polymer Research, 20(11), 285. | 2013 | 93 | 10.1007/s10965-013-0285-3 | 4874 | polymer | chitosan | water | 100 | 0.0 | 0 | 2.02 | 39.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 255.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 95.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dinu, M. V., P?ádný, M., Dr?gan, E. S., & Michálek, J. (2013). Morphogical and swelling properties of porous hydrogels based on poly (hydroxyethyl methacrylate) and chitosan modulated by ice-templating process and porogen leaching. Journal of Polymer Research, 20(11), 285. | 2013 | 93 | 10.1007/s10965-013-0285-3 | 4876 | polymer | chitosan | water | 100 | 0.0 | 0 | 3.05 | 39.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 255.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 94.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dinu, M. V., P?ádný, M., Dr?gan, E. S., & Michálek, J. (2013). Morphogical and swelling properties of porous hydrogels based on poly (hydroxyethyl methacrylate) and chitosan modulated by ice-templating process and porogen leaching. Journal of Polymer Research, 20(11), 285. | 2013 | 93 | 10.1007/s10965-013-0285-3 | 4878 | polymer | chitosan | water | 100 | 0.0 | 0 | 4.05 | 39.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 255.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 95.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dinu, M. V., P?ádný, M., Dr?gan, E. S., & Michálek, J. (2013). Morphogical and swelling properties of porous hydrogels based on poly (hydroxyethyl methacrylate) and chitosan modulated by ice-templating process and porogen leaching. Journal of Polymer Research, 20(11), 285. | 2013 | 93 | 10.1007/s10965-013-0285-3 | 4880 | polymer | chitosan | water | 100 | 0.0 | 0 | 2.02 | 39.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 255.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 96.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dinu, M. V., P?ádný, M., Dr?gan, E. S., & Michálek, J. (2013). Morphogical and swelling properties of porous hydrogels based on poly (hydroxyethyl methacrylate) and chitosan modulated by ice-templating process and porogen leaching. Journal of Polymer Research, 20(11), 285. | 2013 | 93 | 10.1007/s10965-013-0285-3 | 4882 | polymer | chitosan | water | 100 | 0.0 | 0 | 5.6 | 39.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 94.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Donius, A. E., Obbard, R. W., Burger, J. N., Hunger, P. M., Baker, I., Doherty, R. D., & Wegst, U. G. (2014). Cryogenic EBSD reveals structure of directionally solidified ice?polymer composite. Materials Characterization, 93, 184-190. | 2014 | 99 | 10.1016/j.matchar.2014.04.003 | 5797 | polymer | chitosan | water | 100 | 0.0 | 0 | 1.9 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | solidification | 0.0 | 52.0 | 50.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Francis, N. L., Hunger, P. M., Donius, A. E., Wegst, U. G., & Wheatley, M. A. (2017). Strategies for neurotrophin?3 and chondroitinase ABC release from freeze?cast chitosan?alginate nerve?guidance scaffolds. Journal of tissue engineering and regenerative medicine, 11(1), 285-294. | 2014 | 123 | 10.1002/term.1912 | 4745 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Francis, N. L., Hunger, P. M., Donius, A. E., Riblett, B. W., Zavaliangos, A., Wegst, U. G., & Wheatley, M. A. (2013). An ice?templated, linearly aligned chitosan?alginate scaffold for neural tissue engineering. Journal of biomedical materials research Part A, 101(12), 3493-3503. | 2013 | 124 | 10.1002/jbm.a.34668 | 4319 | polymer | chitosan | water | 100 | 0.0 | 0 | 1.5 | 39.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 123.0 | 1.0 | 0.0 | one-sided | exponential | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 75.25 | 68.0 | 7.25 | 0.0 | 0.0 | 0.0 | 0.0 |
Gao, H. L., Lu, Y., Mao, L. B., An, D., Xu, L., Gu, J. T., ... & Yu, S. H. (2014). A shape-memory scaffold for macroscale assembly of functional nanoscale building blocks. Materials Horizons, 1(1), 69-73. | 2014 | 150 | 10.1039/c3mh00040k | 4746 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gao, H. L., Lu, Y., Mao, L. B., An, D., Xu, L., Gu, J. T., ... & Yu, S. H. (2014). A shape-memory scaffold for macroscale assembly of functional nanoscale building blocks. Materials Horizons, 1(1), 69-73. | 2014 | 150 | 10.1039/c3mh00040k | 6016 | polymer | chitosan | water | 100 | 0.0 | 0 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 268.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 200.0 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 |
Gao, H. L., Lu, Y., Mao, L. B., An, D., Xu, L., Gu, J. T., ... & Yu, S. H. (2014). A shape-memory scaffold for macroscale assembly of functional nanoscale building blocks. Materials Horizons, 1(1), 69-73. | 2014 | 150 | 10.1039/c3mh00040k | 6017 | polymer | chitosan | water | 100 | 0.0 | 0 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 |
Gao, H. L., Lu, Y., Mao, L. B., An, D., Xu, L., Gu, J. T., ... & Yu, S. H. (2014). A shape-memory scaffold for macroscale assembly of functional nanoscale building blocks. Materials Horizons, 1(1), 69-73. | 2014 | 150 | 10.1039/c3mh00040k | 6018 | polymer | chitosan | water | 100 | 0.0 | 0 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 |
Gao, H. L., Lu, Y., Mao, L. B., An, D., Xu, L., Gu, J. T., ... & Yu, S. H. (2014). A shape-memory scaffold for macroscale assembly of functional nanoscale building blocks. Materials Horizons, 1(1), 69-73. | 2014 | 150 | 10.1039/c3mh00040k | 6019 | polymer | chitosan | water | 100 | 0.0 | 0 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 20.0 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 |
García Cruz, D. M., Gomes, M., Reis, R., Moratal, D., Salmerón?Sánchez, M., Gómez Ribelles, J. L., & Mano, J. F. (2010). Differentiation of mesenchymal stem cells in chitosan scaffolds with double micro and macroporosity. Journal of biomedical materials research Part A, 95(4), 1182-1193. | 2010 | 152 | 10.1002/jbm.a.32906 | 4889 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 0.0 | 39.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 120.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Guzmán, R., Nardecchia, S., Gutiérrez, M. C., Ferrer, M. L., Ramos, V., del Monte, F., ... & López-Lacomba, J. L. (2014). Chitosan scaffolds containing calcium phosphate salts and rhBMP-2: in vitro and in vivo testing for bone tissue regeneration. PloS one, 9(2), e87149. | 2014 | 180 | 10.1371/journal.pone.0087149 | 4963 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Guzmán, R., Nardecchia, S., Gutiérrez, M. C., Ferrer, M. L., Ramos, V., del Monte, F., ... & López-Lacomba, J. L. (2014). Chitosan scaffolds containing calcium phosphate salts and rhBMP-2: in vitro and in vivo testing for bone tissue regeneration. PloS one, 9(2), e87149. | 2014 | 180 | 10.1371/journal.pone.0087149 | 4964 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Guzmán, R., Nardecchia, S., Gutiérrez, M. C., Ferrer, M. L., Ramos, V., del Monte, F., ... & López-Lacomba, J. L. (2014). Chitosan scaffolds containing calcium phosphate salts and rhBMP-2: in vitro and in vivo testing for bone tissue regeneration. PloS one, 9(2), e87149. | 2014 | 180 | 10.1371/journal.pone.0087149 | 4965 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Guzmán, R., Nardecchia, S., Gutiérrez, M. C., Ferrer, M. L., Ramos, V., del Monte, F., ... & López-Lacomba, J. L. (2014). Chitosan scaffolds containing calcium phosphate salts and rhBMP-2: in vitro and in vivo testing for bone tissue regeneration. PloS one, 9(2), e87149. | 2014 | 180 | 10.1371/journal.pone.0087149 | 4966 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ho, M. H., Kuo, P. Y., Hsieh, H. J., Hsien, T. Y., Hou, L. T., Lai, J. Y., & Wang, D. M. (2004). Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials, 25(1), 129-138. | 2004 | 204 | 10.1016/s0142-9612(03)00483-6 | 5230 | polymer | chitosan | dioxane | 100 | 0.0 | 0 | 2.0 | 39.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 95.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hsieh, C. Y., Hsieh, H. J., Liu, H. C., Wang, D. M., & Hou, L. T. (2006). Fabrication and release behavior of a novel freeze-gelled chitosan/?-PGA scaffold as a carrier for rhBMP-2. Dental Materials, 22(7), 622-629. | 2006 | 216 | 10.1016/j.dental.2005.05.012 | 5232 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | immersion | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 33.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hsieh, C. Y., Hsieh, H. J., Liu, H. C., Wang, D. M., & Hou, L. T. (2006). Fabrication and release behavior of a novel freeze-gelled chitosan/?-PGA scaffold as a carrier for rhBMP-2. Dental Materials, 22(7), 622-629. | 2006 | 216 | 10.1016/j.dental.2005.05.012 | 5233 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | immersion | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 20.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hsieh, C. Y., Hsieh, H. J., Liu, H. C., Wang, D. M., & Hou, L. T. (2006). Fabrication and release behavior of a novel freeze-gelled chitosan/?-PGA scaffold as a carrier for rhBMP-2. Dental Materials, 22(7), 622-629. | 2006 | 216 | 10.1016/j.dental.2005.05.012 | 5234 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | immersion | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 53.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hsieh, C. Y., Hsieh, H. J., Liu, H. C., Wang, D. M., & Hou, L. T. (2006). Fabrication and release behavior of a novel freeze-gelled chitosan/?-PGA scaffold as a carrier for rhBMP-2. Dental Materials, 22(7), 622-629. | 2006 | 216 | 10.1016/j.dental.2005.05.012 | 5235 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | immersion | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 66.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hsieh, C. Y., Tsai, S. P., Ho, M. H., Wang, D. M., Liu, C. E., Hsieh, C. H., ... & Hsieh, H. J. (2007). Analysis of freeze-gelation and cross-linking processes for preparing porous chitosan scaffolds. Carbohydrate Polymers, 67(1), 124-132. | 2007 | 217 | 10.1016/j.carbpol.2006.05.002 | 5236 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 0.08 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hsieh, C. Y., Tsai, S. P., Ho, M. H., Wang, D. M., Liu, C. E., Hsieh, C. H., ... & Hsieh, H. J. (2007). Analysis of freeze-gelation and cross-linking processes for preparing porous chitosan scaffolds. Carbohydrate Polymers, 67(1), 124-132. | 2007 | 217 | 10.1016/j.carbpol.2006.05.002 | 5237 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 0.08 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hsieh, C. Y., Tsai, S. P., Ho, M. H., Wang, D. M., Liu, C. E., Hsieh, C. H., ... & Hsieh, H. J. (2007). Analysis of freeze-gelation and cross-linking processes for preparing porous chitosan scaffolds. Carbohydrate Polymers, 67(1), 124-132. | 2007 | 217 | 10.1016/j.carbpol.2006.05.002 | 5238 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 0.13 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hsieh, C. Y., Tsai, S. P., Ho, M. H., Wang, D. M., Liu, C. E., Hsieh, C. H., ... & Hsieh, H. J. (2007). Analysis of freeze-gelation and cross-linking processes for preparing porous chitosan scaffolds. Carbohydrate Polymers, 67(1), 124-132. | 2007 | 217 | 10.1016/j.carbpol.2006.05.002 | 5239 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 0.13 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hsieh, C. Y., Tsai, S. P., Ho, M. H., Wang, D. M., Liu, C. E., Hsieh, C. H., ... & Hsieh, H. J. (2007). Analysis of freeze-gelation and cross-linking processes for preparing porous chitosan scaffolds. Carbohydrate Polymers, 67(1), 124-132. | 2007 | 217 | 10.1016/j.carbpol.2006.05.002 | 5240 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 0.08 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hsieh, C. Y., Tsai, S. P., Ho, M. H., Wang, D. M., Liu, C. E., Hsieh, C. H., ... & Hsieh, H. J. (2007). Analysis of freeze-gelation and cross-linking processes for preparing porous chitosan scaffolds. Carbohydrate Polymers, 67(1), 124-132. | 2007 | 217 | 10.1016/j.carbpol.2006.05.002 | 5241 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 0.08 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hsieh, C. Y., Tsai, S. P., Ho, M. H., Wang, D. M., Liu, C. E., Hsieh, C. H., ... & Hsieh, H. J. (2007). Analysis of freeze-gelation and cross-linking processes for preparing porous chitosan scaffolds. Carbohydrate Polymers, 67(1), 124-132. | 2007 | 217 | 10.1016/j.carbpol.2006.05.002 | 5242 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 0.13 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hsieh, C. Y., Tsai, S. P., Ho, M. H., Wang, D. M., Liu, C. E., Hsieh, C. H., ... & Hsieh, H. J. (2007). Analysis of freeze-gelation and cross-linking processes for preparing porous chitosan scaffolds. Carbohydrate Polymers, 67(1), 124-132. | 2007 | 217 | 10.1016/j.carbpol.2006.05.002 | 5243 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 0.13 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, M. Y., & Lee, J. (2011). Chitosan fibrous 3D networks prepared by freeze drying. Carbohydrate polymers, 84(4), 1329-1336. | 2011 | 265 | 10.1016/j.carbpol.2011.01.029 | 4758 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ko, Y. G., Kawazoe, N., Tateishi, T., & Chen, G. (2010). Preparation of chitosan scaffolds with a hierarchical porous structure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 93(2), 341-350. | 2010 | 269 | 10.1002/jbm.b.31586 | 4937 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.13 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 272.0 | 0.0 | 0.0 | template | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 420.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ko, Y. G., Kawazoe, N., Tateishi, T., & Chen, G. (2010). Preparation of chitosan scaffolds with a hierarchical porous structure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 93(2), 341-350. | 2010 | 269 | 10.1002/jbm.b.31586 | 4938 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.13 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 270.0 | 0.0 | 0.0 | template | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ko, Y. G., Kawazoe, N., Tateishi, T., & Chen, G. (2010). Preparation of chitosan scaffolds with a hierarchical porous structure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 93(2), 341-350. | 2010 | 269 | 10.1002/jbm.b.31586 | 4939 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.13 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 268.0 | 0.0 | 0.0 | template | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 150.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ko, Y. G., Kawazoe, N., Tateishi, T., & Chen, G. (2010). Preparation of chitosan scaffolds with a hierarchical porous structure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 93(2), 341-350. | 2010 | 269 | 10.1002/jbm.b.31586 | 4940 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.13 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 263.0 | 0.0 | 0.0 | template | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 175.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ko, Y. G., Kawazoe, N., Tateishi, T., & Chen, G. (2010). Preparation of chitosan scaffolds with a hierarchical porous structure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 93(2), 341-350. | 2010 | 269 | 10.1002/jbm.b.31586 | 4941 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.13 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 272.0 | 0.0 | 0.0 | template | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 500.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ko, Y. G., Kawazoe, N., Tateishi, T., & Chen, G. (2010). Preparation of chitosan scaffolds with a hierarchical porous structure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 93(2), 341-350. | 2010 | 269 | 10.1002/jbm.b.31586 | 4942 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.13 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 270.0 | 0.0 | 0.0 | template | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ko, Y. G., Kawazoe, N., Tateishi, T., & Chen, G. (2010). Preparation of chitosan scaffolds with a hierarchical porous structure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 93(2), 341-350. | 2010 | 269 | 10.1002/jbm.b.31586 | 4943 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.13 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 268.0 | 0.0 | 0.0 | template | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 150.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ko, Y. G., Kawazoe, N., Tateishi, T., & Chen, G. (2010). Preparation of chitosan scaffolds with a hierarchical porous structure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 93(2), 341-350. | 2010 | 269 | 10.1002/jbm.b.31586 | 4944 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.13 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 263.0 | 0.0 | 0.0 | template | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 180.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, H., Nakagawa, K., Chaudhary, D., Asakuma, Y., & Tadé, M. O. (2011). Freeze-dried macroporous foam prepared from chitosan/xanthan gum/montmorillonite nanocomposites. Chemical Engineering Research and Design, 89(11), 2356-2364. | 2011 | 336 | 10.1016/j.cherd.2011.02.023 | 4993 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.13 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.2 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 32.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, H., Nakagawa, K., Chaudhary, D., Asakuma, Y., & Tadé, M. O. (2011). Freeze-dried macroporous foam prepared from chitosan/xanthan gum/montmorillonite nanocomposites. Chemical Engineering Research and Design, 89(11), 2356-2364. | 2011 | 336 | 10.1016/j.cherd.2011.02.023 | 4994 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.13 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.2 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 39.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, H., Nakagawa, K., Chaudhary, D., Asakuma, Y., & Tadé, M. O. (2011). Freeze-dried macroporous foam prepared from chitosan/xanthan gum/montmorillonite nanocomposites. Chemical Engineering Research and Design, 89(11), 2356-2364. | 2011 | 336 | 10.1016/j.cherd.2011.02.023 | 4997 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.13 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | immersion | constant | 76.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 22.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Madihally, S. V., & Matthew, H. W. (1999). Porous chitosan scaffolds for tissue engineering. Biomaterials, 20(12), 1133-1142. | 1999 | 374 | 10.1016/s0142-9612(99)00011-3 | 4811 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 0.67 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 225.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Madihally, S. V., & Matthew, H. W. (1999). Porous chitosan scaffolds for tissue engineering. Biomaterials, 20(12), 1133-1142. | 1999 | 374 | 10.1016/s0142-9612(99)00011-3 | 4812 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 0.67 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 195.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 150.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Madihally, S. V., & Matthew, H. W. (1999). Porous chitosan scaffolds for tissue engineering. Biomaterials, 20(12), 1133-1142. | 1999 | 374 | 10.1016/s0142-9612(99)00011-3 | 4813 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 0.67 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Madihally, S. V., & Matthew, H. W. (1999). Porous chitosan scaffolds for tissue engineering. Biomaterials, 20(12), 1133-1142. | 1999 | 374 | 10.1016/s0142-9612(99)00011-3 | 4814 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 1.36 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 125.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Madihally, S. V., & Matthew, H. W. (1999). Porous chitosan scaffolds for tissue engineering. Biomaterials, 20(12), 1133-1142. | 1999 | 374 | 10.1016/s0142-9612(99)00011-3 | 4815 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 1.36 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 195.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Madihally, S. V., & Matthew, H. W. (1999). Porous chitosan scaffolds for tissue engineering. Biomaterials, 20(12), 1133-1142. | 1999 | 374 | 10.1016/s0142-9612(99)00011-3 | 4816 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 1.36 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Madihally, S. V., & Matthew, H. W. (1999). Porous chitosan scaffolds for tissue engineering. Biomaterials, 20(12), 1133-1142. | 1999 | 374 | 10.1016/s0142-9612(99)00011-3 | 4817 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 2.02 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Madihally, S. V., & Matthew, H. W. (1999). Porous chitosan scaffolds for tissue engineering. Biomaterials, 20(12), 1133-1142. | 1999 | 374 | 10.1016/s0142-9612(99)00011-3 | 4818 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 2.02 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 268.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Madihally, S. V., & Matthew, H. W. (1999). Porous chitosan scaffolds for tissue engineering. Biomaterials, 20(12), 1133-1142. | 1999 | 374 | 10.1016/s0142-9612(99)00011-3 | 4819 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 2.02 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Madihally, S. V., & Matthew, H. W. (1999). Porous chitosan scaffolds for tissue engineering. Biomaterials, 20(12), 1133-1142. | 1999 | 374 | 10.1016/s0142-9612(99)00011-3 | 4820 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 2.02 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 213.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Madihally, S. V., & Matthew, H. W. (1999). Porous chitosan scaffolds for tissue engineering. Biomaterials, 20(12), 1133-1142. | 1999 | 374 | 10.1016/s0142-9612(99)00011-3 | 4821 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 2.02 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 258.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Meghri, N. W., Donius, A. E., Riblett, B. W., Martin, E. J., Clyne, A. M., & Wegst, U. G. (2010). Directionally solidified biopolymer scaffolds: mechanical properties and endothelial cell responses. Jom, 62(7), 71-75. | 2010 | 384 | 10.1007/s11837-010-0112-9 | 5530 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Meghri, N. W., Donius, A. E., Riblett, B. W., Martin, E. J., Clyne, A. M., & Wegst, U. G. (2010). Directionally solidified biopolymer scaffolds: mechanical properties and endothelial cell responses. Jom, 62(7), 71-75. | 2010 | 384 | 10.1007/s11837-010-0112-9 | 5531 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Meghri, N. W., Donius, A. E., Riblett, B. W., Martin, E. J., Clyne, A. M., & Wegst, U. G. (2010). Directionally solidified biopolymer scaffolds: mechanical properties and endothelial cell responses. Jom, 62(7), 71-75. | 2010 | 384 | 10.1007/s11837-010-0112-9 | 5532 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Meghri, N. W., Donius, A. E., Riblett, B. W., Martin, E. J., Clyne, A. M., & Wegst, U. G. (2010). Directionally solidified biopolymer scaffolds: mechanical properties and endothelial cell responses. Jom, 62(7), 71-75. | 2010 | 384 | 10.1007/s11837-010-0112-9 | 5533 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Meghri, N. W., Donius, A. E., Riblett, B. W., Martin, E. J., Clyne, A. M., & Wegst, U. G. (2010). Directionally solidified biopolymer scaffolds: mechanical properties and endothelial cell responses. Jom, 62(7), 71-75. | 2010 | 384 | 10.1007/s11837-010-0112-9 | 5534 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Meghri, N. W., Donius, A. E., Riblett, B. W., Martin, E. J., Clyne, A. M., & Wegst, U. G. (2010). Directionally solidified biopolymer scaffolds: mechanical properties and endothelial cell responses. Jom, 62(7), 71-75. | 2010 | 384 | 10.1007/s11837-010-0112-9 | 5535 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., Husmann, A., Best, S. M., & Cameron, R. E. (2015). Altering crystal growth and annealing in ice-templated scaffolds. Journal of materials science, 50(23), 7537-7543. | 2015 | 463 | 10.1007/s10853-015-9343-z | 5471 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 0.34 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., Husmann, A., Best, S. M., & Cameron, R. E. (2015). Altering crystal growth and annealing in ice-templated scaffolds. Journal of materials science, 50(23), 7537-7543. | 2015 | 463 | 10.1007/s10853-015-9343-z | 5472 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 0.34 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., Husmann, A., Best, S. M., & Cameron, R. E. (2015). Altering crystal growth and annealing in ice-templated scaffolds. Journal of materials science, 50(23), 7537-7543. | 2015 | 463 | 10.1007/s10853-015-9343-z | 5473 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 0.34 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., Husmann, A., Best, S. M., & Cameron, R. E. (2015). Altering crystal growth and annealing in ice-templated scaffolds. Journal of materials science, 50(23), 7537-7543. | 2015 | 463 | 10.1007/s10853-015-9343-z | 5474 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 0.34 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., Husmann, A., Best, S. M., & Cameron, R. E. (2015). Altering crystal growth and annealing in ice-templated scaffolds. Journal of materials science, 50(23), 7537-7543. | 2015 | 463 | 10.1007/s10853-015-9343-z | 5475 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 0.34 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., Husmann, A., Best, S. M., & Cameron, R. E. (2015). Altering crystal growth and annealing in ice-templated scaffolds. Journal of materials science, 50(23), 7537-7543. | 2015 | 463 | 10.1007/s10853-015-9343-z | 5476 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 0.34 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., Husmann, A., Best, S. M., & Cameron, R. E. (2015). Altering crystal growth and annealing in ice-templated scaffolds. Journal of materials science, 50(23), 7537-7543. | 2015 | 463 | 10.1007/s10853-015-9343-z | 5477 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 0.34 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., Husmann, A., Best, S. M., & Cameron, R. E. (2015). Altering crystal growth and annealing in ice-templated scaffolds. Journal of materials science, 50(23), 7537-7543. | 2015 | 463 | 10.1007/s10853-015-9343-z | 5478 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 0.34 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., Husmann, A., Best, S. M., & Cameron, R. E. (2015). Altering crystal growth and annealing in ice-templated scaffolds. Journal of materials science, 50(23), 7537-7543. | 2015 | 463 | 10.1007/s10853-015-9343-z | 5479 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 0.34 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pourhaghgouy, M., Zamanian, A., Shahrezaee, M., & Masouleh, M. P. (2016). Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass. Materials Science and Engineering: C, 58, 180-186. | 2015 | 495 | 10.1016/j.msec.2015.07.065 | 5206 | polymer | chitosan | water | 100 | 0.0 | 0 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pourhaghgouy, M., Zamanian, A., Shahrezaee, M., & Masouleh, M. P. (2016). Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass. Materials Science and Engineering: C, 58, 180-186. | 2015 | 495 | 10.1016/j.msec.2015.07.065 | 5747 | polymer | chitosan | water | 100 | 0.0 | 0 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 96.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pourhaghgouy, M., & Zamanian, A. (2015). Physical and mechanical properties of the fully interconnected chitosan ice?templated scaffolds. Journal of Applied Polymer Science, 132(7). | 2015 | 496 | 10.1002/app.41476 | 4187 | polymer | chitosan | water | 100 | 0.0 | 0 | 1.25 | 39.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 98.36 | 0.0 | 99.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pourhaghgouy, M., & Zamanian, A. (2015). Physical and mechanical properties of the fully interconnected chitosan ice?templated scaffolds. Journal of Applied Polymer Science, 132(7). | 2015 | 496 | 10.1002/app.41476 | 4188 | polymer | chitosan | water | 100 | 0.0 | 0 | 1.25 | 39.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 98.19 | 0.0 | 89.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pourhaghgouy, M., & Zamanian, A. (2015). Physical and mechanical properties of the fully interconnected chitosan ice?templated scaffolds. Journal of Applied Polymer Science, 132(7). | 2015 | 496 | 10.1002/app.41476 | 4189 | polymer | chitosan | water | 100 | 0.0 | 0 | 3.0 | 39.0 | 100 | 0 | 0.0 | 0 | 1 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 96.6 | 0.0 | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pourhaghgouy, M., & Zamanian, A. (2015). Physical and mechanical properties of the fully interconnected chitosan ice?templated scaffolds. Journal of Applied Polymer Science, 132(7). | 2015 | 496 | 10.1002/app.41476 | 4190 | polymer | chitosan | water | 100 | 0.0 | 0 | 3.0 | 39.0 | 100 | 0 | 0.0 | 0 | 1 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 96.43 | 0.0 | 58.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qasim, S. B., Delaine-Smith, R. M., Fey, T., Rawlinson, A., & Rehman, I. U. (2015). Freeze gelated porous membranes for periodontal tissue regeneration. Acta biomaterialia, 23, 317-328. | 2015 | 502 | 10.1016/j.actbio.2015.05.001 | 5446 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 160.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qasim, S. B., Delaine-Smith, R. M., Fey, T., Rawlinson, A., & Rehman, I. U. (2015). Freeze gelated porous membranes for periodontal tissue regeneration. Acta biomaterialia, 23, 317-328. | 2015 | 502 | 10.1016/j.actbio.2015.05.001 | 5447 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 160.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qasim, S. B., Delaine-Smith, R. M., Fey, T., Rawlinson, A., & Rehman, I. U. (2015). Freeze gelated porous membranes for periodontal tissue regeneration. Acta biomaterialia, 23, 317-328. | 2015 | 502 | 10.1016/j.actbio.2015.05.001 | 5448 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 140.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qasim, S. B., Delaine-Smith, R. M., Fey, T., Rawlinson, A., & Rehman, I. U. (2015). Freeze gelated porous membranes for periodontal tissue regeneration. Acta biomaterialia, 23, 317-328. | 2015 | 502 | 10.1016/j.actbio.2015.05.001 | 5449 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qasim, S. B., Delaine-Smith, R. M., Fey, T., Rawlinson, A., & Rehman, I. U. (2015). Freeze gelated porous membranes for periodontal tissue regeneration. Acta biomaterialia, 23, 317-328. | 2015 | 502 | 10.1016/j.actbio.2015.05.001 | 5450 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qasim, S. B., Delaine-Smith, R. M., Fey, T., Rawlinson, A., & Rehman, I. U. (2015). Freeze gelated porous membranes for periodontal tissue regeneration. Acta biomaterialia, 23, 317-328. | 2015 | 502 | 10.1016/j.actbio.2015.05.001 | 5451 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qasim, S. B., Delaine-Smith, R. M., Fey, T., Rawlinson, A., & Rehman, I. U. (2015). Freeze gelated porous membranes for periodontal tissue regeneration. Acta biomaterialia, 23, 317-328. | 2015 | 502 | 10.1016/j.actbio.2015.05.001 | 5452 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qasim, S. B., Delaine-Smith, R. M., Fey, T., Rawlinson, A., & Rehman, I. U. (2015). Freeze gelated porous membranes for periodontal tissue regeneration. Acta biomaterialia, 23, 317-328. | 2015 | 502 | 10.1016/j.actbio.2015.05.001 | 5453 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 56.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Reed, S., Lau, G., Delattre, B., Lopez, D. D., Tomsia, A. P., & Wu, B. M. (2016). Macro-and micro-designed chitosan-alginate scaffold architecture by three-dimensional printing and directional freezing. Biofabrication, 8(1), 015003. | 2016 | 517 | 10.1088/1758-5090/8/1/015003 | 4792 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Riblett, B. W., Francis, N. L., Wheatley, M. A., & Wegst, U. G. (2012). Ice?Templated Scaffolds with Microridged Pores Direct DRG Neurite Growth. Advanced Functional Materials, 22(23), 4920-4923. | 2012 | 521 | 10.1002/adfm.201201323 | 4233 | polymer | chitosan | water | 100 | 0.0 | 0 | 2.0 | 39.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Riblett, B. W., Francis, N. L., Wheatley, M. A., & Wegst, U. G. (2012). Ice?Templated Scaffolds with Microridged Pores Direct DRG Neurite Growth. Advanced Functional Materials, 22(23), 4920-4923. | 2012 | 521 | 10.1002/adfm.201201323 | 4234 | polymer | chitosan | water | 100 | 0.0 | 0 | 2.0 | 39.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 3.5 | 0.0 | one-sided | linear | 16.7 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 71.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Riblett, B. W., Francis, N. L., Wheatley, M. A., & Wegst, U. G. (2012). Ice?Templated Scaffolds with Microridged Pores Direct DRG Neurite Growth. Advanced Functional Materials, 22(23), 4920-4923. | 2012 | 521 | 10.1002/adfm.201201323 | 4235 | polymer | chitosan | water | 100 | 0.0 | 0 | 2.0 | 39.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.01 |
Rogina, A., Rico, P., Ferrer, G. G., Ivankovi?, M., & Ivankovi?, H. (2015). Effect of in situ formed hydroxyapatite on microstructure of freeze-gelled chitosan-based biocomposite scaffolds. European Polymer Journal, 68, 278-287. | 2015 | 527 | 10.1016/j.eurpolymj.2015.05.004 | 5422 | polymer | chitosan | acetic acid | 100 | 0.0 | 0 | 0.34 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 91.6 | 0.0 | 48.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sarasam, A. R., Samli, A. I., Hess, L., Ihnat, M. A., & Madihally, S. V. (2007). Blending chitosan with polycaprolactone: porous scaffolds and toxicity. Macromolecular bioscience, 7(9?10), 1160-1167. | 2007 | 544 | 10.1002/mabi.200700001 | 4606 | polymer | chitosan | water | 100 | 0.0 | 0 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sarasam, A. R., Samli, A. I., Hess, L., Ihnat, M. A., & Madihally, S. V. (2007). Blending chitosan with polycaprolactone: porous scaffolds and toxicity. Macromolecular bioscience, 7(9?10), 1160-1167. | 2007 | 544 | 10.1002/mabi.200700001 | 4607 | polymer | chitosan | water | 100 | 0.0 | 0 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sarasam, A. R., Samli, A. I., Hess, L., Ihnat, M. A., & Madihally, S. V. (2007). Blending chitosan with polycaprolactone: porous scaffolds and toxicity. Macromolecular bioscience, 7(9?10), 1160-1167. | 2007 | 544 | 10.1002/mabi.200700001 | 4608 | polymer | chitosan | water | 100 | 0.0 | 0 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sarasam, A. R., Samli, A. I., Hess, L., Ihnat, M. A., & Madihally, S. V. (2007). Blending chitosan with polycaprolactone: porous scaffolds and toxicity. Macromolecular bioscience, 7(9?10), 1160-1167. | 2007 | 544 | 10.1002/mabi.200700001 | 4609 | polymer | chitosan | water | 100 | 0.0 | 0 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sarasam, A. R., Samli, A. I., Hess, L., Ihnat, M. A., & Madihally, S. V. (2007). Blending chitosan with polycaprolactone: porous scaffolds and toxicity. Macromolecular bioscience, 7(9?10), 1160-1167. | 2007 | 544 | 10.1002/mabi.200700001 | 4610 | polymer | chitosan | water | 100 | 0.0 | 0 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sarasam, A. R., Samli, A. I., Hess, L., Ihnat, M. A., & Madihally, S. V. (2007). Blending chitosan with polycaprolactone: porous scaffolds and toxicity. Macromolecular bioscience, 7(9?10), 1160-1167. | 2007 | 544 | 10.1002/mabi.200700001 | 4611 | polymer | chitosan | water | 100 | 0.0 | 0 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sarasam, A. R., Samli, A. I., Hess, L., Ihnat, M. A., & Madihally, S. V. (2007). Blending chitosan with polycaprolactone: porous scaffolds and toxicity. Macromolecular bioscience, 7(9?10), 1160-1167. | 2007 | 544 | 10.1002/mabi.200700001 | 4612 | polymer | chitosan | water | 100 | 0.0 | 0 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Siddiqui, N., Pramanik, K., & Jabbari, E. (2015). Osteogenic differentiation of human mesenchymal stem cells in freeze-gelled chitosan/nano ?-tricalcium phosphate porous scaffolds crosslinked with genipin. Materials Science and Engineering: C, 54, 76-83. | 2015 | 575 | 10.1016/j.msec.2015.05.005 | 2780 | polymer | chitosan | water | 100 | 0.0 | 0 | 1.68 | 39.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 18 | 0 | 0 | cellular | green | 86.0 | 0.0 | 171.0 | 0.0 | 0.0 | 0.18 | 0.0 | 0.0 |
Suwanchawalit, C., Patil, A. J., Kumar, R. K., Wongnawa, S., & Mann, S. (2009). Fabrication of ice-templated macroporous TiO 2?chitosan scaffolds for photocatalytic applications. Journal of Materials Chemistry, 19(44), 8478-8483. | 2009 | 600 | 10.1039/b912698h | 5338 | polymer | chitosan | water | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, D., Romer, F., Connell, L., Walter, C., Saiz, E., Yue, S., ... & Jones, J. R. (2015). Highly flexible silica/chitosan hybrid scaffolds with oriented pores for tissue regeneration. Journal of Materials Chemistry B, 3(38), 7560-7576. | 2015 | 644 | 10.1039/c5tb00767d | 5316 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 5.0 | 0.0 | 0 | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 96.71 | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, D., Romer, F., Connell, L., Walter, C., Saiz, E., Yue, S., ... & Jones, J. R. (2015). Highly flexible silica/chitosan hybrid scaffolds with oriented pores for tissue regeneration. Journal of Materials Chemistry B, 3(38), 7560-7576. | 2015 | 644 | 10.1039/c5tb00767d | 5317 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | 0 | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 96.95 | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, D., Romer, F., Connell, L., Walter, C., Saiz, E., Yue, S., ... & Jones, J. R. (2015). Highly flexible silica/chitosan hybrid scaffolds with oriented pores for tissue regeneration. Journal of Materials Chemistry B, 3(38), 7560-7576. | 2015 | 644 | 10.1039/c5tb00767d | 5318 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 97.42 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, D., Romer, F., Connell, L., Walter, C., Saiz, E., Yue, S., ... & Jones, J. R. (2015). Highly flexible silica/chitosan hybrid scaffolds with oriented pores for tissue regeneration. Journal of Materials Chemistry B, 3(38), 7560-7576. | 2015 | 644 | 10.1039/c5tb00767d | 5319 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 96.82 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, D., Romer, F., Connell, L., Walter, C., Saiz, E., Yue, S., ... & Jones, J. R. (2015). Highly flexible silica/chitosan hybrid scaffolds with oriented pores for tissue regeneration. Journal of Materials Chemistry B, 3(38), 7560-7576. | 2015 | 644 | 10.1039/c5tb00767d | 5320 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 96.13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, D., Romer, F., Connell, L., Walter, C., Saiz, E., Yue, S., ... & Jones, J. R. (2015). Highly flexible silica/chitosan hybrid scaffolds with oriented pores for tissue regeneration. Journal of Materials Chemistry B, 3(38), 7560-7576. | 2015 | 644 | 10.1039/c5tb00767d | 5321 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 97.62 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, D., Romer, F., Connell, L., Walter, C., Saiz, E., Yue, S., ... & Jones, J. R. (2015). Highly flexible silica/chitosan hybrid scaffolds with oriented pores for tissue regeneration. Journal of Materials Chemistry B, 3(38), 7560-7576. | 2015 | 644 | 10.1039/c5tb00767d | 5322 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, D., Romer, F., Connell, L., Walter, C., Saiz, E., Yue, S., ... & Jones, J. R. (2015). Highly flexible silica/chitosan hybrid scaffolds with oriented pores for tissue regeneration. Journal of Materials Chemistry B, 3(38), 7560-7576. | 2015 | 644 | 10.1039/c5tb00767d | 5323 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, D., Romer, F., Connell, L., Walter, C., Saiz, E., Yue, S., ... & Jones, J. R. (2015). Highly flexible silica/chitosan hybrid scaffolds with oriented pores for tissue regeneration. Journal of Materials Chemistry B, 3(38), 7560-7576. | 2015 | 644 | 10.1039/c5tb00767d | 5324 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, D., Romer, F., Connell, L., Walter, C., Saiz, E., Yue, S., ... & Jones, J. R. (2015). Highly flexible silica/chitosan hybrid scaffolds with oriented pores for tissue regeneration. Journal of Materials Chemistry B, 3(38), 7560-7576. | 2015 | 644 | 10.1039/c5tb00767d | 5325 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, Y., & Wakisaka, M. (2015). Chitosan nanofibers fabricated by combined ultrasonic atomization and freeze casting. Carbohydrate polymers, 122, 18-25. | 2015 | 651 | 10.1016/j.carbpol.2014.12.080 | 4927 | polymer | chitosan | water | 100 | 0.0 | 0 | 2.56 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yuan, N. Y., Lin, Y. A., Ho, M. H., Wang, D. M., Lai, J. Y., & Hsieh, H. J. (2009). Effects of the cooling mode on the structure and strength of porous scaffolds made of chitosan, alginate, and carboxymethyl cellulose by the freeze-gelation method. Carbohydrate polymers, 78(2), 349-356. | 2009 | 743 | 10.1016/j.carbpol.2009.04.021 | 2109 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 39.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 233.0 | 37.1 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | green | 96.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yuan, N. Y., Lin, Y. A., Ho, M. H., Wang, D. M., Lai, J. Y., & Hsieh, H. J. (2009). Effects of the cooling mode on the structure and strength of porous scaffolds made of chitosan, alginate, and carboxymethyl cellulose by the freeze-gelation method. Carbohydrate polymers, 78(2), 349-356. | 2009 | 743 | 10.1016/j.carbpol.2009.04.021 | 2110 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 39.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 213.0 | 48.8 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | green | 96.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yuan, N. Y., Lin, Y. A., Ho, M. H., Wang, D. M., Lai, J. Y., & Hsieh, H. J. (2009). Effects of the cooling mode on the structure and strength of porous scaffolds made of chitosan, alginate, and carboxymethyl cellulose by the freeze-gelation method. Carbohydrate polymers, 78(2), 349-356. | 2009 | 743 | 10.1016/j.carbpol.2009.04.021 | 2111 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 39.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 193.0 | 59.8 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | green | 96.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yuan, N. Y., Tsai, R. Y., Ho, M. H., Wang, D. M., Lai, J. Y., & Hsieh, H. J. (2008). Fabrication and characterization of chondroitin sulfate-modified chitosan membranes for biomedical applications. Desalination, 234(1), 166-174. | 2008 | 744 | 10.1016/j.desal.2007.09.083 | 2120 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.0 | 39.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 27.9 | 0.0 | isotropic | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yuan, N. Y., Tsai, R. Y., Ho, M. H., Wang, D. M., Lai, J. Y., & Hsieh, H. J. (2008). Fabrication and characterization of chondroitin sulfate-modified chitosan membranes for biomedical applications. Desalination, 234(1), 166-174. | 2008 | 744 | 10.1016/j.desal.2007.09.083 | 5740 | polymer | chitosan | water | 100 | 0.0 | 0 | 4.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 96.52 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhou, Y., Fu, S., Pu, Y., Pan, S., & Ragauskas, A. J. (2014). Preparation of aligned porous chitin nanowhisker foams by directional freeze?casting technique. Carbohydrate polymers, 112, 277-283. | 2014 | 792 | 10.1016/j.carbpol.2014.05.062 | 2391 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.27 | 38.0 | 100 | 0 | 0.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 98.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhou, Y., Fu, S., Pu, Y., Pan, S., & Ragauskas, A. J. (2014). Preparation of aligned porous chitin nanowhisker foams by directional freeze?casting technique. Carbohydrate polymers, 112, 277-283. | 2014 | 792 | 10.1016/j.carbpol.2014.05.062 | 2392 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.53 | 38.0 | 100 | 0 | 0.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 98.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhou, Y., Fu, S., Pu, Y., Pan, S., & Ragauskas, A. J. (2014). Preparation of aligned porous chitin nanowhisker foams by directional freeze?casting technique. Carbohydrate polymers, 112, 277-283. | 2014 | 792 | 10.1016/j.carbpol.2014.05.062 | 2393 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.8 | 38.0 | 100 | 0 | 0.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 98.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhou, Y., Fu, S., Pu, Y., Pan, S., & Ragauskas, A. J. (2014). Preparation of aligned porous chitin nanowhisker foams by directional freeze?casting technique. Carbohydrate polymers, 112, 277-283. | 2014 | 792 | 10.1016/j.carbpol.2014.05.062 | 2394 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.27 | 38.0 | 100 | 0 | 0.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 98.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhou, Y., Fu, S., Pu, Y., Pan, S., & Ragauskas, A. J. (2014). Preparation of aligned porous chitin nanowhisker foams by directional freeze?casting technique. Carbohydrate polymers, 112, 277-283. | 2014 | 792 | 10.1016/j.carbpol.2014.05.062 | 2395 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.53 | 38.0 | 100 | 0 | 0.0 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 98.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhou, Y., Fu, S., Pu, Y., Pan, S., & Ragauskas, A. J. (2014). Preparation of aligned porous chitin nanowhisker foams by directional freeze?casting technique. Carbohydrate polymers, 112, 277-283. | 2014 | 792 | 10.1016/j.carbpol.2014.05.062 | 2396 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.8 | 38.0 | 100 | 0 | 0.0 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 98.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhou, Y., Fu, S., Pu, Y., Pan, S., & Ragauskas, A. J. (2014). Preparation of aligned porous chitin nanowhisker foams by directional freeze?casting technique. Carbohydrate polymers, 112, 277-283. | 2014 | 792 | 10.1016/j.carbpol.2014.05.062 | 2397 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.53 | 38.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 99.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhou, Y., Fu, S., Pu, Y., Pan, S., & Ragauskas, A. J. (2014). Preparation of aligned porous chitin nanowhisker foams by directional freeze?casting technique. Carbohydrate polymers, 112, 277-283. | 2014 | 792 | 10.1016/j.carbpol.2014.05.062 | 2398 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.53 | 38.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 99.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhou, Y., Fu, S., Pu, Y., Pan, S., & Ragauskas, A. J. (2014). Preparation of aligned porous chitin nanowhisker foams by directional freeze?casting technique. Carbohydrate polymers, 112, 277-283. | 2014 | 792 | 10.1016/j.carbpol.2014.05.062 | 2399 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.53 | 38.0 | 100 | 0 | 0.0 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 98.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhou, Y., Fu, S., Pu, Y., Pan, S., & Ragauskas, A. J. (2014). Preparation of aligned porous chitin nanowhisker foams by directional freeze?casting technique. Carbohydrate polymers, 112, 277-283. | 2014 | 792 | 10.1016/j.carbpol.2014.05.062 | 2400 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.53 | 38.0 | 100 | 0 | 0.0 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 98.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mao, L. B., Gao, H. L., Yao, H. B., Liu, L., Cölfen, H., Liu, G., ... & Yu, S. H. (2016). Synthetic nacre by predesigned matrix-directed mineralization. Science, 354(6308), 107-110. | 2016 | 816 | 10.1126/science.aaf8991 | 2070 | polymer | chitosan | water | 100 | 0.0 | 0 | 13.4 | 39.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 198.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yan, J., Wu, T., Ding, Z., & Li, X. (2016). Preparation and characterization of carbon nanotubes/chitosan composite foam with enhanced elastic property. Carbohydrate polymers, 136, | 2016 | 902 | 10.1016/j.carbpol.2015.10.049 | 4897 | polymer | chitosan | water | 100 | 0.0 | 0 | 0.67 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yan, J., Wu, T., Ding, Z., & Li, X. (2016). Preparation and characterization of carbon nanotubes/chitosan composite foam with enhanced elastic property. Carbohydrate polymers, 136, | 2016 | 902 | 10.1016/j.carbpol.2015.10.049 | 4898 | polymer | chitosan | water | 100 | 0.0 | 0 | 1.34 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nematollahi, Z., Tafazzoli-Shadpour, M., Zamanian, A., Seyedsalehi, A., Shadmehr, M. B., Ghorbani, F., & Mirahmadi, F. (2017). Fabrication of Chitosan Silk-based Tracheal Scaffold Using Freeze-Casting Method. Iranian Biomedical Journal, 21(4), 228. | 2017 | 956 | 10.18869/acadpub.ibj.21.4.228 | 5987 | polymer | chitosan | water | 100 | 0.0 | 0 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 372.06 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nematollahi, Z., Tafazzoli-Shadpour, M., Zamanian, A., Seyedsalehi, A., Shadmehr, M. B., Ghorbani, F., & Mirahmadi, F. (2017). Fabrication of Chitosan Silk-based Tracheal Scaffold Using Freeze-Casting Method. Iranian Biomedical Journal, 21(4), 228. | 2017 | 956 | 10.18869/acadpub.ibj.21.4.228 | 5988 | polymer | chitosan | water | 100 | 0.0 | 0 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 83.41 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nematollahi, Z., Tafazzoli-Shadpour, M., Zamanian, A., Seyedsalehi, A., Shadmehr, M. B., Ghorbani, F., & Mirahmadi, F. (2017). Fabrication of Chitosan Silk-based Tracheal Scaffold Using Freeze-Casting Method. Iranian Biomedical Journal, 21(4), 228. | 2017 | 956 | 10.18869/acadpub.ibj.21.4.228 | 5989 | polymer | chitosan | water | 100 | 0.0 | 0 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nematollahi, Z., Tafazzoli-Shadpour, M., Zamanian, A., Seyedsalehi, A., Shadmehr, M. B., Ghorbani, F., & Mirahmadi, F. (2017). Fabrication of Chitosan Silk-based Tracheal Scaffold Using Freeze-Casting Method. Iranian Biomedical Journal, 21(4), 228. | 2017 | 956 | 10.18869/acadpub.ibj.21.4.228 | 5990 | polymer | chitosan | water | 100 | 0.0 | 0 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 260.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nematollahi, Z., Tafazzoli-Shadpour, M., Zamanian, A., Seyedsalehi, A., Shadmehr, M. B., Ghorbani, F., & Mirahmadi, F. (2017). Fabrication of Chitosan Silk-based Tracheal Scaffold Using Freeze-Casting Method. Iranian Biomedical Journal, 21(4), 228. | 2017 | 956 | 10.18869/acadpub.ibj.21.4.228 | 5991 | polymer | chitosan | water | 100 | 0.0 | 0 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 47.67 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nematollahi, Z., Tafazzoli-Shadpour, M., Zamanian, A., Seyedsalehi, A., Shadmehr, M. B., Ghorbani, F., & Mirahmadi, F. (2017). Fabrication of Chitosan Silk-based Tracheal Scaffold Using Freeze-Casting Method. Iranian Biomedical Journal, 21(4), 228. | 2017 | 956 | 10.18869/acadpub.ibj.21.4.228 | 5992 | polymer | chitosan | water | 100 | 0.0 | 0 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nematollahi, Z., Tafazzoli-Shadpour, M., Zamanian, A., Seyedsalehi, A., Shadmehr, M. B., Ghorbani, F., & Mirahmadi, F. (2017). Fabrication of Chitosan Silk-based Tracheal Scaffold Using Freeze-Casting Method. Iranian Biomedical Journal, 21(4), 228. | 2017 | 956 | 10.18869/acadpub.ibj.21.4.228 | 5993 | polymer | chitosan | water | 100 | 0.0 | 0 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 135.31 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nematollahi, Z., Tafazzoli-Shadpour, M., Zamanian, A., Seyedsalehi, A., Shadmehr, M. B., Ghorbani, F., & Mirahmadi, F. (2017). Fabrication of Chitosan Silk-based Tracheal Scaffold Using Freeze-Casting Method. Iranian Biomedical Journal, 21(4), 228. | 2017 | 956 | 10.18869/acadpub.ibj.21.4.228 | 5994 | polymer | chitosan | water | 100 | 0.0 | 0 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 37.83 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nematollahi, Z., Tafazzoli-Shadpour, M., Zamanian, A., Seyedsalehi, A., Shadmehr, M. B., Ghorbani, F., & Mirahmadi, F. (2017). Fabrication of Chitosan Silk-based Tracheal Scaffold Using Freeze-Casting Method. Iranian Biomedical Journal, 21(4), 228. | 2017 | 956 | 10.18869/acadpub.ibj.21.4.228 | 5995 | polymer | chitosan | water | 100 | 0.0 | 0 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ahmed, A., Hasell, T., Clowes, R., Myers, P., Cooper, A. I., & Zhang, H. (2015). Aligned macroporous monoliths with intrinsic microporosity via a frozen-solvent-templating approach. Chemical Communications, 51(9), 1717-1720. | 2015 | 3 | 10.1039/c4cc08919g | 5839 | polymer | PIM-1 | chloroform | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ahmed, A., Hasell, T., Clowes, R., Myers, P., Cooper, A. I., & Zhang, H. (2015). Aligned macroporous monoliths with intrinsic microporosity via a frozen-solvent-templating approach. Chemical Communications, 51(9), 1717-1720. | 2015 | 3 | 10.1039/c4cc08919g | 5840 | polymer | HKUST-1 | DMSO | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ai, T. (2015, April). Preparation, Microstructure and Properties of ZrO 2 Gradient Porous Ceramics by Freeze-casting Process. In Materials Science Forum (Vol. 816). | 2015 | 4 | 10.4028/www.scientific.net/MSF.816.226 | 19 | ceramic | ZrO2-3wt% Y2O3 (mixed) | water | 100 | 0.0 | 0 | 16.07 | 20.0 | 96 | powder | 60.0 | 30 | 2 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 56.79 | 0.0 | 0.0 | 0.0 | 0.0 | 4.37 | 0.0 | 0.0 |
Ai, T. (2015, April). Preparation, Microstructure and Properties of ZrO 2 Gradient Porous Ceramics by Freeze-casting Process. In Materials Science Forum (Vol. 816). | 2015 | 4 | 10.4028/www.scientific.net/MSF.816.226 | 20 | ceramic | ZrO2-3wt% Y2O3 (mixed) | water | 100 | 0.0 | 0 | 16.07 | 20.0 | 96 | powder | 60.0 | 30 | 2 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 26.77 | 0.0 | 50.0 | 0.0 | 0.0 | 8.26 | 0.0 | 0.0 |
Amini, M. H., Sinclair, A. N., & Coyle, T. W. (2014, September). Development of a high temperature transducer backing element with porous ceramics. In Ultrasonics Symposium (IUS), 2014 IEEE International (pp. 967-970). IEEE. | 2014 | 5 | 10.1109/ULTSYM.2014.0237 | 5688 | ceramic | Mullite | water | 100 | 0.0 | 0 | 0.0 | 21.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 69.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ding, S., Zeng, Y. P., & Jiang, D. (2007). Fabrication of mullite ceramics with ultrahigh porosity by gel freeze drying. Journal of the American Ceramic Society, 90(7), 2276-2279. | 2007 | 91 | 10.1111/j.1551-2916.2007.01696.x | 580 | ceramic | Mullite | water | 100 | 0.0 | 0 | 4.02 | 21.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 21 | dendritic | sintered | 93.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ding, S., Zeng, Y. P., & Jiang, D. (2007). Fabrication of mullite ceramics with ultrahigh porosity by gel freeze drying. Journal of the American Ceramic Society, 90(7), 2276-2279. | 2007 | 91 | 10.1111/j.1551-2916.2007.01696.x | 581 | ceramic | Mullite | water | 100 | 0.0 | 0 | 4.02 | 21.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 22 | dendritic | sintered | 92.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ding, S., Zeng, Y. P., & Jiang, D. (2007). Fabrication of mullite ceramics with ultrahigh porosity by gel freeze drying. Journal of the American Ceramic Society, 90(7), 2276-2279. | 2007 | 91 | 10.1111/j.1551-2916.2007.01696.x | 582 | ceramic | Mullite | water | 100 | 0.0 | 0 | 4.02 | 21.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 23 | dendritic | sintered | 92.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ding, S., Zeng, Y. P., & Jiang, D. (2007). Fabrication of mullite ceramics with ultrahigh porosity by gel freeze drying. Journal of the American Ceramic Society, 90(7), 2276-2279. | 2007 | 91 | 10.1111/j.1551-2916.2007.01696.x | 583 | ceramic | Mullite | water | 100 | 0.0 | 0 | 4.02 | 21.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 25 | dendritic | sintered | 91.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ding, S., Zeng, Y. P., & Jiang, D. (2007). Fabrication of mullite ceramics with ultrahigh porosity by gel freeze drying. Journal of the American Ceramic Society, 90(7), 2276-2279. | 2007 | 91 | 10.1111/j.1551-2916.2007.01696.x | 584 | ceramic | Mullite | water | 100 | 0.0 | 0 | 4.02 | 21.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 28 | dendritic | sintered | 88.6 | 0.0 | 0.0 | 0.0 | 0.0 | 1.52 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication and morphology control of highly porous mullite thermal insulators prepared by gelation freezing route. Journal of the European Ceramic Society, 36(12), 2947-2953. | 2015 | 139 | 10.1016/j.jeurceramsoc.2015.09.041 | 811 | ceramic | Mullite | water | 100 | 0.0 | 0 | 7.0 | 50.0 | 44 | powder | 0.7 | 2 | 0 | 0 | 233.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 20 | honeycomb | sintered | 85.2 | 0.0 | 0.0 | 0.0 | 0.0 | 14.3 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication and morphology control of highly porous mullite thermal insulators prepared by gelation freezing route. Journal of the European Ceramic Society, 36(12), 2947-2953. | 2015 | 139 | 10.1016/j.jeurceramsoc.2015.09.041 | 812 | ceramic | Mullite | water | 100 | 0.0 | 0 | 7.0 | 50.0 | 44 | powder | 0.7 | 2 | 0 | 2 | 233.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 20 | honeycomb | sintered | 85.2 | 0.0 | 0.0 | 0.0 | 0.0 | 21.7 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication and morphology control of highly porous mullite thermal insulators prepared by gelation freezing route. Journal of the European Ceramic Society, 36(12), 2947-2953. | 2015 | 139 | 10.1016/j.jeurceramsoc.2015.09.041 | 813 | ceramic | Mullite | water | 100 | 0.0 | 0 | 6.0 | 50.0 | 44 | powder | 0.7 | 2 | 0 | 0 | 233.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 23 | honeycomb | sintered | 89.6 | 0.0 | 0.0 | 0.0 | 0.0 | 2.5 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication and morphology control of highly porous mullite thermal insulators prepared by gelation freezing route. Journal of the European Ceramic Society, 36(12), 2947-2953. | 2015 | 139 | 10.1016/j.jeurceramsoc.2015.09.041 | 814 | ceramic | Mullite | water | 100 | 0.0 | 0 | 6.0 | 50.0 | 44 | powder | 0.7 | 2 | 0 | 2 | 233.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 23 | honeycomb | sintered | 89.4 | 0.0 | 0.0 | 0.0 | 0.0 | 8.8 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication and morphology control of highly porous mullite thermal insulators prepared by gelation freezing route. Journal of the European Ceramic Society, 36(12), 2947-2953. | 2015 | 139 | 10.1016/j.jeurceramsoc.2015.09.041 | 815 | ceramic | Mullite | water | 100 | 0.0 | 0 | 6.0 | 50.0 | 44 | powder | 0.7 | 2 | 0 | 2 | 213.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 23 | honeycomb | sintered | 88.9 | 0.0 | 0.0 | 0.0 | 0.0 | 12.7 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication and morphology control of highly porous mullite thermal insulators prepared by gelation freezing route. Journal of the European Ceramic Society, 36(12), 2947-2953. | 2015 | 139 | 10.1016/j.jeurceramsoc.2015.09.041 | 816 | ceramic | Mullite | water | 100 | 0.0 | 0 | 6.0 | 50.0 | 44 | powder | 0.7 | 2 | 0 | 2 | 203.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 23 | honeycomb | sintered | 89.2 | 0.0 | 0.0 | 0.0 | 0.0 | 11.3 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication and morphology control of highly porous mullite thermal insulators prepared by gelation freezing route. Journal of the European Ceramic Society, 36(12), 2947-2953. | 2015 | 139 | 10.1016/j.jeurceramsoc.2015.09.041 | 817 | ceramic | Mullite | water | 100 | 0.0 | 0 | 6.0 | 50.0 | 44 | powder | 0.7 | 2 | 0 | 2 | 193.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 23 | honeycomb | sintered | 89.2 | 0.0 | 0.0 | 0.0 | 0.0 | 13.1 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication and morphology control of highly porous mullite thermal insulators prepared by gelation freezing route. Journal of the European Ceramic Society, 36(12), 2947-2953. | 2015 | 139 | 10.1016/j.jeurceramsoc.2015.09.041 | 818 | ceramic | Mullite | water | 100 | 0.0 | 0 | 5.0 | 50.0 | 44 | powder | 0.7 | 2 | 0 | 0 | 233.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 27 | honeycomb | sintered | 90.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.4 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication and morphology control of highly porous mullite thermal insulators prepared by gelation freezing route. Journal of the European Ceramic Society, 36(12), 2947-2953. | 2015 | 139 | 10.1016/j.jeurceramsoc.2015.09.041 | 819 | ceramic | Mullite | water | 100 | 0.0 | 0 | 5.0 | 50.0 | 44 | powder | 0.7 | 2 | 0 | 2 | 233.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 27 | honeycomb | sintered | 91.5 | 0.0 | 0.0 | 0.0 | 0.0 | 8.3 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication and morphology control of highly porous mullite thermal insulators prepared by gelation freezing route. Journal of the European Ceramic Society, 36(12), 2947-2953. | 2015 | 139 | 10.1016/j.jeurceramsoc.2015.09.041 | 820 | ceramic | Mullite | water | 100 | 0.0 | 0 | 5.0 | 50.0 | 44 | powder | 0.7 | 2 | 0 | 2 | 213.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 27 | honeycomb | sintered | 91.1 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication and morphology control of highly porous mullite thermal insulators prepared by gelation freezing route. Journal of the European Ceramic Society, 36(12), 2947-2953. | 2015 | 139 | 10.1016/j.jeurceramsoc.2015.09.041 | 821 | ceramic | Mullite | water | 100 | 0.0 | 0 | 5.0 | 50.0 | 44 | powder | 0.7 | 2 | 0 | 2 | 203.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 27 | honeycomb | sintered | 91.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.3 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication and morphology control of highly porous mullite thermal insulators prepared by gelation freezing route. Journal of the European Ceramic Society, 36(12), 2947-2953. | 2015 | 139 | 10.1016/j.jeurceramsoc.2015.09.041 | 822 | ceramic | Mullite | water | 100 | 0.0 | 0 | 5.0 | 50.0 | 44 | powder | 0.7 | 2 | 0 | 2 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 27 | honeycomb | sintered | 90.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.1 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication and morphology control of highly porous mullite thermal insulators prepared by gelation freezing route. Journal of the European Ceramic Society, 36(12), 2947-2953. | 2015 | 139 | 10.1016/j.jeurceramsoc.2015.09.041 | 5899 | ceramic | Mullite | water | 100 | 0.0 | 0 | 7.0 | 50.0 | 44 | powder | 0.7 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 92.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication and morphology control of highly porous mullite thermal insulators prepared by gelation freezing route. Journal of the European Ceramic Society, 36(12), 2947-2953. | 2015 | 139 | 10.1016/j.jeurceramsoc.2015.09.041 | 5900 | ceramic | Mullite | water | 100 | 0.0 | 0 | 7.0 | 50.0 | 44 | powder | 0.7 | 2 | 0 | 2 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 92.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication and morphology control of highly porous mullite thermal insulators prepared by gelation freezing route. Journal of the European Ceramic Society, 36(12), 2947-2953. | 2015 | 139 | 10.1016/j.jeurceramsoc.2015.09.041 | 5901 | ceramic | Mullite | water | 100 | 0.0 | 0 | 6.0 | 50.0 | 44 | powder | 0.7 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 93.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication and morphology control of highly porous mullite thermal insulators prepared by gelation freezing route. Journal of the European Ceramic Society, 36(12), 2947-2953. | 2015 | 139 | 10.1016/j.jeurceramsoc.2015.09.041 | 5902 | ceramic | Mullite | water | 100 | 0.0 | 0 | 6.0 | 50.0 | 44 | powder | 0.7 | 2 | 0 | 2 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 93.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication and morphology control of highly porous mullite thermal insulators prepared by gelation freezing route. Journal of the European Ceramic Society, 36(12), 2947-2953. | 2015 | 139 | 10.1016/j.jeurceramsoc.2015.09.041 | 5903 | ceramic | Mullite | water | 100 | 0.0 | 0 | 6.0 | 50.0 | 44 | powder | 0.7 | 2 | 0 | 2 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 93.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication and morphology control of highly porous mullite thermal insulators prepared by gelation freezing route. Journal of the European Ceramic Society, 36(12), 2947-2953. | 2015 | 139 | 10.1016/j.jeurceramsoc.2015.09.041 | 5904 | ceramic | Mullite | water | 100 | 0.0 | 0 | 6.0 | 50.0 | 44 | powder | 0.7 | 2 | 0 | 2 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 93.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication and morphology control of highly porous mullite thermal insulators prepared by gelation freezing route. Journal of the European Ceramic Society, 36(12), 2947-2953. | 2015 | 139 | 10.1016/j.jeurceramsoc.2015.09.041 | 5905 | ceramic | Mullite | water | 100 | 0.0 | 0 | 6.0 | 50.0 | 44 | powder | 0.7 | 2 | 0 | 2 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 93.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication and morphology control of highly porous mullite thermal insulators prepared by gelation freezing route. Journal of the European Ceramic Society, 36(12), 2947-2953. | 2015 | 139 | 10.1016/j.jeurceramsoc.2015.09.041 | 5906 | ceramic | Mullite | water | 100 | 0.0 | 0 | 5.0 | 50.0 | 44 | powder | 0.7 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 95.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication and morphology control of highly porous mullite thermal insulators prepared by gelation freezing route. Journal of the European Ceramic Society, 36(12), 2947-2953. | 2015 | 139 | 10.1016/j.jeurceramsoc.2015.09.041 | 5907 | ceramic | Mullite | water | 100 | 0.0 | 0 | 5.0 | 50.0 | 44 | powder | 0.7 | 2 | 0 | 2 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 95.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication and morphology control of highly porous mullite thermal insulators prepared by gelation freezing route. Journal of the European Ceramic Society, 36(12), 2947-2953. | 2015 | 139 | 10.1016/j.jeurceramsoc.2015.09.041 | 5908 | ceramic | Mullite | water | 100 | 0.0 | 0 | 5.0 | 50.0 | 44 | powder | 0.7 | 2 | 0 | 2 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 95.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication and morphology control of highly porous mullite thermal insulators prepared by gelation freezing route. Journal of the European Ceramic Society, 36(12), 2947-2953. | 2015 | 139 | 10.1016/j.jeurceramsoc.2015.09.041 | 5909 | ceramic | Mullite | water | 100 | 0.0 | 0 | 5.0 | 50.0 | 44 | powder | 0.7 | 2 | 0 | 2 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 95.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication and morphology control of highly porous mullite thermal insulators prepared by gelation freezing route. Journal of the European Ceramic Society, 36(12), 2947-2953. | 2015 | 139 | 10.1016/j.jeurceramsoc.2015.09.041 | 5910 | ceramic | Mullite | water | 100 | 0.0 | 0 | 5.0 | 50.0 | 44 | powder | 0.7 | 2 | 0 | 2 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 95.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, K. H., Kim, D. H., Ryu, S. C., Yoon, S. Y., & Park, H. C. (2016). Porous mullite/alumina-layered composites with a graded porosity fabricated by camphene-based freeze casting. Journal of Composite Materials, 0021998316636460. | 2016 | 261 | 10.1177/0021998316636460 | 3139 | ceramic | Mullite | camphene | 100 | 0.0 | 0 | 15.0 | 21.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 18 | dendritic | sintered | 79.8 | 0.0 | 0.0 | 0.0 | 0.0 | 8.1 | 0.0 | 0.0 |
Kim, K. H., Kim, D. H., Ryu, S. C., Yoon, S. Y., & Park, H. C. (2016). Porous mullite/alumina-layered composites with a graded porosity fabricated by camphene-based freeze casting. Journal of Composite Materials, 0021998316636460. | 2016 | 261 | 10.1177/0021998316636460 | 3140 | ceramic | Mullite | camphene | 100 | 0.0 | 0 | 15.3 | 21.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 14 | dendritic | sintered | 70.3 | 0.0 | 0.0 | 0.0 | 0.0 | 14.3 | 0.0 | 0.0 |
Kim, K. H., Kim, D. H., Ryu, S. C., Yoon, S. Y., & Park, H. C. (2016). Porous mullite/alumina-layered composites with a graded porosity fabricated by camphene-based freeze casting. Journal of Composite Materials, 0021998316636460. | 2016 | 261 | 10.1177/0021998316636460 | 3141 | ceramic | Mullite | camphene | 100 | 0.0 | 0 | 21.0 | 21.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 23 | dendritic | sintered | 60.4 | 0.0 | 0.0 | 0.0 | 0.0 | 20.3 | 0.0 | 0.0 |
Kim, K. H., Kim, D. H., Ryu, S. C., Yoon, S. Y., & Park, H. C. (2016). Porous mullite/alumina-layered composites with a graded porosity fabricated by camphene-based freeze casting. Journal of Composite Materials, 0021998316636460. | 2016 | 261 | 10.1177/0021998316636460 | 3142 | ceramic | Mullite | camphene | 100 | 0.0 | 0 | 15.3 | 21.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 15 | dendritic | sintered | 72.9 | 0.0 | 0.0 | 0.0 | 0.0 | 15.1 | 0.0 | 0.0 |
Kim, K. H., Kim, D. H., Ryu, S. C., Yoon, S. Y., & Park, H. C. (2016). Porous mullite/alumina-layered composites with a graded porosity fabricated by camphene-based freeze casting. Journal of Composite Materials, 0021998316636460. | 2016 | 261 | 10.1177/0021998316636460 | 3143 | ceramic | Mullite | camphene | 100 | 0.0 | 0 | 21.0 | 21.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 18 | dendritic | sintered | 65.5 | 0.0 | 0.0 | 0.0 | 0.0 | 21.7 | 0.0 | 0.0 |
Kim, K. H., Kim, D. H., Ryu, S. C., Yoon, S. Y., & Park, H. C. (2016). Porous mullite/alumina-layered composites with a graded porosity fabricated by camphene-based freeze casting. Journal of Composite Materials, 0021998316636460. | 2016 | 261 | 10.1177/0021998316636460 | 3144 | ceramic | Mullite | camphene | 100 | 0.0 | 0 | 15.0 | 21.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 30 | dendritic | sintered | 69.3 | 0.0 | 0.0 | 0.0 | 0.0 | 10.9 | 0.0 | 0.0 |
Kim, K. H., Kim, D. H., Ryu, S. C., Yoon, S. Y., & Park, H. C. (2016). Porous mullite/alumina-layered composites with a graded porosity fabricated by camphene-based freeze casting. Journal of Composite Materials, 0021998316636460. | 2016 | 261 | 10.1177/0021998316636460 | 3145 | ceramic | Mullite | camphene | 100 | 0.0 | 0 | 15.3 | 21.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 28 | dendritic | sintered | 56.6 | 0.0 | 0.0 | 0.0 | 0.0 | 22.4 | 0.0 | 0.0 |
Kim, K. H., Kim, D. H., Ryu, S. C., Yoon, S. Y., & Park, H. C. (2016). Porous mullite/alumina-layered composites with a graded porosity fabricated by camphene-based freeze casting. Journal of Composite Materials, 0021998316636460. | 2016 | 261 | 10.1177/0021998316636460 | 3146 | ceramic | Mullite | camphene | 100 | 0.0 | 0 | 21.0 | 21.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 23 | dendritic | sintered | 51.0 | 0.0 | 0.0 | 0.0 | 0.0 | 46.0 | 0.0 | 0.0 |
Kim, K. H., Kim, D. H., Ryu, S. C., Yoon, S. Y., & Park, H. C. (2016). Porous mullite/alumina-layered composites with a graded porosity fabricated by camphene-based freeze casting. Journal of Composite Materials, 0021998316636460. | 2016 | 261 | 10.1177/0021998316636460 | 3147 | ceramic | Mullite | camphene | 100 | 0.0 | 0 | 15.3 | 21.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 18 | dendritic | sintered | 67.2 | 0.0 | 0.0 | 0.0 | 0.0 | 25.2 | 0.0 | 0.0 |
Kim, K. H., Kim, D. H., Ryu, S. C., Yoon, S. Y., & Park, H. C. (2016). Porous mullite/alumina-layered composites with a graded porosity fabricated by camphene-based freeze casting. Journal of Composite Materials, 0021998316636460. | 2016 | 261 | 10.1177/0021998316636460 | 3148 | ceramic | Mullite | camphene | 100 | 0.0 | 0 | 21.0 | 21.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 26 | dendritic | sintered | 52.5 | 0.0 | 0.0 | 0.0 | 0.0 | 53.0 | 0.0 | 0.0 |
Kim, K. H., Kim, D. H., Ryu, S. C., Yoon, S. Y., & Park, H. C. (2016). Porous mullite/alumina-layered composites with a graded porosity fabricated by camphene-based freeze casting. Journal of Composite Materials, 0021998316636460. | 2016 | 261 | 10.1177/0021998316636460 | 3149 | ceramic | Mullite | camphene | 100 | 0.0 | 0 | 15.0 | 21.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 37 | dendritic | sintered | 51.4 | 32.0 | 21.0 | 11.0 | 0.0 | 33.1 | 0.0 | 0.0 |
Kim, K. H., Kim, D. H., Ryu, S. C., Yoon, S. Y., & Park, H. C. (2016). Porous mullite/alumina-layered composites with a graded porosity fabricated by camphene-based freeze casting. Journal of Composite Materials, 0021998316636460. | 2016 | 261 | 10.1177/0021998316636460 | 3150 | ceramic | Mullite | camphene | 100 | 0.0 | 0 | 15.3 | 21.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 35 | dendritic | sintered | 38.5 | 34.0 | 20.0 | 14.0 | 0.0 | 46.6 | 0.0 | 0.0 |
Kim, K. H., Kim, D. H., Ryu, S. C., Yoon, S. Y., & Park, H. C. (2016). Porous mullite/alumina-layered composites with a graded porosity fabricated by camphene-based freeze casting. Journal of Composite Materials, 0021998316636460. | 2016 | 261 | 10.1177/0021998316636460 | 3151 | ceramic | Mullite | camphene | 100 | 0.0 | 0 | 21.0 | 21.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 31 | dendritic | sintered | 31.2 | 35.0 | 15.0 | 20.0 | 0.0 | 80.4 | 0.0 | 0.0 |
Kim, K. H., Kim, D. H., Ryu, S. C., Yoon, S. Y., & Park, H. C. (2016). Porous mullite/alumina-layered composites with a graded porosity fabricated by camphene-based freeze casting. Journal of Composite Materials, 0021998316636460. | 2016 | 261 | 10.1177/0021998316636460 | 3152 | ceramic | Mullite | camphene | 100 | 0.0 | 0 | 15.3 | 21.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 29 | dendritic | sintered | 51.0 | 0.0 | 0.0 | 0.0 | 0.0 | 52.7 | 0.0 | 0.0 |
Kim, K. H., Kim, D. H., Ryu, S. C., Yoon, S. Y., & Park, H. C. (2016). Porous mullite/alumina-layered composites with a graded porosity fabricated by camphene-based freeze casting. Journal of Composite Materials, 0021998316636460. | 2016 | 261 | 10.1177/0021998316636460 | 3153 | ceramic | Mullite | camphene | 100 | 0.0 | 0 | 21.0 | 21.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 34 | dendritic | sintered | 33.0 | 0.0 | 0.0 | 0.0 | 0.0 | 89.3 | 0.0 | 0.0 |
Kim, K. H., Yoon, S. Y., & Park, H. C. (2016). Freeze Cast Porous Mullite Ceramics and Recycling of Coal Fly Ash. Korean Journal of Materials Research, 26(2), 61-66. | 2016 | 262 | 10.3740/MRSK.2016.26.2.61 | 6035 | ceramic | Mullite | camphene | 89 | TBA | 10 | 11.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 84.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, K. H., Yoon, S. Y., & Park, H. C. (2016). Freeze Cast Porous Mullite Ceramics and Recycling of Coal Fly Ash. Korean Journal of Materials Research, 26(2), 61-66. | 2016 | 262 | 10.3740/MRSK.2016.26.2.61 | 6036 | ceramic | Mullite | camphene | 89 | TBA | 10 | 11.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 79.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, K. H., Yoon, S. Y., & Park, H. C. (2016). Freeze Cast Porous Mullite Ceramics and Recycling of Coal Fly Ash. Korean Journal of Materials Research, 26(2), 61-66. | 2016 | 262 | 10.3740/MRSK.2016.26.2.61 | 6037 | ceramic | Mullite | camphene | 89 | TBA | 10 | 11.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 63.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, K. H., Yoon, S. Y., & Park, H. C. (2016). Freeze Cast Porous Mullite Ceramics and Recycling of Coal Fly Ash. Korean Journal of Materials Research, 26(2), 61-66. | 2016 | 262 | 10.3740/MRSK.2016.26.2.61 | 6038 | ceramic | Mullite | camphene | 89 | TBA | 10 | 19.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, K. H., Yoon, S. Y., & Park, H. C. (2016). Freeze Cast Porous Mullite Ceramics and Recycling of Coal Fly Ash. Korean Journal of Materials Research, 26(2), 61-66. | 2016 | 262 | 10.3740/MRSK.2016.26.2.61 | 6039 | ceramic | Mullite | camphene | 89 | TBA | 10 | 19.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 72.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, K. H., Yoon, S. Y., & Park, H. C. (2016). Freeze Cast Porous Mullite Ceramics and Recycling of Coal Fly Ash. Korean Journal of Materials Research, 26(2), 61-66. | 2016 | 262 | 10.3740/MRSK.2016.26.2.61 | 6040 | ceramic | Mullite | camphene | 89 | TBA | 10 | 19.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, K. H., Yoon, S. Y., & Park, H. C. (2016). Freeze Cast Porous Mullite Ceramics and Recycling of Coal Fly Ash. Korean Journal of Materials Research, 26(2), 61-66. | 2016 | 262 | 10.3740/MRSK.2016.26.2.61 | 6041 | ceramic | Mullite | camphene | 89 | TBA | 10 | 29.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, K. H., Yoon, S. Y., & Park, H. C. (2016). Freeze Cast Porous Mullite Ceramics and Recycling of Coal Fly Ash. Korean Journal of Materials Research, 26(2), 61-66. | 2016 | 262 | 10.3740/MRSK.2016.26.2.61 | 6042 | ceramic | Mullite | camphene | 89 | TBA | 10 | 29.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 58.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, K. H., Yoon, S. Y., & Park, H. C. (2016). Freeze Cast Porous Mullite Ceramics and Recycling of Coal Fly Ash. Korean Journal of Materials Research, 26(2), 61-66. | 2016 | 262 | 10.3740/MRSK.2016.26.2.61 | 6043 | ceramic | Mullite | camphene | 89 | TBA | 10 | 29.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 42.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, K. H., Yoon, S. Y., & Park, H. C. (2014). Recycling of coal fly ash for the fabrication of porous mullite/alumina composites. Materials, 7(8), 5982-5991. | 2014 | 263 | 10.3390/ma7085982 | 3154 | ceramic | Mullite | camphene | 100 | 0.0 | 0 | 11.31 | 21.0 | 100 | powder | 33.8 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 80.0 | 30.0 | 25.0 | 5.0 | 0.0 | 8.0 | 0.0 | 0.0 |
Kim, K. H., Yoon, S. Y., & Park, H. C. (2014). Recycling of coal fly ash for the fabrication of porous mullite/alumina composites. Materials, 7(8), 5982-5991. | 2014 | 263 | 10.3390/ma7085982 | 3155 | ceramic | Mullite | camphene | 100 | 0.0 | 0 | 16.55 | 21.0 | 100 | powder | 33.8 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 70.0 | 27.0 | 20.0 | 7.0 | 0.0 | 15.0 | 0.0 | 0.0 |
Kim, K. H., Yoon, S. Y., & Park, H. C. (2014). Recycling of coal fly ash for the fabrication of porous mullite/alumina composites. Materials, 7(8), 5982-5991. | 2014 | 263 | 10.3390/ma7085982 | 3156 | ceramic | Mullite | camphene | 100 | 0.0 | 0 | 22.93 | 21.0 | 100 | powder | 33.8 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 60.0 | 26.0 | 17.0 | 9.0 | 0.0 | 20.0 | 0.0 | 0.0 |
Kim, K. H., Yoon, S. Y., & Park, H. C. (2014). Recycling of coal fly ash for the fabrication of porous mullite/alumina composites. Materials, 7(8), 5982-5991. | 2014 | 263 | 10.3390/ma7085982 | 3157 | ceramic | Mullite | camphene | 100 | 0.0 | 0 | 11.31 | 21.0 | 100 | powder | 33.8 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 68.0 | 30.0 | 25.0 | 5.0 | 0.0 | 10.0 | 0.0 | 0.0 |
Kim, K. H., Yoon, S. Y., & Park, H. C. (2014). Recycling of coal fly ash for the fabrication of porous mullite/alumina composites. Materials, 7(8), 5982-5991. | 2014 | 263 | 10.3390/ma7085982 | 3158 | ceramic | Mullite | camphene | 100 | 0.0 | 0 | 16.55 | 21.0 | 100 | powder | 33.8 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 57.0 | 27.0 | 20.0 | 7.0 | 0.0 | 22.0 | 0.0 | 0.0 |
Kim, K. H., Yoon, S. Y., & Park, H. C. (2014). Recycling of coal fly ash for the fabrication of porous mullite/alumina composites. Materials, 7(8), 5982-5991. | 2014 | 263 | 10.3390/ma7085982 | 3159 | ceramic | Mullite | camphene | 100 | 0.0 | 0 | 22.93 | 21.0 | 100 | powder | 33.8 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 52.0 | 26.0 | 17.0 | 9.0 | 0.0 | 46.0 | 0.0 | 0.0 |
Kim, K. H., Yoon, S. Y., & Park, H. C. (2014). Recycling of coal fly ash for the fabrication of porous mullite/alumina composites. Materials, 7(8), 5982-5991. | 2014 | 263 | 10.3390/ma7085982 | 3160 | ceramic | Mullite | camphene | 100 | 0.0 | 0 | 11.31 | 21.0 | 100 | powder | 33.8 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 52.0 | 30.0 | 25.0 | 5.0 | 0.0 | 37.0 | 0.0 | 0.0 |
Kim, K. H., Yoon, S. Y., & Park, H. C. (2014). Recycling of coal fly ash for the fabrication of porous mullite/alumina composites. Materials, 7(8), 5982-5991. | 2014 | 263 | 10.3390/ma7085982 | 3161 | ceramic | Mullite | camphene | 100 | 0.0 | 0 | 16.55 | 21.0 | 100 | powder | 33.8 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 38.0 | 27.0 | 20.0 | 7.0 | 0.0 | 47.0 | 0.0 | 0.0 |
Kim, K. H., Yoon, S. Y., & Park, H. C. (2014). Recycling of coal fly ash for the fabrication of porous mullite/alumina composites. Materials, 7(8), 5982-5991. | 2014 | 263 | 10.3390/ma7085982 | 3162 | ceramic | Mullite | camphene | 100 | 0.0 | 0 | 22.93 | 21.0 | 100 | powder | 33.8 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 32.0 | 26.0 | 17.0 | 9.0 | 0.0 | 80.0 | 0.0 | 0.0 |
Kim, W. Y., Ji, H. B., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Preparation of porous mullite composites through recycling of coal fly ash. Journal of the Korean Ceramic Society, 47(2), 151-156. | 2010 | 267 | 10.4191/KCERS.2010.47.2.151 | 6053 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 9 | honeycomb | sintered | 76.5 | 0.0 | 0.0 | 0.0 | 0.0 | 4.1 | 0.0 | 0.0 |
Kim, W. Y., Ji, H. B., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Preparation of porous mullite composites through recycling of coal fly ash. Journal of the Korean Ceramic Society, 47(2), 151-156. | 2010 | 267 | 10.4191/KCERS.2010.47.2.151 | 6054 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 29.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 6 | honeycomb | sintered | 71.8 | 0.0 | 0.0 | 0.0 | 0.0 | 8.8 | 0.0 | 0.0 |
Kim, W. Y., Ji, H. B., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Preparation of porous mullite composites through recycling of coal fly ash. Journal of the Korean Ceramic Society, 47(2), 151-156. | 2010 | 267 | 10.4191/KCERS.2010.47.2.151 | 6055 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 43.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 9 | honeycomb | sintered | 61.2 | 0.0 | 0.0 | 0.0 | 0.0 | 6.67 | 0.0 | 0.0 |
Kim, W. Y., Ji, H. B., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Preparation of porous mullite composites through recycling of coal fly ash. Journal of the Korean Ceramic Society, 47(2), 151-156. | 2010 | 267 | 10.4191/KCERS.2010.47.2.151 | 6056 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 12 | honeycomb | sintered | 77.2 | 0.0 | 0.0 | 0.0 | 0.0 | 6.47 | 0.0 | 0.0 |
Kim, W. Y., Ji, H. B., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Preparation of porous mullite composites through recycling of coal fly ash. Journal of the Korean Ceramic Society, 47(2), 151-156. | 2010 | 267 | 10.4191/KCERS.2010.47.2.151 | 6057 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 29.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 7 | honeycomb | sintered | 70.9 | 0.0 | 0.0 | 0.0 | 0.0 | 14.38 | 0.0 | 0.0 |
Kim, W. Y., Ji, H. B., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Preparation of porous mullite composites through recycling of coal fly ash. Journal of the Korean Ceramic Society, 47(2), 151-156. | 2010 | 267 | 10.4191/KCERS.2010.47.2.151 | 6058 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 43.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 10 | honeycomb | sintered | 56.8 | 0.0 | 0.0 | 0.0 | 0.0 | 8.3 | 0.0 | 0.0 |
Kim, W. Y., Ji, H. B., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Preparation of porous mullite composites through recycling of coal fly ash. Journal of the Korean Ceramic Society, 47(2), 151-156. | 2010 | 267 | 10.4191/KCERS.2010.47.2.151 | 6059 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 17 | honeycomb | sintered | 70.6 | 0.0 | 0.0 | 0.0 | 0.0 | 11.4 | 0.0 | 0.0 |
Kim, W. Y., Ji, H. B., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Preparation of porous mullite composites through recycling of coal fly ash. Journal of the Korean Ceramic Society, 47(2), 151-156. | 2010 | 267 | 10.4191/KCERS.2010.47.2.151 | 6060 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 29.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 11 | honeycomb | sintered | 66.8 | 0.0 | 0.0 | 0.0 | 0.0 | 16.1 | 0.0 | 0.0 |
Kim, W. Y., Ji, H. B., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Preparation of porous mullite composites through recycling of coal fly ash. Journal of the Korean Ceramic Society, 47(2), 151-156. | 2010 | 267 | 10.4191/KCERS.2010.47.2.151 | 6061 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 43.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 13 | honeycomb | sintered | 51.6 | 0.0 | 0.0 | 0.0 | 0.0 | 22.9 | 0.0 | 0.0 |
Kim, W. Y., Ji, H. B., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Preparation of porous mullite composites through recycling of coal fly ash. Journal of the Korean Ceramic Society, 47(2), 151-156. | 2010 | 267 | 10.4191/KCERS.2010.47.2.151 | 6062 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 10 | honeycomb | sintered | 77.5 | 0.0 | 0.0 | 0.0 | 0.0 | 4.84 | 0.0 | 0.0 |
Kim, W. Y., Ji, H. B., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Preparation of porous mullite composites through recycling of coal fly ash. Journal of the Korean Ceramic Society, 47(2), 151-156. | 2010 | 267 | 10.4191/KCERS.2010.47.2.151 | 6063 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 29.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 7 | honeycomb | sintered | 71.4 | 0.0 | 0.0 | 0.0 | 0.0 | 12.37 | 0.0 | 0.0 |
Kim, W. Y., Ji, H. B., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Preparation of porous mullite composites through recycling of coal fly ash. Journal of the Korean Ceramic Society, 47(2), 151-156. | 2010 | 267 | 10.4191/KCERS.2010.47.2.151 | 6064 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 43.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 8 | honeycomb | sintered | 61.7 | 0.0 | 0.0 | 0.0 | 0.0 | 16.5 | 0.0 | 0.0 |
Kim, W. Y., Ji, H. B., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Preparation of porous mullite composites through recycling of coal fly ash. Journal of the Korean Ceramic Society, 47(2), 151-156. | 2010 | 267 | 10.4191/KCERS.2010.47.2.151 | 6065 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 8 | honeycomb | sintered | 79.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.73 | 0.0 | 0.0 |
Kim, W. Y., Ji, H. B., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Preparation of porous mullite composites through recycling of coal fly ash. Journal of the Korean Ceramic Society, 47(2), 151-156. | 2010 | 267 | 10.4191/KCERS.2010.47.2.151 | 6066 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 29.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 11 | honeycomb | sintered | 67.8 | 0.0 | 0.0 | 0.0 | 0.0 | 13.99 | 0.0 | 0.0 |
Kim, W. Y., Ji, H. B., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Preparation of porous mullite composites through recycling of coal fly ash. Journal of the Korean Ceramic Society, 47(2), 151-156. | 2010 | 267 | 10.4191/KCERS.2010.47.2.151 | 6067 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 43.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 9 | honeycomb | sintered | 59.5 | 0.0 | 0.0 | 0.0 | 0.0 | 19.19 | 0.0 | 0.0 |
Kim, W. Y., Ji, H. B., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Preparation of porous mullite composites through recycling of coal fly ash. Journal of the Korean Ceramic Society, 47(2), 151-156. | 2010 | 267 | 10.4191/KCERS.2010.47.2.151 | 6068 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 16 | honeycomb | sintered | 69.9 | 0.0 | 0.0 | 0.0 | 0.0 | 27.27 | 0.0 | 0.0 |
Kim, W. Y., Ji, H. B., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Preparation of porous mullite composites through recycling of coal fly ash. Journal of the Korean Ceramic Society, 47(2), 151-156. | 2010 | 267 | 10.4191/KCERS.2010.47.2.151 | 6069 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 29.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 10 | honeycomb | sintered | 66.9 | 0.0 | 0.0 | 0.0 | 0.0 | 23.23 | 0.0 | 0.0 |
Kim, W. Y., Ji, H. B., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Preparation of porous mullite composites through recycling of coal fly ash. Journal of the Korean Ceramic Society, 47(2), 151-156. | 2010 | 267 | 10.4191/KCERS.2010.47.2.151 | 6070 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 43.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 14 | honeycomb | sintered | 54.7 | 0.0 | 0.0 | 0.0 | 0.0 | 29.82 | 0.0 | 0.0 |
Kim, W. Y., Ji, H. B., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Preparation of porous mullite composites through recycling of coal fly ash. Journal of the Korean Ceramic Society, 47(2), 151-156. | 2010 | 267 | 10.4191/KCERS.2010.47.2.151 | 6071 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 13 | honeycomb | sintered | 77.4 | 0.0 | 0.0 | 0.0 | 0.0 | 6.6 | 0.0 | 0.0 |
Kim, W. Y., Ji, H. B., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Preparation of porous mullite composites through recycling of coal fly ash. Journal of the Korean Ceramic Society, 47(2), 151-156. | 2010 | 267 | 10.4191/KCERS.2010.47.2.151 | 6072 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 29.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 9 | honeycomb | sintered | 70.4 | 0.0 | 0.0 | 0.0 | 0.0 | 10.48 | 0.0 | 0.0 |
Kim, W. Y., Ji, H. B., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Preparation of porous mullite composites through recycling of coal fly ash. Journal of the Korean Ceramic Society, 47(2), 151-156. | 2010 | 267 | 10.4191/KCERS.2010.47.2.151 | 6073 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 43.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 10 | honeycomb | sintered | 58.3 | 0.0 | 0.0 | 0.0 | 0.0 | 23.82 | 0.0 | 0.0 |
Kim, W. Y., Ji, H. B., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Preparation of porous mullite composites through recycling of coal fly ash. Journal of the Korean Ceramic Society, 47(2), 151-156. | 2010 | 267 | 10.4191/KCERS.2010.47.2.151 | 6074 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 13 | honeycomb | sintered | 70.8 | 0.0 | 0.0 | 0.0 | 0.0 | 11.0 | 0.0 | 0.0 |
Kim, W. Y., Ji, H. B., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Preparation of porous mullite composites through recycling of coal fly ash. Journal of the Korean Ceramic Society, 47(2), 151-156. | 2010 | 267 | 10.4191/KCERS.2010.47.2.151 | 6075 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 29.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 9 | honeycomb | sintered | 70.7 | 0.0 | 0.0 | 0.0 | 0.0 | 13.74 | 0.0 | 0.0 |
Kim, W. Y., Ji, H. B., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Preparation of porous mullite composites through recycling of coal fly ash. Journal of the Korean Ceramic Society, 47(2), 151-156. | 2010 | 267 | 10.4191/KCERS.2010.47.2.151 | 6076 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 43.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 10 | honeycomb | sintered | 56.7 | 0.0 | 0.0 | 0.0 | 0.0 | 39.77 | 0.0 | 0.0 |
Kim, W. Y., Ji, H. B., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Preparation of porous mullite composites through recycling of coal fly ash. Journal of the Korean Ceramic Society, 47(2), 151-156. | 2010 | 267 | 10.4191/KCERS.2010.47.2.151 | 6077 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 16 | honeycomb | sintered | 60.1 | 0.0 | 0.0 | 0.0 | 0.0 | 21.6 | 0.0 | 0.0 |
Kim, W. Y., Ji, H. B., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Preparation of porous mullite composites through recycling of coal fly ash. Journal of the Korean Ceramic Society, 47(2), 151-156. | 2010 | 267 | 10.4191/KCERS.2010.47.2.151 | 6078 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 29.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 10 | honeycomb | sintered | 65.5 | 0.0 | 0.0 | 0.0 | 0.0 | 26.02 | 0.0 | 0.0 |
Kim, W. Y., Ji, H. B., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Preparation of porous mullite composites through recycling of coal fly ash. Journal of the Korean Ceramic Society, 47(2), 151-156. | 2010 | 267 | 10.4191/KCERS.2010.47.2.151 | 6079 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 43.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 14 | honeycomb | sintered | 52.1 | 0.0 | 0.0 | 0.0 | 0.0 | 70.0 | 0.0 | 0.0 |
Lee, J. M., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). Recycling of coal fly ash for fabrication of porous mullite composite. In Advanced Materials Research (Vol. 156, pp. 1649-1652). Trans Tech Publications. | 2011 | 294 | 10.4028/www.scientific.net/AMR.156-157.1649 | 3320 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 10.0 | 1.0 | 56 | 0 | 0.0 | 0 | 1 | 0 | 273.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 11 | honeycomb | sintered | 78.1 | 0.0 | 0.0 | 0.0 | 0.0 | 21.7 | 0.0 | 0.0 |
Lee, J. M., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). Recycling of coal fly ash for fabrication of porous mullite composite. In Advanced Materials Research (Vol. 156, pp. 1649-1652). Trans Tech Publications. | 2011 | 294 | 10.4028/www.scientific.net/AMR.156-157.1649 | 3321 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 10.0 | 1.0 | 56 | 0 | 0.0 | 0 | 1 | 0 | 273.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 17 | honeycomb | sintered | 69.1 | 0.0 | 0.0 | 0.0 | 0.0 | 39.5 | 0.0 | 0.0 |
Lee, J. M., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). Recycling of coal fly ash for fabrication of porous mullite composite. In Advanced Materials Research (Vol. 156, pp. 1649-1652). Trans Tech Publications. | 2011 | 294 | 10.4028/www.scientific.net/AMR.156-157.1649 | 3322 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 10.0 | 1.0 | 56 | 0 | 0.0 | 0 | 1 | 0 | 273.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 21 | honeycomb | sintered | 63.5 | 0.0 | 0.0 | 0.0 | 0.0 | 51.2 | 0.0 | 0.0 |
Lee, J. H., Choi, H. J., Yoon, S. Y., Kim, B. K., & Park, H. C. (2013). Porous mullite ceramics derived from coal fly ash using a freeze-gel casting/polymer sponge technique. Journal of Porous Materials, 20(1), 219-226. | 2013 | 296 | 10.1007/s10934-012-9591-0 | 3323 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 26.0 | 21.0 | 100 | 0 | 0.56 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 16 | equiaxed | sintered | 77.5 | 380.0 | 300.0 | 80.0 | 0.0 | 8.0 | 0.0 | 0.0 |
Lee, J. H., Choi, H. J., Yoon, S. Y., Kim, B. K., & Park, H. C. (2013). Porous mullite ceramics derived from coal fly ash using a freeze-gel casting/polymer sponge technique. Journal of Porous Materials, 20(1), 219-226. | 2013 | 296 | 10.1007/s10934-012-9591-0 | 3324 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 34.88 | 21.0 | 100 | 0 | 0.56 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 15 | equiaxed | sintered | 72.0 | 360.0 | 270.0 | 90.0 | 0.0 | 9.0 | 0.0 | 0.0 |
Lee, J. H., Choi, H. J., Yoon, S. Y., Kim, B. K., & Park, H. C. (2013). Porous mullite ceramics derived from coal fly ash using a freeze-gel casting/polymer sponge technique. Journal of Porous Materials, 20(1), 219-226. | 2013 | 296 | 10.1007/s10934-012-9591-0 | 3325 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 45.0 | 21.0 | 100 | 0 | 0.56 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 14 | equiaxed | sintered | 68.0 | 340.0 | 240.0 | 100.0 | 0.0 | 16.0 | 0.0 | 0.0 |
Lee, J. H., Choi, H. J., Yoon, S. Y., Kim, B. K., & Park, H. C. (2013). Porous mullite ceramics derived from coal fly ash using a freeze-gel casting/polymer sponge technique. Journal of Porous Materials, 20(1), 219-226. | 2013 | 296 | 10.1007/s10934-012-9591-0 | 3326 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 26.0 | 21.0 | 100 | 0 | 0.56 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 17 | equiaxed | sintered | 74.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 |
Lee, J. H., Choi, H. J., Yoon, S. Y., Kim, B. K., & Park, H. C. (2013). Porous mullite ceramics derived from coal fly ash using a freeze-gel casting/polymer sponge technique. Journal of Porous Materials, 20(1), 219-226. | 2013 | 296 | 10.1007/s10934-012-9591-0 | 3327 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 34.88 | 21.0 | 100 | 0 | 0.56 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 15 | equiaxed | sintered | 68.0 | 345.0 | 240.0 | 105.0 | 0.0 | 15.0 | 0.0 | 0.0 |
Lee, J. H., Choi, H. J., Yoon, S. Y., Kim, B. K., & Park, H. C. (2013). Porous mullite ceramics derived from coal fly ash using a freeze-gel casting/polymer sponge technique. Journal of Porous Materials, 20(1), 219-226. | 2013 | 296 | 10.1007/s10934-012-9591-0 | 3328 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 45.0 | 21.0 | 100 | 0 | 0.56 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 15 | equiaxed | sintered | 67.0 | 0.0 | 0.0 | 0.0 | 0.0 | 22.0 | 0.0 | 0.0 |
Lee, J. H., Choi, H. J., Yoon, S. Y., Kim, B. K., & Park, H. C. (2013). Porous mullite ceramics derived from coal fly ash using a freeze-gel casting/polymer sponge technique. Journal of Porous Materials, 20(1), 219-226. | 2013 | 296 | 10.1007/s10934-012-9591-0 | 3329 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 26.0 | 21.0 | 100 | 0 | 0.56 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 18 | equiaxed | sintered | 68.0 | 330.0 | 220.0 | 110.0 | 0.0 | 20.0 | 0.0 | 0.0 |
Lee, J. H., Choi, H. J., Yoon, S. Y., Kim, B. K., & Park, H. C. (2013). Porous mullite ceramics derived from coal fly ash using a freeze-gel casting/polymer sponge technique. Journal of Porous Materials, 20(1), 219-226. | 2013 | 296 | 10.1007/s10934-012-9591-0 | 3330 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 34.88 | 21.0 | 100 | 0 | 0.56 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 17 | equiaxed | sintered | 67.0 | 0.0 | 0.0 | 0.0 | 0.0 | 33.0 | 0.0 | 0.0 |
Lee, J. H., Choi, H. J., Yoon, S. Y., Kim, B. K., & Park, H. C. (2013). Porous mullite ceramics derived from coal fly ash using a freeze-gel casting/polymer sponge technique. Journal of Porous Materials, 20(1), 219-226. | 2013 | 296 | 10.1007/s10934-012-9591-0 | 3331 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 45.0 | 21.0 | 100 | 0 | 0.56 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 15 | equiaxed | sintered | 62.5 | 0.0 | 0.0 | 0.0 | 0.0 | 45.0 | 0.0 | 0.0 |
Lee, J. H., Kim, W. Y., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). Fabrication of porous ceramic composites with improved compressive strength from coal fly ash. Advances in Applied Ceramics, 110(4), 244-250. | 2011 | 298 | 10.1179/1743676111y.0000000011 | 3341 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 6.59 | 21.0 | 100 | powder | 42.1 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lee, J. H., Kim, W. Y., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). Fabrication of porous ceramic composites with improved compressive strength from coal fly ash. Advances in Applied Ceramics, 110(4), 244-250. | 2011 | 298 | 10.1179/1743676111y.0000000011 | 3342 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 10.79 | 21.0 | 100 | powder | 42.1 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lee, J. H., Kim, W. Y., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). Fabrication of porous ceramic composites with improved compressive strength from coal fly ash. Advances in Applied Ceramics, 110(4), 244-250. | 2011 | 298 | 10.1179/1743676111y.0000000011 | 3343 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 15.83 | 21.0 | 100 | powder | 42.1 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lee, J. H., Kim, W. Y., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). Fabrication of porous ceramic composites with improved compressive strength from coal fly ash. Advances in Applied Ceramics, 110(4), 244-250. | 2011 | 298 | 10.1179/1743676111y.0000000011 | 3344 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 6.59 | 21.0 | 100 | powder | 42.1 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 12 | honeycomb | sintered | 85.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 |
Lee, J. H., Kim, W. Y., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). Fabrication of porous ceramic composites with improved compressive strength from coal fly ash. Advances in Applied Ceramics, 110(4), 244-250. | 2011 | 298 | 10.1179/1743676111y.0000000011 | 3345 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 10.79 | 21.0 | 100 | powder | 42.1 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 11 | honeycomb | sintered | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 22.0 | 0.0 | 0.0 |
Lee, J. H., Kim, W. Y., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). Fabrication of porous ceramic composites with improved compressive strength from coal fly ash. Advances in Applied Ceramics, 110(4), 244-250. | 2011 | 298 | 10.1179/1743676111y.0000000011 | 3346 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 15.83 | 21.0 | 100 | powder | 42.1 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 10 | honeycomb | sintered | 71.0 | 0.0 | 0.0 | 0.0 | 0.0 | 32.0 | 0.0 | 0.0 |
Lee, J. H., Kim, W. Y., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). Fabrication of porous ceramic composites with improved compressive strength from coal fly ash. Advances in Applied Ceramics, 110(4), 244-250. | 2011 | 298 | 10.1179/1743676111y.0000000011 | 3347 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 6.59 | 21.0 | 100 | powder | 42.1 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 25 | honeycomb | sintered | 77.0 | 0.0 | 0.0 | 0.0 | 0.0 | 24.0 | 0.0 | 0.0 |
Lee, J. H., Kim, W. Y., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). Fabrication of porous ceramic composites with improved compressive strength from coal fly ash. Advances in Applied Ceramics, 110(4), 244-250. | 2011 | 298 | 10.1179/1743676111y.0000000011 | 3348 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 10.79 | 21.0 | 100 | powder | 42.1 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 17 | honeycomb | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 37.0 | 0.0 | 0.0 |
Lee, J. H., Kim, W. Y., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). Fabrication of porous ceramic composites with improved compressive strength from coal fly ash. Advances in Applied Ceramics, 110(4), 244-250. | 2011 | 298 | 10.1179/1743676111y.0000000011 | 3349 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 15.83 | 21.0 | 100 | powder | 42.1 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 12 | honeycomb | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 50.0 | 0.0 | 0.0 |
Lee, J. H., Kim, W. Y., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). Fabrication of porous ceramic composites with improved compressive strength from coal fly ash. Advances in Applied Ceramics, 110(4), 244-250. | 2011 | 298 | 10.1179/1743676111y.0000000011 | 3350 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 6.59 | 21.0 | 100 | powder | 42.1 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 32 | honeycomb | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 30.0 | 0.0 | 0.0 |
Lee, J. H., Kim, W. Y., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). Fabrication of porous ceramic composites with improved compressive strength from coal fly ash. Advances in Applied Ceramics, 110(4), 244-250. | 2011 | 298 | 10.1179/1743676111y.0000000011 | 3351 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 10.79 | 21.0 | 100 | powder | 42.1 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 20 | honeycomb | sintered | 64.0 | 0.0 | 0.0 | 0.0 | 0.0 | 50.0 | 0.0 | 0.0 |
Lee, J. H., Kim, W. Y., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). Fabrication of porous ceramic composites with improved compressive strength from coal fly ash. Advances in Applied Ceramics, 110(4), 244-250. | 2011 | 298 | 10.1179/1743676111y.0000000011 | 3352 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 15.83 | 21.0 | 100 | powder | 42.1 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 15 | honeycomb | sintered | 62.0 | 0.0 | 0.0 | 0.0 | 0.0 | 65.0 | 0.0 | 0.0 |
Liu, R., Zhang, F., Su, W., Zhao, H., & Wang, C. A. (2015). Impregnation of porous mullite with Na 2 SO 4 phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 134, 268-274. | 2015 | 343 | 10.1016/j.solmat.2014.12.012 | 3521 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 40.0 | 21.0 | 100 | 0 | 14.7 | 5 | 5 | 0 | 173.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, R., Zhang, F., Su, W., Zhao, H., & Wang, C. A. (2015). Impregnation of porous mullite with Na 2 SO 4 phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 134, 268-274. | 2015 | 343 | 10.1016/j.solmat.2014.12.012 | 3522 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 40.0 | 21.0 | 100 | 0 | 14.7 | 5 | 5 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 53.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, R., Zhang, F., Su, W., Zhao, H., & Wang, C. A. (2015). Impregnation of porous mullite with Na 2 SO 4 phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 134, 268-274. | 2015 | 343 | 10.1016/j.solmat.2014.12.012 | 3523 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 40.0 | 21.0 | 100 | 0 | 14.7 | 5 | 5 | 0 | 213.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, R., Zhang, F., Su, W., Zhao, H., & Wang, C. A. (2015). Impregnation of porous mullite with Na 2 SO 4 phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 134, 268-274. | 2015 | 343 | 10.1016/j.solmat.2014.12.012 | 3524 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 40.0 | 21.0 | 100 | 0 | 14.7 | 5 | 5 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, R., Zhang, F., Su, W., Zhao, H., & Wang, C. A. (2015). Impregnation of porous mullite with Na 2 SO 4 phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 134, 268-274. | 2015 | 343 | 10.1016/j.solmat.2014.12.012 | 3525 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 40.0 | 21.0 | 100 | 0 | 14.7 | 5 | 5 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, R., Yuan, J., & Wang, C. A. (2013). A novel way to fabricate tubular porous mullite membrane supports by TBA-based freezing casting method. Journal of the European Ceramic Society, 33(15), 3249-3256. | 2013 | 344 | 10.1016/j.jeurceramsoc.2013.06.005 | 3532 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 20.0 | 21.0 | 100 | 0 | 14.7 | 0 | 5 | 0 | 173.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 76.0 | 0.0 | 13.9 | 0.0 | 0.0 | 22.5 | 0.0 | 0.0 |
Liu, R., Yuan, J., & Wang, C. A. (2013). A novel way to fabricate tubular porous mullite membrane supports by TBA-based freezing casting method. Journal of the European Ceramic Society, 33(15), 3249-3256. | 2013 | 344 | 10.1016/j.jeurceramsoc.2013.06.005 | 3533 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 25.0 | 21.0 | 100 | 0 | 14.7 | 0 | 5 | 0 | 173.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 72.0 | 0.0 | 11.9 | 0.0 | 0.0 | 25.0 | 0.0 | 0.0 |
Liu, R., Yuan, J., & Wang, C. A. (2013). A novel way to fabricate tubular porous mullite membrane supports by TBA-based freezing casting method. Journal of the European Ceramic Society, 33(15), 3249-3256. | 2013 | 344 | 10.1016/j.jeurceramsoc.2013.06.005 | 3534 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 30.0 | 21.0 | 100 | 0 | 14.7 | 0 | 5 | 0 | 173.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 66.0 | 0.0 | 10.1 | 0.0 | 0.0 | 32.5 | 0.0 | 0.0 |
Liu, R., Yuan, J., & Wang, C. A. (2013). A novel way to fabricate tubular porous mullite membrane supports by TBA-based freezing casting method. Journal of the European Ceramic Society, 33(15), 3249-3256. | 2013 | 344 | 10.1016/j.jeurceramsoc.2013.06.005 | 3535 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 35.0 | 21.0 | 100 | 0 | 14.7 | 0 | 5 | 0 | 173.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 62.0 | 0.0 | 10.1 | 0.0 | 0.0 | 47.0 | 0.0 | 0.0 |
Liu, R., Yuan, J., & Wang, C. A. (2013). A novel way to fabricate tubular porous mullite membrane supports by TBA-based freezing casting method. Journal of the European Ceramic Society, 33(15), 3249-3256. | 2013 | 344 | 10.1016/j.jeurceramsoc.2013.06.005 | 3536 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 40.0 | 21.0 | 100 | 0 | 14.7 | 0 | 5 | 0 | 173.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 56.0 | 0.0 | 7.1 | 0.0 | 0.0 | 47.5 | 0.0 | 0.0 |
Liu, R., Yuan, J., & Wang, C. A. (2013). A novel way to fabricate tubular porous mullite membrane supports by TBA-based freezing casting method. Journal of the European Ceramic Society, 33(15), 3249-3256. | 2013 | 344 | 10.1016/j.jeurceramsoc.2013.06.005 | 3537 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 35.0 | 21.0 | 100 | 0 | 14.7 | 0 | 5 | 0 | 173.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 62.0 | 0.0 | 10.1 | 0.0 | 0.0 | 32.0 | 0.0 | 0.0 |
Liu, R., Yuan, J., & Wang, C. A. (2013). A novel way to fabricate tubular porous mullite membrane supports by TBA-based freezing casting method. Journal of the European Ceramic Society, 33(15), 3249-3256. | 2013 | 344 | 10.1016/j.jeurceramsoc.2013.06.005 | 3538 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 35.0 | 21.0 | 100 | 0 | 14.7 | 0 | 5 | 0 | 193.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 60.0 | 0.0 | 10.7 | 0.0 | 0.0 | 29.0 | 0.0 | 0.0 |
Liu, R., Yuan, J., & Wang, C. A. (2013). A novel way to fabricate tubular porous mullite membrane supports by TBA-based freezing casting method. Journal of the European Ceramic Society, 33(15), 3249-3256. | 2013 | 344 | 10.1016/j.jeurceramsoc.2013.06.005 | 3539 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 35.0 | 21.0 | 100 | 0 | 14.7 | 0 | 5 | 0 | 213.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 60.0 | 0.0 | 11.9 | 0.0 | 0.0 | 29.0 | 0.0 | 0.0 |
Liu, R., Yuan, J., & Wang, C. A. (2013). A novel way to fabricate tubular porous mullite membrane supports by TBA-based freezing casting method. Journal of the European Ceramic Society, 33(15), 3249-3256. | 2013 | 344 | 10.1016/j.jeurceramsoc.2013.06.005 | 3540 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 35.0 | 21.0 | 100 | 0 | 14.7 | 0 | 5 | 0 | 233.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 59.0 | 0.0 | 15.4 | 0.0 | 0.0 | 28.0 | 0.0 | 0.0 |
Liu, R., Yuan, J., & Wang, C. A. (2013). A novel way to fabricate tubular porous mullite membrane supports by TBA-based freezing casting method. Journal of the European Ceramic Society, 33(15), 3249-3256. | 2013 | 344 | 10.1016/j.jeurceramsoc.2013.06.005 | 3541 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 35.0 | 21.0 | 100 | 0 | 14.7 | 0 | 5 | 0 | 253.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 58.0 | 0.0 | 18.2 | 0.0 | 0.0 | 28.0 | 0.0 | 0.0 |
Liu, R., Yuan, J., & Wang, C. A. (2013). A novel way to fabricate tubular porous mullite membrane supports by TBA-based freezing casting method. Journal of the European Ceramic Society, 33(15), 3249-3256. | 2013 | 344 | 10.1016/j.jeurceramsoc.2013.06.005 | 3542 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 35.0 | 21.0 | 100 | 0 | 14.7 | 0 | 5 | 0 | 173.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 35.0 | 0.0 | 0.0 |
Liu, R., Yuan, J., & Wang, C. A. (2013). A novel way to fabricate tubular porous mullite membrane supports by TBA-based freezing casting method. Journal of the European Ceramic Society, 33(15), 3249-3256. | 2013 | 344 | 10.1016/j.jeurceramsoc.2013.06.005 | 3543 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 35.0 | 21.0 | 100 | 0 | 14.7 | 0 | 5 | 0 | 173.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 34.5 | 0.0 | 0.0 |
Liu, R., Yuan, J., & Wang, C. A. (2013). A novel way to fabricate tubular porous mullite membrane supports by TBA-based freezing casting method. Journal of the European Ceramic Society, 33(15), 3249-3256. | 2013 | 344 | 10.1016/j.jeurceramsoc.2013.06.005 | 3544 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 35.0 | 21.0 | 100 | 0 | 14.7 | 0 | 5 | 0 | 173.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, R., Yuan, J., & Wang, C. A. (2013). A novel way to fabricate tubular porous mullite membrane supports by TBA-based freezing casting method. Journal of the European Ceramic Society, 33(15), 3249-3256. | 2013 | 344 | 10.1016/j.jeurceramsoc.2013.06.005 | 3545 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 35.0 | 21.0 | 100 | 0 | 14.7 | 0 | 5 | 0 | 173.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, R., Yuan, J., & Wang, C. A. (2013). A novel way to fabricate tubular porous mullite membrane supports by TBA-based freezing casting method. Journal of the European Ceramic Society, 33(15), 3249-3256. | 2013 | 344 | 10.1016/j.jeurceramsoc.2013.06.005 | 3546 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 35.0 | 21.0 | 100 | 0 | 14.7 | 0 | 5 | 0 | 173.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 59.5 | 0.0 | 0.0 | 0.0 | 0.0 | 34.0 | 0.0 | 0.0 |
Soltmann, U., Böttcher, H., Koch, D., & Grathwohl, G. (2003). Freeze gelation: a new option for the production of biological ceramic composites (biocers). Materials Letters, 57(19), 2861-2865. | 2003 | 585 | 10.1016/s0167-577x(02)01388-5 | 5348 | ceramic | Mullite | water | 100 | 0.0 | 0 | 38.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, Z., Feng, P., Wang, X., Geng, P., Akhtar, F., & Zhang, H. (2016). Fabrication and properties of freeze-cast mullite foams derived from coal-series kaolin. Ceramics International, 42(10), 12414-12421. | 2016 | 652 | 10.1016/j.ceramint.2016.04.181 | 3029 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 10.0 | 1.0 | 67 | 0 | 45.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 45.0 | 0.0 | 0 | 0 | 21 | honeycomb | sintered | 0.0 | 0.0 | 17.3 | 0.0 | 0.0 | 37.4 | 0.0 | 0.0 |
Wang, Z., Feng, P., Wang, X., Geng, P., Akhtar, F., & Zhang, H. (2016). Fabrication and properties of freeze-cast mullite foams derived from coal-series kaolin. Ceramics International, 42(10), 12414-12421. | 2016 | 652 | 10.1016/j.ceramint.2016.04.181 | 3030 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 15.0 | 1.0 | 67 | 0 | 45.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 45.0 | 0.0 | 0 | 0 | 20 | honeycomb | sintered | 0.0 | 0.0 | 9.12 | 0.0 | 0.0 | 49.4 | 0.0 | 0.0 |
Wang, Z., Feng, P., Wang, X., Geng, P., Akhtar, F., & Zhang, H. (2016). Fabrication and properties of freeze-cast mullite foams derived from coal-series kaolin. Ceramics International, 42(10), 12414-12421. | 2016 | 652 | 10.1016/j.ceramint.2016.04.181 | 3031 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 20.0 | 1.0 | 67 | 0 | 45.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 45.0 | 0.0 | 0 | 0 | 19 | honeycomb | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.8 | 0.0 | 0.0 |
Wang, Z., Feng, P., Wang, X., Geng, P., Akhtar, F., & Zhang, H. (2016). Fabrication and properties of freeze-cast mullite foams derived from coal-series kaolin. Ceramics International, 42(10), 12414-12421. | 2016 | 652 | 10.1016/j.ceramint.2016.04.181 | 3032 | ceramic | Mullite | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 67 | 0 | 45.0 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 19 | lamellar | sintered | 0.0 | 0.0 | 25.7 | 0.0 | 0.0 | 12.8 | 0.0 | 0.0 |
Wang, Z., Feng, P., Wang, X., Geng, P., Akhtar, F., & Zhang, H. (2016). Fabrication and properties of freeze-cast mullite foams derived from coal-series kaolin. Ceramics International, 42(10), 12414-12421. | 2016 | 652 | 10.1016/j.ceramint.2016.04.181 | 3033 | ceramic | Mullite | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 67 | 0 | 45.0 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 19 | lamellar | sintered | 0.0 | 0.0 | 18.4 | 0.0 | 0.0 | 15.2 | 0.0 | 0.0 |
Wang, Z., Feng, P., Wang, X., Geng, P., Akhtar, F., & Zhang, H. (2016). Fabrication and properties of freeze-cast mullite foams derived from coal-series kaolin. Ceramics International, 42(10), 12414-12421. | 2016 | 652 | 10.1016/j.ceramint.2016.04.181 | 3034 | ceramic | Mullite | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 67 | 0 | 45.0 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 18 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.03 | 0.0 | 0.0 |
Yang, T. Y., Ji, H. B., Yoon, S. Y., Kim, B. K., & Park, H. C. (2010). Porous mullite composite with controlled pore structure processed using a freeze casting of TBA-based coal fly ash slurries. Resources, Conservation and Recycling, 54(11), 816-820. | 2010 | 712 | 10.1016/j.resconrec.2009.12.012 | 2635 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 0.0 | 21.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 7 | honeycomb | sintered | 71.4 | 0.0 | 0.0 | 0.0 | 0.0 | 12.4 | 0.0 | 0.0 |
Yang, T. Y., Ji, H. B., Yoon, S. Y., Kim, B. K., & Park, H. C. (2010). Porous mullite composite with controlled pore structure processed using a freeze casting of TBA-based coal fly ash slurries. Resources, Conservation and Recycling, 54(11), 816-820. | 2010 | 712 | 10.1016/j.resconrec.2009.12.012 | 2636 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 0.0 | 21.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 11 | honeycomb | sintered | 67.8 | 0.0 | 0.0 | 0.0 | 0.0 | 14.0 | 0.0 | 0.0 |
Yang, T. Y., Ji, H. B., Yoon, S. Y., Kim, B. K., & Park, H. C. (2010). Porous mullite composite with controlled pore structure processed using a freeze casting of TBA-based coal fly ash slurries. Resources, Conservation and Recycling, 54(11), 816-820. | 2010 | 712 | 10.1016/j.resconrec.2009.12.012 | 2637 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 0.0 | 21.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 10 | honeycomb | sintered | 66.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Ji, H. B., Yoon, S. Y., Kim, B. K., & Park, H. C. (2010). Porous mullite composite with controlled pore structure processed using a freeze casting of TBA-based coal fly ash slurries. Resources, Conservation and Recycling, 54(11), 816-820. | 2010 | 712 | 10.1016/j.resconrec.2009.12.012 | 2638 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 0.0 | 21.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 10 | honeycomb | sintered | 69.4 | 0.0 | 0.0 | 0.0 | 0.0 | 13.9 | 0.0 | 0.0 |
Yang, T. Y., Ji, H. B., Yoon, S. Y., Kim, B. K., & Park, H. C. (2010). Porous mullite composite with controlled pore structure processed using a freeze casting of TBA-based coal fly ash slurries. Resources, Conservation and Recycling, 54(11), 816-820. | 2010 | 712 | 10.1016/j.resconrec.2009.12.012 | 2639 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 0.0 | 21.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 11 | honeycomb | sintered | 69.2 | 0.0 | 0.0 | 0.0 | 0.0 | 14.1 | 0.0 | 0.0 |
Yang, T. Y., Ji, H. B., Yoon, S. Y., Kim, B. K., & Park, H. C. (2010). Porous mullite composite with controlled pore structure processed using a freeze casting of TBA-based coal fly ash slurries. Resources, Conservation and Recycling, 54(11), 816-820. | 2010 | 712 | 10.1016/j.resconrec.2009.12.012 | 2640 | ceramic | Mullite | TBA | 100 | 0.0 | 0 | 0.0 | 21.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 12 | honeycomb | sintered | 66.6 | 0.0 | 0.0 | 0.0 | 0.0 | 22.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). New Freeze?Casting Technique for Ceramics with Sublimable Vehicles. Journal of the American Ceramic Society, 87(10), 1859-1863. | 2004 | 9 | 10.1111/j.1151-2916.2004.tb06331.x | 39 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 21.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). New Freeze?Casting Technique for Ceramics with Sublimable Vehicles. Journal of the American Ceramic Society, 87(10), 1859-1863. | 2004 | 9 | 10.1111/j.1151-2916.2004.tb06331.x | 40 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 21.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). New Freeze?Casting Technique for Ceramics with Sublimable Vehicles. Journal of the American Ceramic Society, 87(10), 1859-1863. | 2004 | 9 | 10.1111/j.1151-2916.2004.tb06331.x | 41 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 21.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). New Freeze?Casting Technique for Ceramics with Sublimable Vehicles. Journal of the American Ceramic Society, 87(10), 1859-1863. | 2004 | 9 | 10.1111/j.1151-2916.2004.tb06331.x | 42 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 21.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). New Freeze?Casting Technique for Ceramics with Sublimable Vehicles. Journal of the American Ceramic Society, 87(10), 1859-1863. | 2004 | 9 | 10.1111/j.1151-2916.2004.tb06331.x | 43 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 33.1 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). New Freeze?Casting Technique for Ceramics with Sublimable Vehicles. Journal of the American Ceramic Society, 87(10), 1859-1863. | 2004 | 9 | 10.1111/j.1151-2916.2004.tb06331.x | 44 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 33.1 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). New Freeze?Casting Technique for Ceramics with Sublimable Vehicles. Journal of the American Ceramic Society, 87(10), 1859-1863. | 2004 | 9 | 10.1111/j.1151-2916.2004.tb06331.x | 45 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 33.1 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). New Freeze?Casting Technique for Ceramics with Sublimable Vehicles. Journal of the American Ceramic Society, 87(10), 1859-1863. | 2004 | 9 | 10.1111/j.1151-2916.2004.tb06331.x | 46 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 33.1 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). New Freeze?Casting Technique for Ceramics with Sublimable Vehicles. Journal of the American Ceramic Society, 87(10), 1859-1863. | 2004 | 9 | 10.1111/j.1151-2916.2004.tb06331.x | 47 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 43.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). New Freeze?Casting Technique for Ceramics with Sublimable Vehicles. Journal of the American Ceramic Society, 87(10), 1859-1863. | 2004 | 9 | 10.1111/j.1151-2916.2004.tb06331.x | 48 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 43.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). New Freeze?Casting Technique for Ceramics with Sublimable Vehicles. Journal of the American Ceramic Society, 87(10), 1859-1863. | 2004 | 9 | 10.1111/j.1151-2916.2004.tb06331.x | 49 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 43.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). New Freeze?Casting Technique for Ceramics with Sublimable Vehicles. Journal of the American Ceramic Society, 87(10), 1859-1863. | 2004 | 9 | 10.1111/j.1151-2916.2004.tb06331.x | 50 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 43.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 32.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). New Freeze?Casting Technique for Ceramics with Sublimable Vehicles. Journal of the American Ceramic Society, 87(10), 1859-1863. | 2004 | 9 | 10.1111/j.1151-2916.2004.tb06331.x | 51 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 45.4 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). New Freeze?Casting Technique for Ceramics with Sublimable Vehicles. Journal of the American Ceramic Society, 87(10), 1859-1863. | 2004 | 9 | 10.1111/j.1151-2916.2004.tb06331.x | 52 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 45.4 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). New Freeze?Casting Technique for Ceramics with Sublimable Vehicles. Journal of the American Ceramic Society, 87(10), 1859-1863. | 2004 | 9 | 10.1111/j.1151-2916.2004.tb06331.x | 53 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 45.4 | 1.0 | 100 | powder | 0.4 | 0 | 0 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). New Freeze?Casting Technique for Ceramics with Sublimable Vehicles. Journal of the American Ceramic Society, 87(10), 1859-1863. | 2004 | 9 | 10.1111/j.1151-2916.2004.tb06331.x | 54 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 45.4 | 1.0 | 100 | powder | 0.4 | 0 | 0 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). New Freeze?Casting Technique for Ceramics with Sublimable Vehicles. Journal of the American Ceramic Society, 87(10), 1859-1863. | 2004 | 9 | 10.1111/j.1151-2916.2004.tb06331.x | 55 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 47.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). New Freeze?Casting Technique for Ceramics with Sublimable Vehicles. Journal of the American Ceramic Society, 87(10), 1859-1863. | 2004 | 9 | 10.1111/j.1151-2916.2004.tb06331.x | 56 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 47.0 | 1.0 | 100 | powder | 0.4 | 0 | 2 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). New Freeze?Casting Technique for Ceramics with Sublimable Vehicles. Journal of the American Ceramic Society, 87(10), 1859-1863. | 2004 | 9 | 10.1111/j.1151-2916.2004.tb06331.x | 57 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 47.0 | 1.0 | 100 | powder | 0.4 | 0 | 2 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). New Freeze?Casting Technique for Ceramics with Sublimable Vehicles. Journal of the American Ceramic Society, 87(10), 1859-1863. | 2004 | 9 | 10.1111/j.1151-2916.2004.tb06331.x | 58 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 47.0 | 1.0 | 100 | powder | 0.4 | 0 | 2 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). New Freeze?Casting Technique for Ceramics with Sublimable Vehicles. Journal of the American Ceramic Society, 87(10), 1859-1863. | 2004 | 9 | 10.1111/j.1151-2916.2004.tb06331.x | 59 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 48.9 | 1.0 | 100 | powder | 0.4 | 0 | 2 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). New Freeze?Casting Technique for Ceramics with Sublimable Vehicles. Journal of the American Ceramic Society, 87(10), 1859-1863. | 2004 | 9 | 10.1111/j.1151-2916.2004.tb06331.x | 60 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 48.9 | 1.0 | 100 | powder | 0.4 | 0 | 2 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). New Freeze?Casting Technique for Ceramics with Sublimable Vehicles. Journal of the American Ceramic Society, 87(10), 1859-1863. | 2004 | 9 | 10.1111/j.1151-2916.2004.tb06331.x | 61 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 48.9 | 1.0 | 100 | powder | 0.4 | 0 | 2 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). New Freeze?Casting Technique for Ceramics with Sublimable Vehicles. Journal of the American Ceramic Society, 87(10), 1859-1863. | 2004 | 9 | 10.1111/j.1151-2916.2004.tb06331.x | 62 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 48.9 | 1.0 | 100 | powder | 0.4 | 0 | 2 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). New Freeze?Casting Technique for Ceramics with Sublimable Vehicles. Journal of the American Ceramic Society, 87(10), 1859-1863. | 2004 | 9 | 10.1111/j.1151-2916.2004.tb06331.x | 63 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 50.8 | 1.0 | 100 | powder | 0.4 | 0 | 2 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). New Freeze?Casting Technique for Ceramics with Sublimable Vehicles. Journal of the American Ceramic Society, 87(10), 1859-1863. | 2004 | 9 | 10.1111/j.1151-2916.2004.tb06331.x | 64 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 50.8 | 1.0 | 100 | powder | 0.4 | 0 | 2 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 22.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). New Freeze?Casting Technique for Ceramics with Sublimable Vehicles. Journal of the American Ceramic Society, 87(10), 1859-1863. | 2004 | 9 | 10.1111/j.1151-2916.2004.tb06331.x | 65 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 50.8 | 1.0 | 100 | powder | 0.4 | 0 | 2 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 13.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). New Freeze?Casting Technique for Ceramics with Sublimable Vehicles. Journal of the American Ceramic Society, 87(10), 1859-1863. | 2004 | 9 | 10.1111/j.1151-2916.2004.tb06331.x | 66 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 50.8 | 1.0 | 100 | powder | 0.4 | 0 | 2 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). Room?Temperature Freeze Casting for Ceramics with Nonaqueous Sublimable Vehicles in the Naphthalene?Camphor Eutectic System. Journal of the American Ceramic Society, 87(11), 2014-2019. | 2004 | 10 | 10.1111/j.1151-2916.2004.tb06353.x | 67 | ceramic | Al2O3 | camphor | 46 | naphthalene | 52 | 20.0 | 1.0 | 100 | powder | 0.4 | 0 | 2 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | plates | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). Room?Temperature Freeze Casting for Ceramics with Nonaqueous Sublimable Vehicles in the Naphthalene?Camphor Eutectic System. Journal of the American Ceramic Society, 87(11), 2014-2019. | 2004 | 10 | 10.1111/j.1151-2916.2004.tb06353.x | 68 | ceramic | Al2O3 | camphor | 46 | naphthalene | 52 | 30.0 | 1.0 | 100 | powder | 0.4 | 0 | 2 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | plates | sintered | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). Room?Temperature Freeze Casting for Ceramics with Nonaqueous Sublimable Vehicles in the Naphthalene?Camphor Eutectic System. Journal of the American Ceramic Society, 87(11), 2014-2019. | 2004 | 10 | 10.1111/j.1151-2916.2004.tb06353.x | 69 | ceramic | Al2O3 | camphor | 46 | naphthalene | 52 | 40.0 | 1.0 | 100 | powder | 0.4 | 0 | 2 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | plates | sintered | 22.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). Room?Temperature Freeze Casting for Ceramics with Nonaqueous Sublimable Vehicles in the Naphthalene?Camphor Eutectic System. Journal of the American Ceramic Society, 87(11), 2014-2019. | 2004 | 10 | 10.1111/j.1151-2916.2004.tb06353.x | 70 | ceramic | Al2O3 | camphor | 46 | naphthalene | 52 | 48.0 | 1.0 | 100 | powder | 0.4 | 0 | 2 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | plates | sintered | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). Room?Temperature Freeze Casting for Ceramics with Nonaqueous Sublimable Vehicles in the Naphthalene?Camphor Eutectic System. Journal of the American Ceramic Society, 87(11), 2014-2019. | 2004 | 10 | 10.1111/j.1151-2916.2004.tb06353.x | 71 | ceramic | Al2O3 | camphor | 62 | naphthalene | 37 | 20.0 | 1.0 | 100 | powder | 0.4 | 0 | 2 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). Room?Temperature Freeze Casting for Ceramics with Nonaqueous Sublimable Vehicles in the Naphthalene?Camphor Eutectic System. Journal of the American Ceramic Society, 87(11), 2014-2019. | 2004 | 10 | 10.1111/j.1151-2916.2004.tb06353.x | 72 | ceramic | Al2O3 | camphor | 62 | naphthalene | 37 | 30.0 | 1.0 | 100 | powder | 0.4 | 0 | 2 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 22.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). Room?Temperature Freeze Casting for Ceramics with Nonaqueous Sublimable Vehicles in the Naphthalene?Camphor Eutectic System. Journal of the American Ceramic Society, 87(11), 2014-2019. | 2004 | 10 | 10.1111/j.1151-2916.2004.tb06353.x | 73 | ceramic | Al2O3 | camphor | 62 | naphthalene | 37 | 40.0 | 1.0 | 100 | powder | 0.4 | 0 | 2 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). Room?Temperature Freeze Casting for Ceramics with Nonaqueous Sublimable Vehicles in the Naphthalene?Camphor Eutectic System. Journal of the American Ceramic Society, 87(11), 2014-2019. | 2004 | 10 | 10.1111/j.1151-2916.2004.tb06353.x | 74 | ceramic | Al2O3 | camphor | 62 | naphthalene | 37 | 48.0 | 1.0 | 100 | powder | 0.4 | 0 | 2 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). Room?Temperature Freeze Casting for Ceramics with Nonaqueous Sublimable Vehicles in the Naphthalene?Camphor Eutectic System. Journal of the American Ceramic Society, 87(11), 2014-2019. | 2004 | 10 | 10.1111/j.1151-2916.2004.tb06353.x | 75 | ceramic | Al2O3 | camphor | 72 | naphthalene | 28 | 20.0 | 1.0 | 100 | powder | 0.4 | 0 | 2 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). Room?Temperature Freeze Casting for Ceramics with Nonaqueous Sublimable Vehicles in the Naphthalene?Camphor Eutectic System. Journal of the American Ceramic Society, 87(11), 2014-2019. | 2004 | 10 | 10.1111/j.1151-2916.2004.tb06353.x | 76 | ceramic | Al2O3 | camphor | 72 | naphthalene | 28 | 30.0 | 1.0 | 100 | powder | 0.4 | 0 | 2 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 35.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). Room?Temperature Freeze Casting for Ceramics with Nonaqueous Sublimable Vehicles in the Naphthalene?Camphor Eutectic System. Journal of the American Ceramic Society, 87(11), 2014-2019. | 2004 | 10 | 10.1111/j.1151-2916.2004.tb06353.x | 77 | ceramic | Al2O3 | camphor | 72 | naphthalene | 28 | 40.0 | 1.0 | 100 | powder | 0.4 | 0 | 2 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 13.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2004). Room?Temperature Freeze Casting for Ceramics with Nonaqueous Sublimable Vehicles in the Naphthalene?Camphor Eutectic System. Journal of the American Ceramic Society, 87(11), 2014-2019. | 2004 | 10 | 10.1111/j.1151-2916.2004.tb06353.x | 78 | ceramic | Al2O3 | camphor | 72 | naphthalene | 28 | 48.0 | 1.0 | 100 | powder | 0.4 | 0 | 2 | 0 | 291.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2005). Porous ceramic bodies with interconnected pore channels by a novel freeze casting technique. Journal of the American Ceramic Society, 88(5), 1108-1114. | 2005 | 11 | 10.1111/j.1551-2916.2005.00176.x | 79 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 49.5 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 291.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2005). Porous ceramic bodies with interconnected pore channels by a novel freeze casting technique. Journal of the American Ceramic Society, 88(5), 1108-1114. | 2005 | 11 | 10.1111/j.1551-2916.2005.00176.x | 80 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 291.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 41.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2005). Porous ceramic bodies with interconnected pore channels by a novel freeze casting technique. Journal of the American Ceramic Society, 88(5), 1108-1114. | 2005 | 11 | 10.1111/j.1551-2916.2005.00176.x | 81 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 291.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 22.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Araki, K., & Halloran, J. W. (2005). Porous ceramic bodies with interconnected pore channels by a novel freeze casting technique. Journal of the American Ceramic Society, 88(5), 1108-1114. | 2005 | 11 | 10.1111/j.1551-2916.2005.00176.x | 82 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 49.5 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 291.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bareggi, A., Maire, E., Lasalle, A., & Deville, S. (2011). Dynamics of the Freezing Front During the Solidification of a Colloidal Alumina Aqueous Suspension: In Situ X?Ray Radiography, Tomography, and Modeling. Journal of the American Ceramic Society, 94(10), 3570-3578. | 2011 | 19 | 10.1111/j.1551-2916.2011.04572.x | 5559 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | parabolic | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Barg, S., Innocentini, M. D., Meloni, R. V., Chacon, W. S., Wang, H., Koch, D., & Grathwohl, G. (2011). Physical and high-temperature permeation features of double-layered cellular filtering membranes prepared via freeze casting of emulsified powder suspensions. Journal of membrane science, 383(1), 35-43. | 2011 | 20 | 10.1016/j.memsci.2011.08.003 | 226 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 42.0 | 1.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 123.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 77.4 | 0.0 | 13.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bouville, F., Maire, E., & Deville, S. (2014). Lightweight and stiff cellular ceramic structures by ice templating. Journal of Materials Research, 29(2), 175-181. | 2014 | 28 | 10.1557/jmr.2013.385 | 274 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 13.0 | 1.0 | 100 | platelets | 8.0 | 3 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 84.0 | 0.0 | 32.0 | 0.0 | 0.0 | 2.0 | 0.0 | 125.0 |
Bouville, F., Maire, E., & Deville, S. (2014). Lightweight and stiff cellular ceramic structures by ice templating. Journal of Materials Research, 29(2), 175-181. | 2014 | 28 | 10.1557/jmr.2013.385 | 275 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 13.0 | 1.0 | 100 | platelets | 8.0 | 3 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 81.0 | 0.0 | 27.0 | 0.0 | 0.0 | 11.0 | 0.0 | 345.0 |
Bouville, F., Maire, E., & Deville, S. (2014). Lightweight and stiff cellular ceramic structures by ice templating. Journal of Materials Research, 29(2), 175-181. | 2014 | 28 | 10.1557/jmr.2013.385 | 276 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 13.0 | 1.0 | 100 | platelets | 8.0 | 3 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 80.0 | 0.0 | 30.0 | 0.0 | 0.0 | 16.0 | 0.0 | 530.0 |
Bouville, F., Portuguez, E., Chang, Y., Messing, G. L., Stevenson, A. J., Maire, E., ... & Deville, S. (2014). Templated grain growth in macroporous materials. Journal of the American Ceramic Society, 97(6), 1736-1742. | 2014 | 31 | 10.1111/jace.12976 | 279 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 85 | powder | 0.1 | 3 | 0 | 0 | 0.0 | 1.0 | 0.0 | flow | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 22.5 | 15.0 | 7.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, H. M., Yin, Y. F., Dong, H. B., Tong, Y., Luo, M., & Li, X. (2014). Porous alumina infiltrated with melt and its dynamic analysis during pressureless infiltration. Ceramics International, 40(4), 6293-6299. | 2014 | 41 | 10.1016/j.ceramint.2013.11.088 | 295 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.15 | 0 | 0 | 0 | 196.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, H. M., Yin, Y. F., Dong, H. B., Tong, Y., Luo, M., & Li, X. (2014). Porous alumina infiltrated with melt and its dynamic analysis during pressureless infiltration. Ceramics International, 40(4), 6293-6299. | 2014 | 41 | 10.1016/j.ceramint.2013.11.088 | 296 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.15 | 0 | 0 | 0 | 196.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, H. M., Yin, Y. F., Dong, H. B., Tong, Y., Luo, M., & Li, X. (2014). Porous alumina infiltrated with melt and its dynamic analysis during pressureless infiltration. Ceramics International, 40(4), 6293-6299. | 2014 | 41 | 10.1016/j.ceramint.2013.11.088 | 297 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.15 | 0 | 0 | 0 | 196.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, R., Johnson, M. B., Plucknett, K. P., & White, M. A. (2012). Thermal conductivity of tunable lamellar aluminum oxide/polymethyl methacrylate hybrid composites. Journal of Materials Research, 27(14), 1869-1876. | 2012 | 44 | 10.1557/jmr.2012.112 | 317 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.4 | 1 | 1 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 20.0 | 15.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, R., Johnson, M. B., Plucknett, K. P., & White, M. A. (2012). Thermal conductivity of tunable lamellar aluminum oxide/polymethyl methacrylate hybrid composites. Journal of Materials Research, 27(14), 1869-1876. | 2012 | 44 | 10.1557/jmr.2012.112 | 318 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 97 | powder | 0.4 | 1 | 1 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, R., Johnson, M. B., Plucknett, K. P., & White, M. A. (2012). Thermal conductivity of tunable lamellar aluminum oxide/polymethyl methacrylate hybrid composites. Journal of Materials Research, 27(14), 1869-1876. | 2012 | 44 | 10.1557/jmr.2012.112 | 319 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 95 | powder | 0.4 | 1 | 1 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, R., Johnson, M. B., Plucknett, K. P., & White, M. A. (2012). Thermal conductivity of tunable lamellar aluminum oxide/polymethyl methacrylate hybrid composites. Journal of Materials Research, 27(14), 1869-1876. | 2012 | 44 | 10.1557/jmr.2012.112 | 320 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 93 | powder | 0.4 | 1 | 1 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, R., Johnson, M. B., Plucknett, K. P., & White, M. A. (2012). Thermal conductivity of tunable lamellar aluminum oxide/polymethyl methacrylate hybrid composites. Journal of Materials Research, 27(14), 1869-1876. | 2012 | 44 | 10.1557/jmr.2012.112 | 321 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.4 | 1 | 1 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, R., Johnson, M. B., Plucknett, K. P., & White, M. A. (2012). Thermal conductivity of tunable lamellar aluminum oxide/polymethyl methacrylate hybrid composites. Journal of Materials Research, 27(14), 1869-1876. | 2012 | 44 | 10.1557/jmr.2012.112 | 322 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 97 | powder | 0.4 | 1 | 1 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, R., Johnson, M. B., Plucknett, K. P., & White, M. A. (2012). Thermal conductivity of tunable lamellar aluminum oxide/polymethyl methacrylate hybrid composites. Journal of Materials Research, 27(14), 1869-1876. | 2012 | 44 | 10.1557/jmr.2012.112 | 323 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 95 | powder | 0.4 | 1 | 1 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, R., Johnson, M. B., Plucknett, K. P., & White, M. A. (2012). Thermal conductivity of tunable lamellar aluminum oxide/polymethyl methacrylate hybrid composites. Journal of Materials Research, 27(14), 1869-1876. | 2012 | 44 | 10.1557/jmr.2012.112 | 324 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 93 | powder | 0.4 | 1 | 1 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, R., Johnson, M. B., Plucknett, K. P., & White, M. A. (2012). Thermal conductivity of tunable lamellar aluminum oxide/polymethyl methacrylate hybrid composites. Journal of Materials Research, 27(14), 1869-1876. | 2012 | 44 | 10.1557/jmr.2012.112 | 325 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | powder | 0.4 | 1 | 1 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, R., Johnson, M. B., Plucknett, K. P., & White, M. A. (2012). Thermal conductivity of tunable lamellar aluminum oxide/polymethyl methacrylate hybrid composites. Journal of Materials Research, 27(14), 1869-1876. | 2012 | 44 | 10.1557/jmr.2012.112 | 326 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 97 | powder | 0.4 | 1 | 1 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, R., Johnson, M. B., Plucknett, K. P., & White, M. A. (2012). Thermal conductivity of tunable lamellar aluminum oxide/polymethyl methacrylate hybrid composites. Journal of Materials Research, 27(14), 1869-1876. | 2012 | 44 | 10.1557/jmr.2012.112 | 327 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 95 | powder | 0.4 | 1 | 1 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, R., Wang, C. A., Huang, Y., Ma, L., & Lin, W. (2007). Ceramics with Special Porous Structures Fabricated by Freeze?Gelcasting: Using tert?Butyl Alcohol as a Template. Journal of the American Ceramic Society, 90(11), 3478-3484. | 2007 | 45 | 10.1111/j.1551-2916.2007.01957.x | 331 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.2 | 0 | 0 | 0 | 273.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 |
Chen, R., Wang, C. A., Huang, Y., Ma, L., & Lin, W. (2007). Ceramics with Special Porous Structures Fabricated by Freeze?Gelcasting: Using tert?Butyl Alcohol as a Template. Journal of the American Ceramic Society, 90(11), 3478-3484. | 2007 | 45 | 10.1111/j.1551-2916.2007.01957.x | 332 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.2 | 0 | 0 | 0 | 273.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 |
Chen, R., Wang, C. A., Huang, Y., Ma, L., & Lin, W. (2007). Ceramics with Special Porous Structures Fabricated by Freeze?Gelcasting: Using tert?Butyl Alcohol as a Template. Journal of the American Ceramic Society, 90(11), 3478-3484. | 2007 | 45 | 10.1111/j.1551-2916.2007.01957.x | 333 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.2 | 0 | 0 | 0 | 273.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9 | 0.0 | 0.0 |
Chen, R., Wang, C. A., Huang, Y., Ma, L., & Lin, W. (2007). Ceramics with Special Porous Structures Fabricated by Freeze?Gelcasting: Using tert?Butyl Alcohol as a Template. Journal of the American Ceramic Society, 90(11), 3478-3484. | 2007 | 45 | 10.1111/j.1551-2916.2007.01957.x | 334 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.2 | 0 | 0 | 0 | 273.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.8 | 0.0 | 0.0 |
Chen, R., Wang, C. A., Huang, Y., Ma, L., & Lin, W. (2007). Ceramics with Special Porous Structures Fabricated by Freeze?Gelcasting: Using tert?Butyl Alcohol as a Template. Journal of the American Ceramic Society, 90(11), 3478-3484. | 2007 | 45 | 10.1111/j.1551-2916.2007.01957.x | 335 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.2 | 0 | 0 | 0 | 273.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 |
Chen, R., Wang, C. A., Huang, Y., Ma, L., & Lin, W. (2007). Ceramics with Special Porous Structures Fabricated by Freeze?Gelcasting: Using tert?Butyl Alcohol as a Template. Journal of the American Ceramic Society, 90(11), 3478-3484. | 2007 | 45 | 10.1111/j.1551-2916.2007.01957.x | 336 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.2 | 0 | 0 | 0 | 273.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 11.0 | 0.0 |
Chen, R., Wang, C. A., Huang, Y., Ma, L., & Lin, W. (2007). Ceramics with Special Porous Structures Fabricated by Freeze?Gelcasting: Using tert?Butyl Alcohol as a Template. Journal of the American Ceramic Society, 90(11), 3478-3484. | 2007 | 45 | 10.1111/j.1551-2916.2007.01957.x | 337 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.2 | 0 | 0 | 0 | 273.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 |
Chen, R., Wang, C. A., Huang, Y., Ma, L., & Lin, W. (2007). Ceramics with Special Porous Structures Fabricated by Freeze?Gelcasting: Using tert?Butyl Alcohol as a Template. Journal of the American Ceramic Society, 90(11), 3478-3484. | 2007 | 45 | 10.1111/j.1551-2916.2007.01957.x | 338 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.2 | 0 | 0 | 0 | 273.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 |
Chen, R., Wang, C. A., Huang, Y., Ma, L., & Lin, W. (2007). Ceramics with Special Porous Structures Fabricated by Freeze?Gelcasting: Using tert?Butyl Alcohol as a Template. Journal of the American Ceramic Society, 90(11), 3478-3484. | 2007 | 45 | 10.1111/j.1551-2916.2007.01957.x | 339 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.2 | 0 | 0 | 0 | 263.0 | 12.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 5230.0 | 0.0 | 0.0 | 0.0 | 0.0 | 153.0 | 0.0 | 0.0 |
Chen, R., Wang, C. A., Huang, Y., Ma, L., & Lin, W. (2007). Ceramics with Special Porous Structures Fabricated by Freeze?Gelcasting: Using tert?Butyl Alcohol as a Template. Journal of the American Ceramic Society, 90(11), 3478-3484. | 2007 | 45 | 10.1111/j.1551-2916.2007.01957.x | 340 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.2 | 0 | 0 | 0 | 273.0 | 15.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, R., Wang, C. A., Huang, Y., Ma, L., & Lin, W. (2007). Ceramics with Special Porous Structures Fabricated by Freeze?Gelcasting: Using tert?Butyl Alcohol as a Template. Journal of the American Ceramic Society, 90(11), 3478-3484. | 2007 | 45 | 10.1111/j.1551-2916.2007.01957.x | 341 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.2 | 0 | 0 | 0 | 263.0 | 15.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, R., Wang, C. A., Huang, Y., Ma, L., & Lin, W. (2007). Ceramics with Special Porous Structures Fabricated by Freeze?Gelcasting: Using tert?Butyl Alcohol as a Template. Journal of the American Ceramic Society, 90(11), 3478-3484. | 2007 | 45 | 10.1111/j.1551-2916.2007.01957.x | 342 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.2 | 0 | 0 | 0 | 263.0 | 15.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, R., Wang, C. A., Huang, Y., Ma, L., & Lin, W. (2007). Ceramics with Special Porous Structures Fabricated by Freeze?Gelcasting: Using tert?Butyl Alcohol as a Template. Journal of the American Ceramic Society, 90(11), 3478-3484. | 2007 | 45 | 10.1111/j.1551-2916.2007.01957.x | 343 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.2 | 0 | 0 | 0 | 263.0 | 15.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, R., Wang, C. A., Huang, Y., Ma, L., & Lin, W. (2007). Ceramics with Special Porous Structures Fabricated by Freeze?Gelcasting: Using tert?Butyl Alcohol as a Template. Journal of the American Ceramic Society, 90(11), 3478-3484. | 2007 | 45 | 10.1111/j.1551-2916.2007.01957.x | 344 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.2 | 0 | 0 | 0 | 263.0 | 15.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 48.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, R., Wang, C. A., Huang, Y., Ma, L., & Lin, W. (2007). Ceramics with Special Porous Structures Fabricated by Freeze?Gelcasting: Using tert?Butyl Alcohol as a Template. Journal of the American Ceramic Society, 90(11), 3478-3484. | 2007 | 45 | 10.1111/j.1551-2916.2007.01957.x | 345 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.2 | 0 | 0 | 0 | 263.0 | 15.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 18.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, R., Wang, C. A., Huang, Y., Ma, L., & Lin, W. (2007). Ceramics with Special Porous Structures Fabricated by Freeze?Gelcasting: Using tert?Butyl Alcohol as a Template. Journal of the American Ceramic Society, 90(11), 3478-3484. | 2007 | 45 | 10.1111/j.1551-2916.2007.01957.x | 346 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.2 | 0 | 0 | 0 | 263.0 | 15.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 18.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, R., Wang, C. A., Huang, Y., Ma, L., & Lin, W. (2007). Ceramics with Special Porous Structures Fabricated by Freeze?Gelcasting: Using tert?Butyl Alcohol as a Template. Journal of the American Ceramic Society, 90(11), 3478-3484. | 2007 | 45 | 10.1111/j.1551-2916.2007.01957.x | 347 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.2 | 0 | 0 | 0 | 263.0 | 15.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 18.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, R., Wang, C. A., Huang, Y., Ma, L., & Lin, W. (2007). Ceramics with Special Porous Structures Fabricated by Freeze?Gelcasting: Using tert?Butyl Alcohol as a Template. Journal of the American Ceramic Society, 90(11), 3478-3484. | 2007 | 45 | 10.1111/j.1551-2916.2007.01957.x | 348 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.2 | 0 | 0 | 0 | 273.0 | 12.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 64.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, R., Wang, C. A., Huang, Y., Ma, L., & Lin, W. (2007). Ceramics with Special Porous Structures Fabricated by Freeze?Gelcasting: Using tert?Butyl Alcohol as a Template. Journal of the American Ceramic Society, 90(11), 3478-3484. | 2007 | 45 | 10.1111/j.1551-2916.2007.01957.x | 349 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.2 | 0 | 0 | 0 | 273.0 | 12.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 56.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, R., Wang, C. A., Huang, Y., Ma, L., & Lin, W. (2007). Ceramics with Special Porous Structures Fabricated by Freeze?Gelcasting: Using tert?Butyl Alcohol as a Template. Journal of the American Ceramic Society, 90(11), 3478-3484. | 2007 | 45 | 10.1111/j.1551-2916.2007.01957.x | 350 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.2 | 0 | 0 | 0 | 273.0 | 12.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 48.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, R., Wang, C. A., Huang, Y., Ma, L., & Lin, W. (2007). Ceramics with Special Porous Structures Fabricated by Freeze?Gelcasting: Using tert?Butyl Alcohol as a Template. Journal of the American Ceramic Society, 90(11), 3478-3484. | 2007 | 45 | 10.1111/j.1551-2916.2007.01957.x | 351 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.2 | 0 | 0 | 0 | 273.0 | 12.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 35.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, R., Wang, C. A., Huang, Y., Ma, L., & Lin, W. (2007). Ceramics with Special Porous Structures Fabricated by Freeze?Gelcasting: Using tert?Butyl Alcohol as a Template. Journal of the American Ceramic Society, 90(11), 3478-3484. | 2007 | 45 | 10.1111/j.1551-2916.2007.01957.x | 352 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.2 | 0 | 0 | 0 | 273.0 | 12.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 23.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, R., Wang, C. A., Huang, Y., Ma, L., & Lin, W. (2007). Ceramics with Special Porous Structures Fabricated by Freeze?Gelcasting: Using tert?Butyl Alcohol as a Template. Journal of the American Ceramic Society, 90(11), 3478-3484. | 2007 | 45 | 10.1111/j.1551-2916.2007.01957.x | 353 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.2 | 0 | 0 | 0 | 273.0 | 12.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 18.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, R., Wang, C. A., Huang, Y., Ma, L., & Lin, W. (2007). Ceramics with Special Porous Structures Fabricated by Freeze?Gelcasting: Using tert?Butyl Alcohol as a Template. Journal of the American Ceramic Society, 90(11), 3478-3484. | 2007 | 45 | 10.1111/j.1551-2916.2007.01957.x | 354 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.2 | 0 | 0 | 0 | 273.0 | 12.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 10.0 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Colard, C. A., Cave, R. A., Grossiord, N., Covington, J. A., & Bon, S. A. (2009). Conducting Nanocomposite Polymer Foams from Ice?Crystal?Templated Assembly of Mixtures of Colloids. Advanced Materials, 21(28), 2894-2898. | 2009 | 61 | 10.1002/adma.200803007 | 457 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 5.0 | 1.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Czapski, M., Stora, T., Tardivat, C., Deville, S., Augusto, R. S., Leloup, J., ... & Luis, R. F. (2013). Porous silicon carbide and aluminum oxide with unidirectional open porosity as model target materials for radioisotope beam production. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 317, 385-388. | 2013 | 62 | 10.1016/j.nimb.2013.08.022 | 464 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 10.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 50.0 | 0.0 | 13.0 | 0.0 | 0.0 | 184.0 | 0.0 | 0.0 |
Hazan, Y. (2012). Porous ceramics, ceramic/polymer, and metal?doped ceramic/polymer nanocomposites via freeze casting of photo?curable colloidal fluids. Journal of the American Ceramic Society, 95(1), 177-187. | 2012 | 67 | 10.1111/j.1551-2916.2011.04870.x | 4839 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., Nalla, R. K., & Tomsia, A. P. (2005). Using Ice to Mimic Nacre: From Structural Materials to Artificial Bone. Lawrence Berkeley National Laboratory. | 2005 | 76 | 0 | 516 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 1.2 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 160.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., Nalla, R. K., & Tomsia, A. P. (2005). Using Ice to Mimic Nacre: From Structural Materials to Artificial Bone. Lawrence Berkeley National Laboratory. | 2005 | 76 | 0 | 517 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 54.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., Nalla, R. K., & Tomsia, A. P. (2006). Strong biomimetic hydroxyapatite scaffolds. In Advances in Science and Technology (Vol. 49, pp. 148-152). Trans Tech Publications. | 2006 | 77 | 10.4028/www.scientific.net/AST.49.148 | 519 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 17.1 | 1.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 1.2 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., Nalla, R. K., & Tomsia, A. P. (2006). Strong biomimetic hydroxyapatite scaffolds. In Advances in Science and Technology (Vol. 49, pp. 148-152). Trans Tech Publications. | 2006 | 77 | 10.4028/www.scientific.net/AST.49.148 | 520 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 17.1 | 1.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 2.3 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., Nalla, R. K., & Tomsia, A. P. (2006). Strong biomimetic hydroxyapatite scaffolds. In Advances in Science and Technology (Vol. 49, pp. 148-152). Trans Tech Publications. | 2006 | 77 | 10.4028/www.scientific.net/AST.49.148 | 521 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 17.1 | 1.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., Nalla, R. K., & Tomsia, A. P. (2006). Strong biomimetic hydroxyapatite scaffolds. In Advances in Science and Technology (Vol. 49, pp. 148-152). Trans Tech Publications. | 2006 | 77 | 10.4028/www.scientific.net/AST.49.148 | 522 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 17.1 | 1.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 54.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Maire, E., Lasalle, A., Bogner, A., Gauthier, C., Leloup, J., & Guizard, C. (2009). In Situ X?Ray Radiography and Tomography Observations of the Solidification of Aqueous Alumina Particle Suspensions?Part I: Initial Instants. Journal of the American Ceramic Society, 92(11), 2489-2496. | 2009 | 80 | 10.1111/j.1551-2916.2009.03163.x | 5563 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 28.0 | 1.0 | 100 | powder | 0.2 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Maire, E., Lasalle, A., Bogner, A., Gauthier, C., Leloup, J., & Guizard, C. (2009). In Situ X?Ray Radiography and Tomography Observations of the Solidification of Aqueous Alumina Particle Suspensions?Part I: Initial Instants. Journal of the American Ceramic Society, 92(11), 2489-2496. | 2009 | 80 | 10.1111/j.1551-2916.2009.03163.x | 5564 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 28.0 | 1.0 | 100 | powder | 0.2 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Maire, E., Bernard-Granger, G., Lasalle, A., Bogner, A., Gauthier, C., ... & Guizard, C. (2009). Metastable and unstable cellular solidification of colloidal suspensions. Nature materials, 8(12), 966. | 2009 | 82 | 10.1038/nmat2571 | 531 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 28.0 | 1.0 | 100 | powder | 1.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 12.0 | 0.0 | 0 | 0 | 0 | lamellar | solidification | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Maire, E., Bernard-Granger, G., Lasalle, A., Bogner, A., Gauthier, C., ... & Guizard, C. (2009). Metastable and unstable cellular solidification of colloidal suspensions. Nature materials, 8(12), 966. | 2009 | 82 | 10.1038/nmat2571 | 532 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 28.0 | 1.0 | 100 | powder | 1.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 20.5 | 0.0 | 0 | 0 | 0 | lamellar | solidification | 0.0 | 26.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Maire, E., Bernard-Granger, G., Lasalle, A., Bogner, A., Gauthier, C., ... & Guizard, C. (2009). Metastable and unstable cellular solidification of colloidal suspensions. Nature materials, 8(12), 966. | 2009 | 82 | 10.1038/nmat2571 | 533 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 28.0 | 1.0 | 100 | powder | 1.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | solidification | 0.0 | 28.5 | 20.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Maire, E., Bernard-Granger, G., Lasalle, A., Bogner, A., Gauthier, C., ... & Guizard, C. (2009). Metastable and unstable cellular solidification of colloidal suspensions. Nature materials, 8(12), 966. | 2009 | 82 | 10.1038/nmat2571 | 534 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 28.0 | 1.0 | 100 | powder | 1.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 50.0 | 0.0 | 0 | 0 | 0 | lamellar | solidification | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Maire, E., Bernard-Granger, G., Lasalle, A., Bogner, A., Gauthier, C., ... & Guizard, C. (2009). Metastable and unstable cellular solidification of colloidal suspensions. Nature materials, 8(12), 966. | 2009 | 82 | 10.1038/nmat2571 | 535 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 28.0 | 1.0 | 100 | powder | 1.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 75.0 | 0.0 | 0 | 0 | 0 | lamellar | solidification | 0.0 | 30.25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Maire, E., Bernard-Granger, G., Lasalle, A., Bogner, A., Gauthier, C., ... & Guizard, C. (2009). Metastable and unstable cellular solidification of colloidal suspensions. Nature materials, 8(12), 966. | 2009 | 82 | 10.1038/nmat2571 | 536 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 28.0 | 1.0 | 100 | powder | 1.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 95.0 | 0.0 | 0 | 0 | 0 | lamellar | solidification | 0.0 | 30.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Maire, E., Bernard-Granger, G., Lasalle, A., Bogner, A., Gauthier, C., ... & Guizard, C. (2009). Metastable and unstable cellular solidification of colloidal suspensions. Nature materials, 8(12), 966. | 2009 | 82 | 10.1038/nmat2571 | 537 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 28.0 | 1.0 | 100 | powder | 1.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 125.0 | 0.0 | 0 | 0 | 0 | lamellar | solidification | 0.0 | 31.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Maire, E., Lasalle, A., Bogner, A., Gauthier, C., Leloup, J., & Guizard, C. (2010). Influence of Particle Size on Ice Nucleation and Growth During the Ice?Templating Process. Journal of the American Ceramic Society, 93(9), 2507-2510. | 2010 | 83 | 10.1111/j.1551-2916.2010.03840.x | 538 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 28.0 | 1.0 | 100 | powder | 0.2 | 0 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Maire, E., Lasalle, A., Bogner, A., Gauthier, C., Leloup, J., & Guizard, C. (2010). Influence of Particle Size on Ice Nucleation and Growth During the Ice?Templating Process. Journal of the American Ceramic Society, 93(9), 2507-2510. | 2010 | 83 | 10.1111/j.1551-2916.2010.03840.x | 539 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 28.0 | 1.0 | 100 | powder | 0.4 | 0 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Maire, E., Lasalle, A., Bogner, A., Gauthier, C., Leloup, J., & Guizard, C. (2010). Influence of Particle Size on Ice Nucleation and Growth During the Ice?Templating Process. Journal of the American Ceramic Society, 93(9), 2507-2510. | 2010 | 83 | 10.1111/j.1551-2916.2010.03840.x | 540 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 28.0 | 1.0 | 100 | powder | 1.3 | 0 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Maire, E., Lasalle, A., Bogner, A., Gauthier, C., Leloup, J., & Guizard, C. (2010). Influence of Particle Size on Ice Nucleation and Growth During the Ice?Templating Process. Journal of the American Ceramic Society, 93(9), 2507-2510. | 2010 | 83 | 10.1111/j.1551-2916.2010.03840.x | 541 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 28.0 | 1.0 | 100 | powder | 3.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., & Tomsia, A. P. (2007). Ice-templated porous alumina structures. Acta Materialia, 55(6), 1965-1974. | 2007 | 86 | 10.1016/j.actamat.2006.11.003 | 565 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 0.4 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | double-sided | linear | 4.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 120.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., & Tomsia, A. P. (2007). Ice-templated porous alumina structures. Acta Materialia, 55(6), 1965-1974. | 2007 | 86 | 10.1016/j.actamat.2006.11.003 | 566 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 0.1 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | double-sided | linear | 4.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 95.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., & Tomsia, A. P. (2007). Ice-templated porous alumina structures. Acta Materialia, 55(6), 1965-1974. | 2007 | 86 | 10.1016/j.actamat.2006.11.003 | 567 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 0.1 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | double-sided | linear | 9.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., & Tomsia, A. P. (2007). Ice-templated porous alumina structures. Acta Materialia, 55(6), 1965-1974. | 2007 | 86 | 10.1016/j.actamat.2006.11.003 | 568 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 0.4 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | double-sided | linear | 9.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., & Tomsia, A. P. (2007). Ice-templated porous alumina structures. Acta Materialia, 55(6), 1965-1974. | 2007 | 86 | 10.1016/j.actamat.2006.11.003 | 569 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 0.1 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | double-sided | linear | 15.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., & Tomsia, A. P. (2007). Ice-templated porous alumina structures. Acta Materialia, 55(6), 1965-1974. | 2007 | 86 | 10.1016/j.actamat.2006.11.003 | 570 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 0.4 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | double-sided | linear | 15.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., & Tomsia, A. P. (2007). Ice-templated porous alumina structures. Acta Materialia, 55(6), 1965-1974. | 2007 | 86 | 10.1016/j.actamat.2006.11.003 | 571 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 0.1 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | double-sided | linear | 20.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., & Tomsia, A. P. (2007). Ice-templated porous alumina structures. Acta Materialia, 55(6), 1965-1974. | 2007 | 86 | 10.1016/j.actamat.2006.11.003 | 572 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 0.4 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | double-sided | linear | 20.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 22.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., & Tomsia, A. P. (2007). Ice-templated porous alumina structures. Acta Materialia, 55(6), 1965-1974. | 2007 | 86 | 10.1016/j.actamat.2006.11.003 | 573 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 0.1 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | double-sided | linear | 29.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 32.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., & Tomsia, A. P. (2007). Ice-templated porous alumina structures. Acta Materialia, 55(6), 1965-1974. | 2007 | 86 | 10.1016/j.actamat.2006.11.003 | 574 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 0.4 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | double-sided | linear | 29.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., & Tomsia, A. P. (2007). Ice-templated porous alumina structures. Acta Materialia, 55(6), 1965-1974. | 2007 | 86 | 10.1016/j.actamat.2006.11.003 | 575 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 0.1 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | double-sided | linear | 40.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 28.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., & Tomsia, A. P. (2007). Ice-templated porous alumina structures. Acta Materialia, 55(6), 1965-1974. | 2007 | 86 | 10.1016/j.actamat.2006.11.003 | 576 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 0.4 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | double-sided | linear | 40.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., & Tomsia, A. P. (2007). Ice-templated porous alumina structures. Acta Materialia, 55(6), 1965-1974. | 2007 | 86 | 10.1016/j.actamat.2006.11.003 | 577 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 0.1 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | double-sided | linear | 70.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., & Tomsia, A. P. (2007). Ice-templated porous alumina structures. Acta Materialia, 55(6), 1965-1974. | 2007 | 86 | 10.1016/j.actamat.2006.11.003 | 578 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 0.4 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | double-sided | linear | 65.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., & Tomsia, A. P. (2007). Ice-templated porous alumina structures. Acta Materialia, 55(6), 1965-1974. | 2007 | 86 | 10.1016/j.actamat.2006.11.003 | 579 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 0.4 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | double-sided | linear | 85.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dhainaut, J., Deville, S., Amirouche, I., & Klotz, M. (2016). A reliable method for the preparation of multiporous alumina monoliths by ice-templating. Inorganics, 4(1), 6. | 2016 | 89 | 0 | 4857 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 90.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dhainaut, J., Deville, S., Amirouche, I., & Klotz, M. (2016). A reliable method for the preparation of multiporous alumina monoliths by ice-templating. Inorganics, 4(1), 6. | 2016 | 89 | 0 | 4858 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 95.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dhainaut, J., Deville, S., Amirouche, I., & Klotz, M. (2016). A reliable method for the preparation of multiporous alumina monoliths by ice-templating. Inorganics, 4(1), 6. | 2016 | 89 | 0 | 4859 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 91.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dhainaut, J., Deville, S., Amirouche, I., & Klotz, M. (2016). A reliable method for the preparation of multiporous alumina monoliths by ice-templating. Inorganics, 4(1), 6. | 2016 | 89 | 0 | 4860 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 71.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dhainaut, J., Deville, S., Amirouche, I., & Klotz, M. (2016). A reliable method for the preparation of multiporous alumina monoliths by ice-templating. Inorganics, 4(1), 6. | 2016 | 89 | 0 | 4861 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 82.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dhainaut, J., Deville, S., Amirouche, I., & Klotz, M. (2016). A reliable method for the preparation of multiporous alumina monoliths by ice-templating. Inorganics, 4(1), 6. | 2016 | 89 | 0 | 4862 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 54.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dhainaut, J., Deville, S., Amirouche, I., & Klotz, M. (2016). A reliable method for the preparation of multiporous alumina monoliths by ice-templating. Inorganics, 4(1), 6. | 2016 | 89 | 0 | 4863 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dhainaut, J., Deville, S., Amirouche, I., & Klotz, M. (2016). A reliable method for the preparation of multiporous alumina monoliths by ice-templating. Inorganics, 4(1), 6. | 2016 | 89 | 0 | 4864 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dhainaut, J., Deville, S., Amirouche, I., & Klotz, M. (2016). A reliable method for the preparation of multiporous alumina monoliths by ice-templating. Inorganics, 4(1), 6. | 2016 | 89 | 0 | 4865 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dhainaut, J., Deville, S., Amirouche, I., & Klotz, M. (2016). A reliable method for the preparation of multiporous alumina monoliths by ice-templating. Inorganics, 4(1), 6. | 2016 | 89 | 0 | 4866 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dhainaut, J., Deville, S., Amirouche, I., & Klotz, M. (2016). A reliable method for the preparation of multiporous alumina monoliths by ice-templating. Inorganics, 4(1), 6. | 2016 | 89 | 0 | 4867 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dhainaut, J., Deville, S., Amirouche, I., & Klotz, M. (2016). A reliable method for the preparation of multiporous alumina monoliths by ice-templating. Inorganics, 4(1), 6. | 2016 | 89 | 0 | 4868 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dhainaut, J., Deville, S., Amirouche, I., & Klotz, M. (2016). A reliable method for the preparation of multiporous alumina monoliths by ice-templating. Inorganics, 4(1), 6. | 2016 | 89 | 0 | 4869 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dhainaut, J., Deville, S., Amirouche, I., & Klotz, M. (2016). A reliable method for the preparation of multiporous alumina monoliths by ice-templating. Inorganics, 4(1), 6. | 2016 | 89 | 0 | 4870 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dhainaut, J., Deville, S., Amirouche, I., & Klotz, M. (2016). A reliable method for the preparation of multiporous alumina monoliths by ice-templating. Inorganics, 4(1), 6. | 2016 | 89 | 0 | 4871 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Y., Shen, P., Hu, Z., Sun, C., Guo, R., & Jiang, Q. (2016). The role of CuO?TiO2 additives in the preparation of high-strength porous alumina scaffolds using directional freeze casting. Journal of Porous Materials, 23(2), 539-547. | 2016 | 132 | 10.1007/s10934-015-0107-6 | 753 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 99 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 9 | lamellar | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 48.0 | 0.0 | 0.0 |
Fu, Y., Shen, P., Hu, Z., Sun, C., Guo, R., & Jiang, Q. (2016). The role of CuO?TiO2 additives in the preparation of high-strength porous alumina scaffolds using directional freeze casting. Journal of Porous Materials, 23(2), 539-547. | 2016 | 132 | 10.1007/s10934-015-0107-6 | 754 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 99 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 7 | lamellar | sintered | 67.5 | 0.0 | 0.0 | 0.0 | 0.0 | 30.0 | 0.0 | 0.0 |
Fu, Y., Shen, P., Hu, Z., Sun, C., Guo, R., & Jiang, Q. (2016). The role of CuO?TiO2 additives in the preparation of high-strength porous alumina scaffolds using directional freeze casting. Journal of Porous Materials, 23(2), 539-547. | 2016 | 132 | 10.1007/s10934-015-0107-6 | 755 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 98 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 2 | lamellar | sintered | 69.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 |
Fu, Y., Shen, P., Hu, Z., Sun, C., Guo, R., & Jiang, Q. (2016). The role of CuO?TiO2 additives in the preparation of high-strength porous alumina scaffolds using directional freeze casting. Journal of Porous Materials, 23(2), 539-547. | 2016 | 132 | 10.1007/s10934-015-0107-6 | 756 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 99 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 11 | lamellar | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 60.0 | 0.0 | 0.0 |
Fu, Y., Shen, P., Hu, Z., Sun, C., Guo, R., & Jiang, Q. (2016). The role of CuO?TiO2 additives in the preparation of high-strength porous alumina scaffolds using directional freeze casting. Journal of Porous Materials, 23(2), 539-547. | 2016 | 132 | 10.1007/s10934-015-0107-6 | 757 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 99 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 10 | lamellar | sintered | 64.0 | 0.0 | 0.0 | 0.0 | 0.0 | 48.0 | 0.0 | 0.0 |
Fu, Y., Shen, P., Hu, Z., Sun, C., Guo, R., & Jiang, Q. (2016). The role of CuO?TiO2 additives in the preparation of high-strength porous alumina scaffolds using directional freeze casting. Journal of Porous Materials, 23(2), 539-547. | 2016 | 132 | 10.1007/s10934-015-0107-6 | 758 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 98 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 3 | lamellar | sintered | 56.0 | 0.0 | 0.0 | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 |
Fu, Y., Shen, P., Hu, Z., Sun, C., Guo, R., & Jiang, Q. (2016). The role of CuO?TiO2 additives in the preparation of high-strength porous alumina scaffolds using directional freeze casting. Journal of Porous Materials, 23(2), 539-547. | 2016 | 132 | 10.1007/s10934-015-0107-6 | 759 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 99 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 12 | lamellar | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 |
Fu, Y., Shen, P., Hu, Z., Sun, C., Guo, R., & Jiang, Q. (2016). The role of CuO?TiO2 additives in the preparation of high-strength porous alumina scaffolds using directional freeze casting. Journal of Porous Materials, 23(2), 539-547. | 2016 | 132 | 10.1007/s10934-015-0107-6 | 760 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 99 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 11 | lamellar | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 55.0 | 0.0 | 0.0 |
Fu, Y., Shen, P., Hu, Z., Sun, C., Guo, R., & Jiang, Q. (2016). The role of CuO?TiO2 additives in the preparation of high-strength porous alumina scaffolds using directional freeze casting. Journal of Porous Materials, 23(2), 539-547. | 2016 | 132 | 10.1007/s10934-015-0107-6 | 761 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 98 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 9 | lamellar | sintered | 61.0 | 0.0 | 0.0 | 0.0 | 0.0 | 40.0 | 0.0 | 0.0 |
Fu, Y., Shen, P., Hu, Z., Sun, C., Guo, R., & Jiang, Q. (2016). The role of CuO?TiO2 additives in the preparation of high-strength porous alumina scaffolds using directional freeze casting. Journal of Porous Materials, 23(2), 539-547. | 2016 | 132 | 10.1007/s10934-015-0107-6 | 762 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 99 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 17 | lamellar | sintered | 31.0 | 0.0 | 0.0 | 0.0 | 0.0 | 140.0 | 0.0 | 0.0 |
Fu, Y., Shen, P., Hu, Z., Sun, C., Guo, R., & Jiang, Q. (2016). The role of CuO?TiO2 additives in the preparation of high-strength porous alumina scaffolds using directional freeze casting. Journal of Porous Materials, 23(2), 539-547. | 2016 | 132 | 10.1007/s10934-015-0107-6 | 763 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 99 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 15 | lamellar | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 125.0 | 0.0 | 0.0 |
Fu, Y., Shen, P., Hu, Z., Sun, C., Guo, R., & Jiang, Q. (2016). The role of CuO?TiO2 additives in the preparation of high-strength porous alumina scaffolds using directional freeze casting. Journal of Porous Materials, 23(2), 539-547. | 2016 | 132 | 10.1007/s10934-015-0107-6 | 764 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 98 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 9 | lamellar | sintered | 51.5 | 0.0 | 0.0 | 0.0 | 0.0 | 45.0 | 0.0 | 0.0 |
Fu, Y., Shen, P., Hu, Z., Sun, C., Guo, R., & Jiang, Q. (2016). The role of CuO?TiO2 additives in the preparation of high-strength porous alumina scaffolds using directional freeze casting. Journal of Porous Materials, 23(2), 539-547. | 2016 | 132 | 10.1007/s10934-015-0107-6 | 765 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 99 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 17 | lamellar | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 125.0 | 0.0 | 0.0 |
Fu, Y., Shen, P., Hu, Z., Sun, C., Guo, R., & Jiang, Q. (2016). The role of CuO?TiO2 additives in the preparation of high-strength porous alumina scaffolds using directional freeze casting. Journal of Porous Materials, 23(2), 539-547. | 2016 | 132 | 10.1007/s10934-015-0107-6 | 766 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 99 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 16 | lamellar | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Y., Shen, P., Hu, Z., Sun, C., Guo, R., & Jiang, Q. (2016). The role of CuO?TiO2 additives in the preparation of high-strength porous alumina scaffolds using directional freeze casting. Journal of Porous Materials, 23(2), 539-547. | 2016 | 132 | 10.1007/s10934-015-0107-6 | 767 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 98 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 11 | lamellar | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 51.0 | 0.0 | 0.0 |
Fu, Y., Shen, P., Hu, Z., Sun, C., Guo, R., & Jiang, Q. (2016). The role of CuO?TiO2 additives in the preparation of high-strength porous alumina scaffolds using directional freeze casting. Journal of Porous Materials, 23(2), 539-547. | 2016 | 132 | 10.1007/s10934-015-0107-6 | 768 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 99 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 18 | lamellar | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 110.0 | 0.0 | 0.0 |
Fu, Y., Shen, P., Hu, Z., Sun, C., Guo, R., & Jiang, Q. (2016). The role of CuO?TiO2 additives in the preparation of high-strength porous alumina scaffolds using directional freeze casting. Journal of Porous Materials, 23(2), 539-547. | 2016 | 132 | 10.1007/s10934-015-0107-6 | 769 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 99 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 17 | lamellar | sintered | 31.0 | 0.0 | 0.0 | 0.0 | 0.0 | 140.0 | 0.0 | 0.0 |
Fu, Y., Shen, P., Hu, Z., Sun, C., Guo, R., & Jiang, Q. (2016). The role of CuO?TiO2 additives in the preparation of high-strength porous alumina scaffolds using directional freeze casting. Journal of Porous Materials, 23(2), 539-547. | 2016 | 132 | 10.1007/s10934-015-0107-6 | 770 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 98 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 14 | lamellar | sintered | 47.0 | 0.0 | 0.0 | 0.0 | 0.0 | 90.0 | 0.0 | 0.0 |
Fu, Y., Shen, P., Hu, Z., Sun, C., Guo, R., & Jiang, Q. (2016). The role of CuO?TiO2 additives in the preparation of high-strength porous alumina scaffolds using directional freeze casting. Journal of Porous Materials, 23(2), 539-547. | 2016 | 132 | 10.1007/s10934-015-0107-6 | 771 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 99 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 18 | lamellar | sintered | 36.0 | 0.0 | 0.0 | 0.0 | 0.0 | 175.0 | 0.0 | 0.0 |
Fu, Y., Shen, P., Hu, Z., Sun, C., Guo, R., & Jiang, Q. (2016). The role of CuO?TiO2 additives in the preparation of high-strength porous alumina scaffolds using directional freeze casting. Journal of Porous Materials, 23(2), 539-547. | 2016 | 132 | 10.1007/s10934-015-0107-6 | 772 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 99 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 15 | lamellar | sintered | 46.0 | 0.0 | 0.0 | 0.0 | 0.0 | 120.0 | 0.0 | 0.0 |
Fu, Y., Shen, P., Hu, Z., Sun, C., Guo, R., & Jiang, Q. (2016). The role of CuO?TiO2 additives in the preparation of high-strength porous alumina scaffolds using directional freeze casting. Journal of Porous Materials, 23(2), 539-547. | 2016 | 132 | 10.1007/s10934-015-0107-6 | 773 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 98 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 12 | lamellar | sintered | 44.0 | 0.0 | 0.0 | 0.0 | 0.0 | 120.0 | 0.0 | 0.0 |
Fu, Y., Shen, P., Hu, Z., Sun, C., Guo, R., & Jiang, Q. (2016). The role of CuO?TiO2 additives in the preparation of high-strength porous alumina scaffolds using directional freeze casting. Journal of Porous Materials, 23(2), 539-547. | 2016 | 132 | 10.1007/s10934-015-0107-6 | 774 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 99 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 18 | lamellar | sintered | 36.0 | 0.0 | 0.0 | 0.0 | 0.0 | 175.0 | 0.0 | 0.0 |
Fu, Y., Shen, P., Hu, Z., Sun, C., Guo, R., & Jiang, Q. (2016). The role of CuO?TiO2 additives in the preparation of high-strength porous alumina scaffolds using directional freeze casting. Journal of Porous Materials, 23(2), 539-547. | 2016 | 132 | 10.1007/s10934-015-0107-6 | 775 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 99 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 17 | lamellar | sintered | 44.0 | 0.0 | 0.0 | 0.0 | 0.0 | 125.0 | 0.0 | 0.0 |
Fu, Y., Shen, P., Hu, Z., Sun, C., Guo, R., & Jiang, Q. (2016). The role of CuO?TiO2 additives in the preparation of high-strength porous alumina scaffolds using directional freeze casting. Journal of Porous Materials, 23(2), 539-547. | 2016 | 132 | 10.1007/s10934-015-0107-6 | 776 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 98 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 14 | lamellar | sintered | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 130.0 | 0.0 | 0.0 |
Fukasawa, T., Ando, M., Ohji, T., & Kanzaki, S. (2001). Synthesis of porous ceramics with complex pore structure by freeze?dry processing. Journal of the American Ceramic Society, 84(1), 230-232. | 2001 | 133 | 10.1111/j.1151-2916.2001.tb00638 | 777 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 33.3 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 12 | 0 | dendritic | sintered | 49.4 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukasawa, T., Ando, M., Ohji, T., & Kanzaki, S. (2001). Synthesis of porous ceramics with complex pore structure by freeze?dry processing. Journal of the American Ceramic Society, 84(1), 230-232. | 2001 | 133 | 10.1111/j.1151-2916.2001.tb00638 | 778 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 11 | 0 | dendritic | sintered | 45.8 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukasawa, T., Ando, M., Ohji, T., & Kanzaki, S. (2001). Synthesis of porous ceramics with complex pore structure by freeze?dry processing. Journal of the American Ceramic Society, 84(1), 230-232. | 2001 | 133 | 10.1111/j.1151-2916.2001.tb00638 | 779 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 33.3 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 15 | 0 | dendritic | sintered | 46.5 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukasawa, T., Ando, M., Ohji, T., & Kanzaki, S. (2001). Synthesis of porous ceramics with complex pore structure by freeze?dry processing. Journal of the American Ceramic Society, 84(1), 230-232. | 2001 | 133 | 10.1111/j.1151-2916.2001.tb00638 | 780 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 14 | 0 | dendritic | sintered | 36.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukasawa, T., Deng, Z. Y., Ando, M., Ohji, T., & Goto, Y. (2001). Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. Journal of Materials Science, 36(10), 2523-2527. | 2001 | 136 | 10.1023/A:1017946518955 | 785 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 28.0 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 15 | 0 | lamellar | sintered | 61.3 | 0.0 | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukasawa, T., Deng, Z. Y., Ando, M., Ohji, T., & Goto, Y. (2001). Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. Journal of Materials Science, 36(10), 2523-2527. | 2001 | 136 | 10.1023/A:1017946518955 | 786 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 28.0 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 15 | 0 | dendritic | sintered | 55.8 | 0.0 | 32.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukasawa, T., Deng, Z. Y., Ando, M., Ohji, T., & Goto, Y. (2001). Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. Journal of Materials Science, 36(10), 2523-2527. | 2001 | 136 | 10.1023/A:1017946518955 | 787 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 28.0 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 12 | 0 | dendritic | sintered | 52.8 | 0.0 | 51.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukasawa, T., Deng, Z. Y., Ando, M., Ohji, T., & Goto, Y. (2001). Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. Journal of Materials Science, 36(10), 2523-2527. | 2001 | 136 | 10.1023/A:1017946518955 | 788 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 33.3 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 15 | 0 | dendritic | sintered | 49.4 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukasawa, T., Deng, Z. Y., Ando, M., Ohji, T., & Goto, Y. (2001). Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. Journal of Materials Science, 36(10), 2523-2527. | 2001 | 136 | 10.1023/A:1017946518955 | 789 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 33.3 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 15 | 0 | dendritic | sintered | 46.5 | 0.0 | 31.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukasawa, T., Deng, Z. Y., Ando, M., Ohji, T., & Goto, Y. (2001). Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. Journal of Materials Science, 36(10), 2523-2527. | 2001 | 136 | 10.1023/A:1017946518955 | 790 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 33.3 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 12 | 0 | dendritic | sintered | 45.8 | 0.0 | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukasawa, T., Deng, Z. Y., Ando, M., Ohji, T., & Goto, Y. (2001). Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. Journal of Materials Science, 36(10), 2523-2527. | 2001 | 136 | 10.1023/A:1017946518955 | 791 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 15 | 0 | dendritic | sintered | 45.8 | 0.0 | 22.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukasawa, T., Deng, Z. Y., Ando, M., Ohji, T., & Goto, Y. (2001). Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. Journal of Materials Science, 36(10), 2523-2527. | 2001 | 136 | 10.1023/A:1017946518955 | 792 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 15 | 0 | dendritic | sintered | 37.9 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukasawa, T., Deng, Z. Y., Ando, M., Ohji, T., & Goto, Y. (2001). Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. Journal of Materials Science, 36(10), 2523-2527. | 2001 | 136 | 10.1023/A:1017946518955 | 793 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 12 | 0 | dendritic | sintered | 36.0 | 0.0 | 21.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukasawa, T., Deng, Z. Y., Ando, M., Ohji, T., & Goto, Y. (2001). Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. Journal of Materials Science, 36(10), 2523-2527. | 2001 | 136 | 10.1023/A:1017946518955 | 794 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 45.0 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 15 | 0 | dendritic | sintered | 40.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukasawa, T., Deng, Z. Y., Ando, M., Ohji, T., & Goto, Y. (2001). Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. Journal of Materials Science, 36(10), 2523-2527. | 2001 | 136 | 10.1023/A:1017946518955 | 795 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 45.0 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 14 | 0 | dendritic | sintered | 35.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukasawa, T., Deng, Z. Y., Ando, M., Ohji, T., & Goto, Y. (2001). Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. Journal of Materials Science, 36(10), 2523-2527. | 2001 | 136 | 10.1023/A:1017946518955 | 796 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 45.0 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 11 | 0 | dendritic | sintered | 32.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., Tsuda, S., & Yoshizawa, Y. I. (2013). Fabrication of highly porous alumina prepared by gelation freezing route with antifreeze protein. Journal of the American Ceramic Society, 96(4), 1029-1031. | 2013 | 144 | 10.1111/jace.12229 | 847 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 0.2 | 2 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 86.0 | 0.0 | 102.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., Tsuda, S., & Yoshizawa, Y. I. (2013). Fabrication of highly porous alumina prepared by gelation freezing route with antifreeze protein. Journal of the American Ceramic Society, 96(4), 1029-1031. | 2013 | 144 | 10.1111/jace.12229 | 848 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 0.2 | 2 | 0 | 2 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 86.0 | 0.0 | 37.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., Tsuda, S., & Yoshizawa, Y. I. (2013). Fabrication of highly porous alumina prepared by gelation freezing route with antifreeze protein. Journal of the American Ceramic Society, 96(4), 1029-1031. | 2013 | 144 | 10.1111/jace.12229 | 849 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 0.2 | 2 | 0 | 5 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 86.0 | 0.0 | 12.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., Tsuda, S., & Yoshizawa, Y. I. (2013). Fabrication of highly porous alumina prepared by gelation freezing route with antifreeze protein. Journal of the American Ceramic Society, 96(4), 1029-1031. | 2013 | 144 | 10.1111/jace.12229 | 850 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 0.2 | 2 | 0 | 0 | 233.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 86.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., Tsuda, S., & Yoshizawa, Y. I. (2013). Fabrication of highly porous alumina prepared by gelation freezing route with antifreeze protein. Journal of the American Ceramic Society, 96(4), 1029-1031. | 2013 | 144 | 10.1111/jace.12229 | 851 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 0.2 | 2 | 0 | 5 | 233.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 86.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., Tsuda, S., & Yoshizawa, Y. I. (2013). Fabrication of highly porous alumina prepared by gelation freezing route with antifreeze protein. Journal of the American Ceramic Society, 96(4), 1029-1031. | 2013 | 144 | 10.1111/jace.12229 | 852 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 0.2 | 2 | 0 | 2 | 233.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 86.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Frank, G., Christian, E., & Dietmar, K. (2011). A Novel Production Method for Porous Sound?Absorbing Ceramic Material for High?Temperature Applications. International Journal of Applied Ceramic Technology, 8(3), 646-652. | 2011 | 162 | 10.1111/j.1744-7402.2009.02479.x | 924 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 42.5 | 1.0 | 10 | powder | 0.65 | 0 | 0 | 0 | 123.0 | 0.38 | 0.0 | isotropic | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 74.0 | 0.0 | 40.0 | 0.0 | 7.12 | 0.0 | 0.0 | 0.0 |
Frank, G., Christian, E., & Dietmar, K. (2011). A Novel Production Method for Porous Sound?Absorbing Ceramic Material for High?Temperature Applications. International Journal of Applied Ceramic Technology, 8(3), 646-652. | 2011 | 162 | 10.1111/j.1744-7402.2009.02479.x | 925 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 45.0 | 1.0 | 10 | powder | 0.65 | 0 | 0 | 0 | 123.0 | 0.38 | 0.0 | isotropic | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 67.0 | 0.0 | 40.0 | 0.0 | 7.12 | 0.0 | 0.0 | 0.0 |
Frank, G., Christian, E., & Dietmar, K. (2011). A Novel Production Method for Porous Sound?Absorbing Ceramic Material for High?Temperature Applications. International Journal of Applied Ceramic Technology, 8(3), 646-652. | 2011 | 162 | 10.1111/j.1744-7402.2009.02479.x | 926 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 47.5 | 1.0 | 10 | powder | 0.65 | 0 | 0 | 0 | 123.0 | 0.38 | 0.0 | isotropic | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 66.0 | 0.0 | 40.0 | 0.0 | 7.12 | 0.0 | 0.0 | 0.0 |
Frank, G., Christian, E., & Dietmar, K. (2011). A Novel Production Method for Porous Sound?Absorbing Ceramic Material for High?Temperature Applications. International Journal of Applied Ceramic Technology, 8(3), 646-652. | 2011 | 162 | 10.1111/j.1744-7402.2009.02479.x | 927 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 50.5 | 1.0 | 10 | powder | 0.65 | 0 | 0 | 0 | 123.0 | 0.38 | 0.0 | isotropic | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 65.0 | 0.0 | 40.0 | 0.0 | 7.12 | 0.0 | 0.0 | 0.0 |
Han, J., Hu, L., Zhang, Y., & Zhou, Y. (2009). Fabrication of Ceramics with Complex Porous Structures by the Impregnate?Freeze?Casting Process. Journal of the American Ceramic Society, 92(9), 2165-2167. | 2009 | 185 | 10.1111/j.1551-2916.2009.03168.x | 998 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 10 | 0.0 | 6.0 | 0.0 | sponge | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 66.1 | 0.0 | 34.0 | 0.0 | 0.0 | 62.4 | 0.0 | 0.0 |
Han, J., Hu, L., Zhang, Y., & Zhou, Y. (2009). Fabrication of Ceramics with Complex Porous Structures by the Impregnate?Freeze?Casting Process. Journal of the American Ceramic Society, 92(9), 2165-2167. | 2009 | 185 | 10.1111/j.1551-2916.2009.03168.x | 999 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 10 | 0.0 | 6.0 | 0.0 | sponge | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.6 | 0.0 | 92.0 | 0.0 | 0.0 | 73.7 | 0.0 | 0.0 |
Hautcoeur, D., Lorgouilloux, Y., Leriche, A., Gonon, M., Nait-Ali, B., Smith, D. S., ... & Cambier, F. (2016). Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceramics International, 42(12), 14077-14085. | 2016 | 190 | 10.1016/j.ceramint.2016.06.016 | 1829 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.4 | 0 | 0 | 2 | 233.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 67.0 | 0.0 | 35.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hong, C., Du, J., Liang, J., Zhang, X., & Han, J. (2011). Functionally graded porous ceramics with dense surface layer produced by freeze-casting. Ceramics International, 37(8), 3717-3722. | 2011 | 205 | 10.1016/j.ceramint.2011.04.119 | 4261 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hong, C., Du, J., Liang, J., Zhang, X., & Han, J. (2011). Functionally graded porous ceramics with dense surface layer produced by freeze-casting. Ceramics International, 37(8), 3717-3722. | 2011 | 205 | 10.1016/j.ceramint.2011.04.119 | 4262 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hong, C., Du, J., Liang, J., Zhang, X., & Han, J. (2011). Functionally graded porous ceramics with dense surface layer produced by freeze-casting. Ceramics International, 37(8), 3717-3722. | 2011 | 205 | 10.1016/j.ceramint.2011.04.119 | 4263 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hong, C., Du, J., Liang, J., Zhang, X., & Han, J. (2011). Functionally graded porous ceramics with dense surface layer produced by freeze-casting. Ceramics International, 37(8), 3717-3722. | 2011 | 205 | 10.1016/j.ceramint.2011.04.119 | 4264 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 273.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hong, C., Du, J., Liang, J., Zhang, X., & Han, J. (2011). Functionally graded porous ceramics with dense surface layer produced by freeze-casting. Ceramics International, 37(8), 3717-3722. | 2011 | 205 | 10.1016/j.ceramint.2011.04.119 | 4265 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 273.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hong, C., Du, J., Liang, J., Zhang, X., & Han, J. (2011). Functionally graded porous ceramics with dense surface layer produced by freeze-casting. Ceramics International, 37(8), 3717-3722. | 2011 | 205 | 10.1016/j.ceramint.2011.04.119 | 4266 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 273.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hong, C., Du, J., Liang, J., Zhang, X., & Han, J. (2011). Functionally graded porous ceramics with dense surface layer produced by freeze-casting. Ceramics International, 37(8), 3717-3722. | 2011 | 205 | 10.1016/j.ceramint.2011.04.119 | 4267 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 298.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hong, C., Du, J., Liang, J., Zhang, X., & Han, J. (2011). Functionally graded porous ceramics with dense surface layer produced by freeze-casting. Ceramics International, 37(8), 3717-3722. | 2011 | 205 | 10.1016/j.ceramint.2011.04.119 | 4268 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 298.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hong, C., Du, J., Liang, J., Zhang, X., & Han, J. (2011). Functionally graded porous ceramics with dense surface layer produced by freeze-casting. Ceramics International, 37(8), 3717-3722. | 2011 | 205 | 10.1016/j.ceramint.2011.04.119 | 4269 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 298.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hu, L., Zhang, Y., Dong, S., Zhang, S., & Li, B. (2013). In situ growth of hydroxyapatite on lamellar alumina scaffolds with aligned pore channels. Ceramics International, 39(6), 6287-6291. | 2013 | 226 | 10.1016/j.ceramint.2013.01.050 | 1949 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 10 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 64.3 | 0.0 | 0.0 | 0.0 | 0.0 | 116.6 | 0.0 | 0.0 |
Ji, H. B., Kim, W. Y., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2010). Freeze casting of aqueous coal fly ash/alumina slurries for preparation of porous ceramics. Journal of Physics and Chemistry of Solids, 71(4), 503-506. | 2010 | 239 | 10.1016/j.jpcs.2009.12.022 | 2040 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 2.77 | 1.0 | 71 | 0 | 0.0 | 1 | 1 | 20 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 10 | dendritic | sintered | 66.9 | 0.0 | 0.0 | 0.0 | 0.0 | 26.72 | 0.0 | 0.0 |
Ji, H. B., Kim, W. Y., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2010). Freeze casting of aqueous coal fly ash/alumina slurries for preparation of porous ceramics. Journal of Physics and Chemistry of Solids, 71(4), 503-506. | 2010 | 239 | 10.1016/j.jpcs.2009.12.022 | 2041 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 2.77 | 1.0 | 71 | 0 | 0.0 | 1 | 1 | 20 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 12 | dendritic | sintered | 64.7 | 0.0 | 0.0 | 0.0 | 0.0 | 28.12 | 0.0 | 0.0 |
Ji, H. B., Kim, W. Y., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2010). Freeze casting of aqueous coal fly ash/alumina slurries for preparation of porous ceramics. Journal of Physics and Chemistry of Solids, 71(4), 503-506. | 2010 | 239 | 10.1016/j.jpcs.2009.12.022 | 2042 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 2.77 | 1.0 | 71 | 0 | 0.0 | 1 | 1 | 20 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 21 | dendritic | sintered | 54.8 | 0.0 | 0.0 | 0.0 | 0.0 | 36.33 | 0.0 | 0.0 |
Ji, H. B., Kim, W. Y., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2010). Freeze casting of aqueous coal fly ash/alumina slurries for preparation of porous ceramics. Journal of Physics and Chemistry of Solids, 71(4), 503-506. | 2010 | 239 | 10.1016/j.jpcs.2009.12.022 | 2043 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 2.77 | 1.0 | 61 | 0 | 0.0 | 1 | 1 | 20 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 11 | dendritic | sintered | 68.7 | 0.0 | 0.0 | 0.0 | 0.0 | 27.06 | 0.0 | 0.0 |
Ji, H. B., Kim, W. Y., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2010). Freeze casting of aqueous coal fly ash/alumina slurries for preparation of porous ceramics. Journal of Physics and Chemistry of Solids, 71(4), 503-506. | 2010 | 239 | 10.1016/j.jpcs.2009.12.022 | 2044 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 2.77 | 1.0 | 61 | 0 | 0.0 | 1 | 1 | 20 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 14 | dendritic | sintered | 62.6 | 0.0 | 0.0 | 0.0 | 0.0 | 25.51 | 0.0 | 0.0 |
Ji, H. B., Kim, W. Y., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2010). Freeze casting of aqueous coal fly ash/alumina slurries for preparation of porous ceramics. Journal of Physics and Chemistry of Solids, 71(4), 503-506. | 2010 | 239 | 10.1016/j.jpcs.2009.12.022 | 2045 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 2.77 | 1.0 | 61 | 0 | 0.0 | 1 | 1 | 20 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 26 | dendritic | sintered | 46.0 | 0.0 | 0.0 | 0.0 | 0.0 | 40.57 | 0.0 | 0.0 |
Jing, L., Zuo, K., Fuqiang, Z., Chun, X., Yuanfei, F., Jiang, D., & Zeng, Y. P. (2010). The controllable microstructure of porous Al 2 O 3 ceramics prepared via a novel freeze casting route. Ceramics International, 36(8), 2499-2503. | 2010 | 242 | 10.1016/j.ceramint.2010.07.005 | 2046 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 37.0 | 1.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 18.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jing, L., Zuo, K., Fuqiang, Z., Chun, X., Yuanfei, F., Jiang, D., & Zeng, Y. P. (2010). The controllable microstructure of porous Al 2 O 3 ceramics prepared via a novel freeze casting route. Ceramics International, 36(8), 2499-2503. | 2010 | 242 | 10.1016/j.ceramint.2010.07.005 | 2047 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 43.0 | 1.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 21.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jing, L., Zuo, K., Fuqiang, Z., Chun, X., Yuanfei, F., Jiang, D., & Zeng, Y. P. (2010). The controllable microstructure of porous Al 2 O 3 ceramics prepared via a novel freeze casting route. Ceramics International, 36(8), 2499-2503. | 2010 | 242 | 10.1016/j.ceramint.2010.07.005 | 2048 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 50.0 | 1.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jing, L., Zuo, K., Fuqiang, Z., Chun, X., Yuanfei, F., Jiang, D., & Zeng, Y. P. (2010). The controllable microstructure of porous Al 2 O 3 ceramics prepared via a novel freeze casting route. Ceramics International, 36(8), 2499-2503. | 2010 | 242 | 10.1016/j.ceramint.2010.07.005 | 2049 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 59.0 | 1.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 30.0 | 0.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jing, L., Zuo, K., Fuqiang, Z., Chun, X., Yuanfei, F., Jiang, D., & Zeng, Y. P. (2010). The controllable microstructure of porous Al 2 O 3 ceramics prepared via a novel freeze casting route. Ceramics International, 36(8), 2499-2503. | 2010 | 242 | 10.1016/j.ceramint.2010.07.005 | 2050 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 69.0 | 1.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 38.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jing, Z. E. N. G., Zhang, Y., Zhou, K. C., & Zhang, D. (2014). Effects of alcohol additives on pore structure and morphology of freeze-cast ceramics. Transactions of Nonferrous Metals Society of China, 24(3), 718-722. | 2015 | 243 | 0 | 5782 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 74.5 | 0.0 | 0.0 | 0.0 | 0.0 | 18.5 | 0.0 | 0.0 |
Jing, Z. E. N. G., Zhang, Y., Zhou, K. C., & Zhang, D. (2014). Effects of alcohol additives on pore structure and morphology of freeze-cast ceramics. Transactions of Nonferrous Metals Society of China, 24(3), 718-722. | 2015 | 243 | 0 | 5783 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 73.0 | 0.0 | 0.0 | 0.0 | 0.0 | 17.5 | 0.0 | 0.0 |
Jing, Z. E. N. G., Zhang, Y., Zhou, K. C., & Zhang, D. (2014). Effects of alcohol additives on pore structure and morphology of freeze-cast ceramics. Transactions of Nonferrous Metals Society of China, 24(3), 718-722. | 2015 | 243 | 0 | 5784 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 68.5 | 0.0 | 0.0 | 0.0 | 0.0 | 13.5 | 0.0 | 0.0 |
Jing, Z. E. N. G., Zhang, Y., Zhou, K. C., & Zhang, D. (2014). Effects of alcohol additives on pore structure and morphology of freeze-cast ceramics. Transactions of Nonferrous Metals Society of China, 24(3), 718-722. | 2015 | 243 | 0 | 5785 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 74.25 | 0.0 | 0.0 | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 |
Jing, Z. E. N. G., Zhang, Y., Zhou, K. C., & Zhang, D. (2014). Effects of alcohol additives on pore structure and morphology of freeze-cast ceramics. Transactions of Nonferrous Metals Society of China, 24(3), 718-722. | 2015 | 243 | 0 | 5786 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 74.25 | 0.0 | 0.0 | 0.0 | 0.0 | 13.5 | 0.0 | 0.0 |
Jing, Z. E. N. G., Zhang, Y., Zhou, K. C., & Zhang, D. (2014). Effects of alcohol additives on pore structure and morphology of freeze-cast ceramics. Transactions of Nonferrous Metals Society of China, 24(3), 718-722. | 2015 | 243 | 0 | 5787 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 73.5 | 0.0 | 0.0 | 0.0 | 0.0 | 13.25 | 0.0 | 0.0 |
Koch, D., Andresen, L., Schmedders, T., & Grathwohl, G. (2003). Evolution of porosity by freeze casting and sintering of sol-gel derived ceramics. Journal of Sol-Gel Science and Technology, 26(1), 149-152. | 2003 | 270 | 10.1023/a:1020718225164 | 3194 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 58.21 | 1.0 | 0 | 0 | 0.7 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Koch, D., Andresen, L., Schmedders, T., & Grathwohl, G. (2003). Evolution of porosity by freeze casting and sintering of sol-gel derived ceramics. Journal of Sol-Gel Science and Technology, 26(1), 149-152. | 2003 | 270 | 10.1023/a:1020718225164 | 3195 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 48.15 | 1.0 | 0 | 0 | 0.7 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Koch, D., Andresen, L., Schmedders, T., & Grathwohl, G. (2003). Evolution of porosity by freeze casting and sintering of sol-gel derived ceramics. Journal of Sol-Gel Science and Technology, 26(1), 149-152. | 2003 | 270 | 10.1023/a:1020718225164 | 3196 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 41.86 | 1.0 | 0 | 0 | 0.7 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Koch, D., Andresen, L., Schmedders, T., & Grathwohl, G. (2003). Evolution of porosity by freeze casting and sintering of sol-gel derived ceramics. Journal of Sol-Gel Science and Technology, 26(1), 149-152. | 2003 | 270 | 10.1023/a:1020718225164 | 3197 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.79 | 1.0 | 0 | 0 | 0.7 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Koh, Y. H., Lee, E. J., Yoon, B. H., Song, J. H., Kim, H. E., & Kim, H. W. (2006). Effect of Polystyrene Addition on Freeze Casting of Ceramic/Camphene Slurry for Ultra?High Porosity Ceramics with Aligned Pore Channels. Journal of the American Ceramic Society, 89(12), 3646-3653. | 2006 | 274 | 10.1111/j.1551-2916.2006.01311.x | 3199 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 5.0 | 1.0 | 100 | 0 | 0.0 | 10 | 2 | 0 | 0.0 | 0.0 | 0.0 | radial-out | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 88.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Koh, Y. H., Lee, E. J., Yoon, B. H., Song, J. H., Kim, H. E., & Kim, H. W. (2006). Effect of Polystyrene Addition on Freeze Casting of Ceramic/Camphene Slurry for Ultra?High Porosity Ceramics with Aligned Pore Channels. Journal of the American Ceramic Society, 89(12), 3646-3653. | 2006 | 274 | 10.1111/j.1551-2916.2006.01311.x | 3200 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 5.0 | 1.0 | 100 | 0 | 0.0 | 0 | 2 | 0 | 0.0 | 0.0 | 0.0 | radial-out | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 86.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Koh, Y. H., Lee, E. J., Yoon, B. H., Song, J. H., Kim, H. E., & Kim, H. W. (2006). Effect of Polystyrene Addition on Freeze Casting of Ceramic/Camphene Slurry for Ultra?High Porosity Ceramics with Aligned Pore Channels. Journal of the American Ceramic Society, 89(12), 3646-3653. | 2006 | 274 | 10.1111/j.1551-2916.2006.01311.x | 3201 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 5.0 | 1.0 | 100 | 0 | 0.0 | 0 | 2 | 0 | 0.0 | 0.0 | 0.0 | radial-out | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 90.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Koh, Y. H., Song, J. H., Lee, E. J., & Kim, H. E. (2006). Freezing Dilute Ceramic/Camphene Slurry for Ultra?High Porosity Ceramics with Completely Interconnected Pore Networks. Journal of the American Ceramic Society, 89(10), 3089-3093. | 2006 | 275 | 10.1111/j.1551-2916.2006.01222.x | 3202 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 5.0 | 1.0 | 100 | 0 | 0.0 | 0 | 2 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 15 | dendritic | sintered | 90.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Koh, Y. H., Song, J. H., Lee, E. J., & Kim, H. E. (2006). Freezing Dilute Ceramic/Camphene Slurry for Ultra?High Porosity Ceramics with Completely Interconnected Pore Networks. Journal of the American Ceramic Society, 89(10), 3089-3093. | 2006 | 275 | 10.1111/j.1551-2916.2006.01222.x | 3203 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | 0 | 0.0 | 0 | 2 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 15 | dendritic | sintered | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Koh, Y. H., Song, J. H., Lee, E. J., & Kim, H. E. (2006). Freezing Dilute Ceramic/Camphene Slurry for Ultra?High Porosity Ceramics with Completely Interconnected Pore Networks. Journal of the American Ceramic Society, 89(10), 3089-3093. | 2006 | 275 | 10.1111/j.1551-2916.2006.01222.x | 3204 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | 0 | 0.0 | 0 | 2 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 15 | dendritic | sintered | 73.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Koh, Y. H., Song, J. H., Lee, E. J., & Kim, H. E. (2006). Freezing Dilute Ceramic/Camphene Slurry for Ultra?High Porosity Ceramics with Completely Interconnected Pore Networks. Journal of the American Ceramic Society, 89(10), 3089-3093. | 2006 | 275 | 10.1111/j.1551-2916.2006.01222.x | 3205 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | 0 | 0.0 | 0 | 2 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 15 | dendritic | sintered | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Deville, S., Rossignol, F., & Carles, P. (2011). Investigating the Dispersion State of Alumina Suspensions: Contribution of Cryo?Field?Emission Gun Scanning Electron Microscopy Characterizations. Journal of the American Ceramic Society, 94(1), 244-249. | 2011 | 285 | 10.1111/j.1551-2916.2010.04034.x | 3230 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.4 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Deville, S., Rossignol, F., & Carles, P. (2011). Investigating the Dispersion State of Alumina Suspensions: Contribution of Cryo?Field?Emission Gun Scanning Electron Microscopy Characterizations. Journal of the American Ceramic Society, 94(1), 244-249. | 2011 | 285 | 10.1111/j.1551-2916.2010.04034.x | 3231 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.4 | 0 | 2 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Deville, S., Rossignol, F., & Carles, P. (2011). Investigating the Dispersion State of Alumina Suspensions: Contribution of Cryo?Field?Emission Gun Scanning Electron Microscopy Characterizations. Journal of the American Ceramic Society, 94(1), 244-249. | 2011 | 285 | 10.1111/j.1551-2916.2010.04034.x | 3232 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.4 | 0 | 3 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Deville, S., Rossignol, F., & Carles, P. (2011). Investigating the Dispersion State of Alumina Suspensions: Contribution of Cryo?Field?Emission Gun Scanning Electron Microscopy Characterizations. Journal of the American Ceramic Society, 94(1), 244-249. | 2011 | 285 | 10.1111/j.1551-2916.2010.04034.x | 3233 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.4 | 0 | 3 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Deville, S., Rossignol, F., & Carles, P. (2011). Investigating the Dispersion State of Alumina Suspensions: Contribution of Cryo?Field?Emission Gun Scanning Electron Microscopy Characterizations. Journal of the American Ceramic Society, 94(1), 244-249. | 2011 | 285 | 10.1111/j.1551-2916.2010.04034.x | 3234 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.4 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Deville, S., Rossignol, F., & Carles, P. (2011). Investigating the Dispersion State of Alumina Suspensions: Contribution of Cryo?Field?Emission Gun Scanning Electron Microscopy Characterizations. Journal of the American Ceramic Society, 94(1), 244-249. | 2011 | 285 | 10.1111/j.1551-2916.2010.04034.x | 3235 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.4 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Deville, S., Rossignol, F., & Carles, P. (2011). Investigating the Dispersion State of Alumina Suspensions: Contribution of Cryo?Field?Emission Gun Scanning Electron Microscopy Characterizations. Journal of the American Ceramic Society, 94(1), 244-249. | 2011 | 285 | 10.1111/j.1551-2916.2010.04034.x | 3236 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.4 | 0 | 6 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Deville, S., Rossignol, F., & Carles, P. (2011). Investigating the Dispersion State of Alumina Suspensions: Contribution of Cryo?Field?Emission Gun Scanning Electron Microscopy Characterizations. Journal of the American Ceramic Society, 94(1), 244-249. | 2011 | 285 | 10.1111/j.1551-2916.2010.04034.x | 3237 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.4 | 0 | 2 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Deville, S., Rossignol, F., & Carles, P. (2011). Investigating the Dispersion State of Alumina Suspensions: Contribution of Cryo?Field?Emission Gun Scanning Electron Microscopy Characterizations. Journal of the American Ceramic Society, 94(1), 244-249. | 2011 | 285 | 10.1111/j.1551-2916.2010.04034.x | 3238 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.4 | 0 | 3 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Deville, S., Rossignol, F., & Carles, P. (2011). Investigating the Dispersion State of Alumina Suspensions: Contribution of Cryo?Field?Emission Gun Scanning Electron Microscopy Characterizations. Journal of the American Ceramic Society, 94(1), 244-249. | 2011 | 285 | 10.1111/j.1551-2916.2010.04034.x | 3239 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.4 | 0 | 3 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Deville, S., Rossignol, F., & Carles, P. (2011). Investigating the Dispersion State of Alumina Suspensions: Contribution of Cryo?Field?Emission Gun Scanning Electron Microscopy Characterizations. Journal of the American Ceramic Society, 94(1), 244-249. | 2011 | 285 | 10.1111/j.1551-2916.2010.04034.x | 3240 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.4 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Deville, S., Rossignol, F., & Carles, P. (2011). Investigating the Dispersion State of Alumina Suspensions: Contribution of Cryo?Field?Emission Gun Scanning Electron Microscopy Characterizations. Journal of the American Ceramic Society, 94(1), 244-249. | 2011 | 285 | 10.1111/j.1551-2916.2010.04034.x | 3241 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.4 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Deville, S., Rossignol, F., & Carles, P. (2011). Investigating the Dispersion State of Alumina Suspensions: Contribution of Cryo?Field?Emission Gun Scanning Electron Microscopy Characterizations. Journal of the American Ceramic Society, 94(1), 244-249. | 2011 | 285 | 10.1111/j.1551-2916.2010.04034.x | 3242 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.4 | 0 | 6 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Deville, S., Rossignol, F., & Carles, P. (2011). Investigating the Dispersion State of Alumina Suspensions: Contribution of Cryo?Field?Emission Gun Scanning Electron Microscopy Characterizations. Journal of the American Ceramic Society, 94(1), 244-249. | 2011 | 285 | 10.1111/j.1551-2916.2010.04034.x | 3243 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.4 | 0 | 2 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Deville, S., Rossignol, F., & Carles, P. (2011). Investigating the Dispersion State of Alumina Suspensions: Contribution of Cryo?Field?Emission Gun Scanning Electron Microscopy Characterizations. Journal of the American Ceramic Society, 94(1), 244-249. | 2011 | 285 | 10.1111/j.1551-2916.2010.04034.x | 3244 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.4 | 0 | 3 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Deville, S., Rossignol, F., & Carles, P. (2011). Investigating the Dispersion State of Alumina Suspensions: Contribution of Cryo?Field?Emission Gun Scanning Electron Microscopy Characterizations. Journal of the American Ceramic Society, 94(1), 244-249. | 2011 | 285 | 10.1111/j.1551-2916.2010.04034.x | 3245 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.4 | 0 | 3 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Deville, S., Rossignol, F., & Carles, P. (2011). Investigating the Dispersion State of Alumina Suspensions: Contribution of Cryo?Field?Emission Gun Scanning Electron Microscopy Characterizations. Journal of the American Ceramic Society, 94(1), 244-249. | 2011 | 285 | 10.1111/j.1551-2916.2010.04034.x | 3246 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.4 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Deville, S., Rossignol, F., & Carles, P. (2011). Investigating the Dispersion State of Alumina Suspensions: Contribution of Cryo?Field?Emission Gun Scanning Electron Microscopy Characterizations. Journal of the American Ceramic Society, 94(1), 244-249. | 2011 | 285 | 10.1111/j.1551-2916.2010.04034.x | 3247 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.4 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Deville, S., Rossignol, F., & Carles, P. (2011). Investigating the Dispersion State of Alumina Suspensions: Contribution of Cryo?Field?Emission Gun Scanning Electron Microscopy Characterizations. Journal of the American Ceramic Society, 94(1), 244-249. | 2011 | 285 | 10.1111/j.1551-2916.2010.04034.x | 3248 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.4 | 0 | 6 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Leloup, J., Deville, S., Maire, E., Bogner, A., ... & Courtois, L. (2012). Ice?Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 95(2), 799-804. | 2012 | 286 | 10.1111/j.1551-2916.2011.04993.x | 3249 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Leloup, J., Deville, S., Maire, E., Bogner, A., ... & Courtois, L. (2012). Ice?Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 95(2), 799-804. | 2012 | 286 | 10.1111/j.1551-2916.2011.04993.x | 3250 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 50.0 | 1.0 | 100 | powder | 0.3 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Leloup, J., Deville, S., Maire, E., Bogner, A., ... & Courtois, L. (2012). Ice?Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 95(2), 799-804. | 2012 | 286 | 10.1111/j.1551-2916.2011.04993.x | 3251 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Leloup, J., Deville, S., Maire, E., Bogner, A., ... & Courtois, L. (2012). Ice?Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 95(2), 799-804. | 2012 | 286 | 10.1111/j.1551-2916.2011.04993.x | 3252 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Leloup, J., Deville, S., Maire, E., Bogner, A., ... & Courtois, L. (2012). Ice?Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 95(2), 799-804. | 2012 | 286 | 10.1111/j.1551-2916.2011.04993.x | 3253 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Leloup, J., Deville, S., Maire, E., Bogner, A., ... & Courtois, L. (2012). Ice?Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 95(2), 799-804. | 2012 | 286 | 10.1111/j.1551-2916.2011.04993.x | 5565 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Leloup, J., Deville, S., Maire, E., Bogner, A., ... & Courtois, L. (2012). Ice?Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 95(2), 799-804. | 2012 | 286 | 10.1111/j.1551-2916.2011.04993.x | 5566 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Leloup, J., Deville, S., Maire, E., Bogner, A., ... & Courtois, L. (2012). Ice?Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 95(2), 799-804. | 2012 | 286 | 10.1111/j.1551-2916.2011.04993.x | 5567 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Leloup, J., Deville, S., Maire, E., Bogner, A., ... & Courtois, L. (2012). Ice?Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 95(2), 799-804. | 2012 | 286 | 10.1111/j.1551-2916.2011.04993.x | 5568 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Leloup, J., Deville, S., Maire, E., Bogner, A., ... & Courtois, L. (2012). Ice?Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 95(2), 799-804. | 2012 | 286 | 10.1111/j.1551-2916.2011.04993.x | 5569 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Leloup, J., Deville, S., Maire, E., Bogner, A., ... & Courtois, L. (2012). Ice?Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 95(2), 799-804. | 2012 | 286 | 10.1111/j.1551-2916.2011.04993.x | 5570 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Leloup, J., Deville, S., Maire, E., Bogner, A., ... & Courtois, L. (2012). Ice?Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 95(2), 799-804. | 2012 | 286 | 10.1111/j.1551-2916.2011.04993.x | 5571 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Leloup, J., Deville, S., Maire, E., Bogner, A., ... & Courtois, L. (2012). Ice?Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 95(2), 799-804. | 2012 | 286 | 10.1111/j.1551-2916.2011.04993.x | 5572 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Leloup, J., Deville, S., Maire, E., Bogner, A., ... & Courtois, L. (2012). Ice?Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 95(2), 799-804. | 2012 | 286 | 10.1111/j.1551-2916.2011.04993.x | 5573 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Leloup, J., Deville, S., Maire, E., Bogner, A., ... & Courtois, L. (2012). Ice?Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 95(2), 799-804. | 2012 | 286 | 10.1111/j.1551-2916.2011.04993.x | 5574 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Leloup, J., Deville, S., Maire, E., Bogner, A., ... & Courtois, L. (2012). Ice?Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 95(2), 799-804. | 2012 | 286 | 10.1111/j.1551-2916.2011.04993.x | 5575 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Leloup, J., Deville, S., Maire, E., Bogner, A., ... & Courtois, L. (2012). Ice?Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 95(2), 799-804. | 2012 | 286 | 10.1111/j.1551-2916.2011.04993.x | 5576 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Leloup, J., Deville, S., Maire, E., Bogner, A., ... & Courtois, L. (2012). Ice?Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 95(2), 799-804. | 2012 | 286 | 10.1111/j.1551-2916.2011.04993.x | 5577 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Leloup, J., Deville, S., Maire, E., Bogner, A., ... & Courtois, L. (2012). Ice?Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 95(2), 799-804. | 2012 | 286 | 10.1111/j.1551-2916.2011.04993.x | 5578 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Leloup, J., Deville, S., Maire, E., Bogner, A., ... & Courtois, L. (2012). Ice?Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 95(2), 799-804. | 2012 | 286 | 10.1111/j.1551-2916.2011.04993.x | 5579 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Leloup, J., Deville, S., Maire, E., Bogner, A., ... & Courtois, L. (2012). Ice?Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 95(2), 799-804. | 2012 | 286 | 10.1111/j.1551-2916.2011.04993.x | 5580 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Leloup, J., Deville, S., Maire, E., Bogner, A., ... & Courtois, L. (2012). Ice?Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 95(2), 799-804. | 2012 | 286 | 10.1111/j.1551-2916.2011.04993.x | 5581 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 50.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Leloup, J., Deville, S., Maire, E., Bogner, A., ... & Courtois, L. (2012). Ice?Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 95(2), 799-804. | 2012 | 286 | 10.1111/j.1551-2916.2011.04993.x | 5582 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 50.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Leloup, J., Deville, S., Maire, E., Bogner, A., ... & Courtois, L. (2012). Ice?Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 95(2), 799-804. | 2012 | 286 | 10.1111/j.1551-2916.2011.04993.x | 5583 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 50.0 | 1.0 | 100 | powder | 0.3 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Leloup, J., Deville, S., Maire, E., Bogner, A., ... & Courtois, L. (2012). Ice?Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 95(2), 799-804. | 2012 | 286 | 10.1111/j.1551-2916.2011.04993.x | 5584 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Leloup, J., Deville, S., Maire, E., Bogner, A., ... & Courtois, L. (2012). Ice?Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 95(2), 799-804. | 2012 | 286 | 10.1111/j.1551-2916.2011.04993.x | 5585 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Leloup, J., Deville, S., Maire, E., Bogner, A., ... & Courtois, L. (2012). Ice?Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 95(2), 799-804. | 2012 | 286 | 10.1111/j.1551-2916.2011.04993.x | 5586 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Leloup, J., Deville, S., Maire, E., Bogner, A., ... & Courtois, L. (2012). Ice?Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 95(2), 799-804. | 2012 | 286 | 10.1111/j.1551-2916.2011.04993.x | 5587 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3254 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3255 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3256 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3257 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3258 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3259 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3260 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.3 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3261 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3262 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3263 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3264 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3265 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3266 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3267 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3268 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.3 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3269 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3270 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3271 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3272 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3273 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | 0 | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3274 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3275 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3276 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 7 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3277 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3278 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3279 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3280 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3281 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3282 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3283 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3284 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3285 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3286 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3287 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3288 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 7 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3289 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3290 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3291 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3292 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3293 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3294 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3295 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3296 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3297 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3298 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3299 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3300 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3301 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3302 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3303 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3304 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3305 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3306 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3307 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3308 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3309 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3310 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lasalle, A., Guizard, C., Maire, E., Adrien, J., & Deville, S. (2012). Particle redistribution and structural defect development during ice templating. Acta Materialia, 60(11), 4594-4603. | 2012 | 287 | 10.1016/j.actamat.2012.02.023 | 3311 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 32.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Launey, M. E., Munch, E., Alsem, D. H., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2010). A novel biomimetic approach to the design of high-performance ceramic?metal composites. Journal of the Royal Society Interface, 7(46), 741-753. | 2010 | 288 | 10.1098/rsif.2009.0331 | 4466 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 75.0 | 50.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Launey, M. E., Munch, E., Alsem, D. H., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2010). A novel biomimetic approach to the design of high-performance ceramic?metal composites. Journal of the Royal Society Interface, 7(46), 741-753. | 2010 | 288 | 10.1098/rsif.2009.0331 | 4467 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 30.0 | 20.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Launey, M. E., Munch, E., Alsem, D. H., Barth, H. B., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2009). Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Materialia, 57(10), 2919-2932. | 2009 | 289 | 10.1016/j.actamat.2009.03.003 | 4470 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 193.0 | 20.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Launey, M. E., Munch, E., Alsem, D. H., Barth, H. B., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2009). Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Materialia, 57(10), 2919-2932. | 2009 | 289 | 10.1016/j.actamat.2009.03.003 | 4471 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 193.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Launey, M. E., Munch, E., Alsem, D. H., Barth, H. B., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2009). Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Materialia, 57(10), 2919-2932. | 2009 | 289 | 10.1016/j.actamat.2009.03.003 | 4472 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 193.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Launey, M. E., Munch, E., Alsem, D. H., Barth, H. B., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2009). Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Materialia, 57(10), 2919-2932. | 2009 | 289 | 10.1016/j.actamat.2009.03.003 | 4473 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 193.0 | 20.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 | 104.0 | 0.0 |
Launey, M. E., Munch, E., Alsem, D. H., Barth, H. B., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2009). Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Materialia, 57(10), 2919-2932. | 2009 | 289 | 10.1016/j.actamat.2009.03.003 | 4474 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 193.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 100.0 | 0.0 |
Launey, M. E., Munch, E., Alsem, D. H., Barth, H. B., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2009). Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Materialia, 57(10), 2919-2932. | 2009 | 289 | 10.1016/j.actamat.2009.03.003 | 4475 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 193.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 | 90.0 | 0.0 |
Launey, M. E., Munch, E., Alsem, D. H., Barth, H. B., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2009). Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Materialia, 57(10), 2919-2932. | 2009 | 289 | 10.1016/j.actamat.2009.03.003 | 4476 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 193.0 | 20.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 | 116.0 | 0.0 |
Launey, M. E., Munch, E., Alsem, D. H., Barth, H. B., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2009). Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Materialia, 57(10), 2919-2932. | 2009 | 289 | 10.1016/j.actamat.2009.03.003 | 4477 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 193.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 113.0 | 0.0 |
Launey, M. E., Munch, E., Alsem, D. H., Barth, H. B., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2009). Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Materialia, 57(10), 2919-2932. | 2009 | 289 | 10.1016/j.actamat.2009.03.003 | 4478 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 193.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 | 112.0 | 0.0 |
Launey, M. E., Munch, E., Alsem, D. H., Barth, H. B., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2009). Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Materialia, 57(10), 2919-2932. | 2009 | 289 | 10.1016/j.actamat.2009.03.003 | 4479 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 193.0 | 20.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 20.0 | 0.0 | 0.0 | 7.5 | 8.0 | 0.0 | 115.0 | 0.0 |
Launey, M. E., Munch, E., Alsem, D. H., Barth, H. B., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2009). Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Materialia, 57(10), 2919-2932. | 2009 | 289 | 10.1016/j.actamat.2009.03.003 | 4480 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 193.0 | 20.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 20.0 | 0.0 | 0.0 | 7.5 | 8.0 | 0.0 | 210.0 | 0.0 |
Lebreton, K., Rodríguez-Parra, J. M., Moreno, R., & Nieto, M. I. (2015). Effect of additives on porosity of alumina materials obtained by freeze casting. Advances in Applied Ceramics, 114(5), 296-302. | 2015 | 290 | 10.1179/1743676115y.0000000006 | 3312 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | 0 | 0.35 | 1 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 48.6 | 0.0 | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lebreton, K., Rodríguez-Parra, J. M., Moreno, R., & Nieto, M. I. (2015). Effect of additives on porosity of alumina materials obtained by freeze casting. Advances in Applied Ceramics, 114(5), 296-302. | 2015 | 290 | 10.1179/1743676115y.0000000006 | 3313 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | 0 | 0.35 | 1 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 42.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lebreton, K., Rodríguez-Parra, J. M., Moreno, R., & Nieto, M. I. (2015). Effect of additives on porosity of alumina materials obtained by freeze casting. Advances in Applied Ceramics, 114(5), 296-302. | 2015 | 290 | 10.1179/1743676115y.0000000006 | 3314 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | 0 | 0.35 | 3 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 34.4 | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lebreton, K., Rodríguez-Parra, J. M., Moreno, R., & Nieto, M. I. (2015). Effect of additives on porosity of alumina materials obtained by freeze casting. Advances in Applied Ceramics, 114(5), 296-302. | 2015 | 290 | 10.1179/1743676115y.0000000006 | 3315 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | 0 | 0.35 | 3 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 36.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lebreton, K., Rodríguez-Parra, J. M., Moreno, R., & Nieto, M. I. (2015). Effect of additives on porosity of alumina materials obtained by freeze casting. Advances in Applied Ceramics, 114(5), 296-302. | 2015 | 290 | 10.1179/1743676115y.0000000006 | 3316 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | 0 | 0.35 | 0 | 0 | 10 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 35.4 | 0.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lecomte?Nana, G., Coudert, V., Rossignol, F., & Lassalle, A. (2012). A Direct AFM Investigation of the Local Interaction Between a Single Particle and a Growing Ice Front Within Alumina Slurries. Journal of the American Ceramic Society, 95(6), 1883-1888. | 2012 | 291 | 10.1111/j.1551-2916.2012.05154.x | 5969 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lecomte?Nana, G., Coudert, V., Rossignol, F., & Lassalle, A. (2012). A Direct AFM Investigation of the Local Interaction Between a Single Particle and a Growing Ice Front Within Alumina Slurries. Journal of the American Ceramic Society, 95(6), 1883-1888. | 2012 | 291 | 10.1111/j.1551-2916.2012.05154.x | 5970 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lecomte?Nana, G., Coudert, V., Rossignol, F., & Lassalle, A. (2012). A Direct AFM Investigation of the Local Interaction Between a Single Particle and a Growing Ice Front Within Alumina Slurries. Journal of the American Ceramic Society, 95(6), 1883-1888. | 2012 | 291 | 10.1111/j.1551-2916.2012.05154.x | 5971 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lecomte?Nana, G., Coudert, V., Rossignol, F., & Lassalle, A. (2012). A Direct AFM Investigation of the Local Interaction Between a Single Particle and a Growing Ice Front Within Alumina Slurries. Journal of the American Ceramic Society, 95(6), 1883-1888. | 2012 | 291 | 10.1111/j.1551-2916.2012.05154.x | 5972 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, D., & Li, M. (2012). Preparation of porous alumina ceramic with ultra-high porosity and long straight pores by freeze casting. Journal of Porous Materials, 19(3), 345-349. | 2012 | 309 | 10.1007/s10934-011-9480-y | 1474 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 270.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 37.0 | 0.0 | 0.0 |
Li, D., & Li, M. (2012). Preparation of porous alumina ceramic with ultra-high porosity and long straight pores by freeze casting. Journal of Porous Materials, 19(3), 345-349. | 2012 | 309 | 10.1007/s10934-011-9480-y | 1475 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 270.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 73.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 |
Li, D., & Li, M. (2012). Preparation of porous alumina ceramic with ultra-high porosity and long straight pores by freeze casting. Journal of Porous Materials, 19(3), 345-349. | 2012 | 309 | 10.1007/s10934-011-9480-y | 1476 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 270.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, J., Zuo, K., Liu, W., Zeng, Y. P., Zhang, F. Q., & Jiang, D. (2010). Porous Al2O3 prepared via freeze casting and its biocompatibility. Ceramic Materials and Components for Energy and Environmental Applications, 537-543. | 2010 | 310 | 0 | 4260 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 37.0 | 1.0 | 100 | powder | 0.6 | 0 | 1 | 0 | 255.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 37.0 | 0.0 | 0.0 | 0.0 | 0.0 | 31.0 | 0.0 | 0.0 |
Liu, X., Xue, W., Shi, C., & Sun, J. (2015). Fully interconnected porous Al 2 O 3 scaffolds prepared by a fast cooling freeze casting method. Ceramics International, 41(9), 11922-11926. | 2015 | 349 | 10.1016/j.ceramint.2015.05.160 | 3547 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 23.5 | 1.0 | 100 | 0 | 0.6 | 2 | 0 | 0 | 218.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 67.0 | 0.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Xue, W., Shi, C., & Sun, J. (2015). Fully interconnected porous Al 2 O 3 scaffolds prepared by a fast cooling freeze casting method. Ceramics International, 41(9), 11922-11926. | 2015 | 349 | 10.1016/j.ceramint.2015.05.160 | 3548 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 23.5 | 1.0 | 100 | 0 | 0.6 | 2 | 0 | 0 | 218.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 66.4 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Xue, W., Shi, C., & Sun, J. (2015). Fully interconnected porous Al 2 O 3 scaffolds prepared by a fast cooling freeze casting method. Ceramics International, 41(9), 11922-11926. | 2015 | 349 | 10.1016/j.ceramint.2015.05.160 | 3549 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 23.5 | 1.0 | 100 | 0 | 0.6 | 2 | 0 | 0 | 218.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 68.3 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Xue, W., Shi, C., & Sun, J. (2015). Fully interconnected porous Al 2 O 3 scaffolds prepared by a fast cooling freeze casting method. Ceramics International, 41(9), 11922-11926. | 2015 | 349 | 10.1016/j.ceramint.2015.05.160 | 5916 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 23.5 | 1.0 | 100 | powder | 0.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.42 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Xue, W., Shi, C., & Sun, J. (2015). Fully interconnected porous Al 2 O 3 scaffolds prepared by a fast cooling freeze casting method. Ceramics International, 41(9), 11922-11926. | 2015 | 349 | 10.1016/j.ceramint.2015.05.160 | 5917 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 23.5 | 1.0 | 100 | powder | 0.6 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.42 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Xue, W., Shi, C., & Sun, J. (2015). Fully interconnected porous Al 2 O 3 scaffolds prepared by a fast cooling freeze casting method. Ceramics International, 41(9), 11922-11926. | 2015 | 349 | 10.1016/j.ceramint.2015.05.160 | 5918 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 23.5 | 1.0 | 100 | powder | 0.6 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.42 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 175.0 | 100.0 | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K. (2007). Microstructural evolution of nanoparticle aqueous colloidal suspensions during freeze casting. Journal of the American Ceramic Society, 90(12), 3753-3758. | 2007 | 354 | 10.1111/j.1551-2916.2007.02000.x | 3586 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | 0 | 0.04 | 0 | 1 | 0 | 268.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K. (2007). Microstructural evolution of nanoparticle aqueous colloidal suspensions during freeze casting. Journal of the American Ceramic Society, 90(12), 3753-3758. | 2007 | 354 | 10.1111/j.1551-2916.2007.02000.x | 3587 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | 0 | 0.04 | 0 | 1 | 0 | 268.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K. (2007). Microstructural evolution of nanoparticle aqueous colloidal suspensions during freeze casting. Journal of the American Ceramic Society, 90(12), 3753-3758. | 2007 | 354 | 10.1111/j.1551-2916.2007.02000.x | 3588 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | 0 | 0.04 | 0 | 1 | 2 | 268.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K. (2007). Microstructural evolution of nanoparticle aqueous colloidal suspensions during freeze casting. Journal of the American Ceramic Society, 90(12), 3753-3758. | 2007 | 354 | 10.1111/j.1551-2916.2007.02000.x | 3589 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | 0 | 0.04 | 0 | 1 | 5 | 268.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K. (2008). Freeze cast carbon nanotube-alumina nanoparticle green composites. Journal of materials science, 43(2), 652-659. | 2008 | 355 | 10.1007/s10853-007-2155-z | 3590 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | 0 | 0.03 | 0 | 1 | 2 | 238.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 48.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K. (2008). Freeze cast carbon nanotube-alumina nanoparticle green composites. Journal of materials science, 43(2), 652-659. | 2008 | 355 | 10.1007/s10853-007-2155-z | 3591 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 99 | 0 | 0.03 | 0 | 1 | 2 | 238.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 54.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K. (2008). Freeze cast carbon nanotube-alumina nanoparticle green composites. Journal of materials science, 43(2), 652-659. | 2008 | 355 | 10.1007/s10853-007-2155-z | 3592 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 99 | 0 | 0.03 | 0 | 1 | 2 | 238.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 54.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K. (2008). Freeze cast carbon nanotube-alumina nanoparticle green composites. Journal of materials science, 43(2), 652-659. | 2008 | 355 | 10.1007/s10853-007-2155-z | 3593 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 99 | 0 | 0.03 | 0 | 1 | 2 | 238.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 54.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K. (2008). Freeze cast carbon nanotube-alumina nanoparticle green composites. Journal of materials science, 43(2), 652-659. | 2008 | 355 | 10.1007/s10853-007-2155-z | 3594 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 98 | 0 | 0.03 | 0 | 1 | 2 | 238.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K. (2008). Freeze cast carbon nanotube-alumina nanoparticle green composites. Journal of materials science, 43(2), 652-659. | 2008 | 355 | 10.1007/s10853-007-2155-z | 3595 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 97 | 0 | 0.03 | 0 | 1 | 2 | 238.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Kessler, C. S. (2009, September). Nanoparticle colloidal suspension optimization and freeze-cast forming. In Ceramic engineering and science proceedings (Vol. 27, pp. 1-10). | 2009 | 356 | 10.1002/9780470291375 | 3596 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 0.04 | 0 | 1 | 5 | 268.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Kessler, C. S. (2009, September). Nanoparticle colloidal suspension optimization and freeze-cast forming. In Ceramic engineering and science proceedings (Vol. 27, pp. 1-10). | 2009 | 356 | 10.1002/9780470291375 | 3597 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 0.04 | 0 | 1 | 5 | 268.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Kessler, C. S. (2009, September). Nanoparticle colloidal suspension optimization and freeze-cast forming. In Ceramic engineering and science proceedings (Vol. 27, pp. 1-10). | 2009 | 356 | 10.1002/9780470291375 | 3598 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 0.04 | 0 | 1 | 5 | 268.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Kessler, C. S. (2009, September). Nanoparticle colloidal suspension optimization and freeze-cast forming. In Ceramic engineering and science proceedings (Vol. 27, pp. 1-10). | 2009 | 356 | 10.1002/9780470291375 | 3599 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 0.04 | 0 | 1 | 5 | 268.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Kessler, C. S. (2009, September). Nanoparticle colloidal suspension optimization and freeze-cast forming. In Ceramic engineering and science proceedings (Vol. 27, pp. 1-10). | 2009 | 356 | 10.1002/9780470291375 | 3600 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 0.04 | 0 | 2 | 5 | 268.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Kessler, C. S. (2009, September). Nanoparticle colloidal suspension optimization and freeze-cast forming. In Ceramic engineering and science proceedings (Vol. 27, pp. 1-10). | 2009 | 356 | 10.1002/9780470291375 | 3601 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 0.04 | 0 | 2 | 5 | 268.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Kessler, C. S. (2009, September). Nanoparticle colloidal suspension optimization and freeze-cast forming. In Ceramic engineering and science proceedings (Vol. 27, pp. 1-10). | 2009 | 356 | 10.1002/9780470291375 | 3602 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 0.04 | 0 | 1 | 5 | 268.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Kessler, C. S. (2009, September). Nanoparticle colloidal suspension optimization and freeze-cast forming. In Ceramic engineering and science proceedings (Vol. 27, pp. 1-10). | 2009 | 356 | 10.1002/9780470291375 | 3603 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 0.04 | 0 | 1 | 5 | 268.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Kessler, C. S. (2009, September). Nanoparticle colloidal suspension optimization and freeze-cast forming. In Ceramic engineering and science proceedings (Vol. 27, pp. 1-10). | 2009 | 356 | 10.1002/9780470291375 | 3604 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 0.04 | 0 | 1 | 5 | 268.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Kessler, C. S. (2009, September). Nanoparticle colloidal suspension optimization and freeze-cast forming. In Ceramic engineering and science proceedings (Vol. 27, pp. 1-10). | 2009 | 356 | 10.1002/9780470291375 | 3605 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 0.04 | 0 | 1 | 5 | 268.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Kessler, C. S. (2009, September). Nanoparticle colloidal suspension optimization and freeze-cast forming. In Ceramic engineering and science proceedings (Vol. 27, pp. 1-10). | 2009 | 356 | 10.1002/9780470291375 | 3606 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 0.04 | 0 | 1 | 5 | 268.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Kessler, C. S. (2009, September). Nanoparticle colloidal suspension optimization and freeze-cast forming. In Ceramic engineering and science proceedings (Vol. 27, pp. 1-10). | 2009 | 356 | 10.1002/9780470291375 | 3607 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | 0 | 0.04 | 0 | 1 | 5 | 268.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Kessler, C. S. (2009, September). Nanoparticle colloidal suspension optimization and freeze-cast forming. In Ceramic engineering and science proceedings (Vol. 27, pp. 1-10). | 2009 | 356 | 10.1002/9780470291375 | 3608 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | 0 | 0.04 | 0 | 1 | 5 | 268.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Kessler, C. S. (2009, September). Nanoparticle colloidal suspension optimization and freeze-cast forming. In Ceramic engineering and science proceedings (Vol. 27, pp. 1-10). | 2009 | 356 | 10.1002/9780470291375 | 3609 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 0.04 | 0 | 1 | 5 | 268.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Kessler, C. S. (2009, September). Nanoparticle colloidal suspension optimization and freeze-cast forming. In Ceramic engineering and science proceedings (Vol. 27, pp. 1-10). | 2009 | 356 | 10.1002/9780470291375 | 3610 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | 0 | 0.04 | 0 | 1 | 5 | 268.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Kessler, C. S. (2009, September). Nanoparticle colloidal suspension optimization and freeze-cast forming. In Ceramic engineering and science proceedings (Vol. 27, pp. 1-10). | 2009 | 356 | 10.1002/9780470291375 | 3611 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | 0 | 0.04 | 0 | 1 | 5 | 268.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Kessler, C. S. (2009, September). Nanoparticle colloidal suspension optimization and freeze-cast forming. In Ceramic engineering and science proceedings (Vol. 27, pp. 1-10). | 2009 | 356 | 10.1002/9780470291375 | 3612 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 45.0 | 1.0 | 100 | 0 | 0.04 | 0 | 1 | 5 | 268.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., Kessler, C. S., & Davis, R. M. (2006). Optimization of a nanoparticle suspension for freeze casting. Journal of the American Ceramic Society, 89(8), 2459-2465. | 2006 | 357 | 10.1111/j.1551-2916.2006.01111.x | 3613 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.04 | 0 | 1 | 15 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., Kessler, C. S., & Davis, R. M. (2006). Optimization of a nanoparticle suspension for freeze casting. Journal of the American Ceramic Society, 89(8), 2459-2465. | 2006 | 357 | 10.1111/j.1551-2916.2006.01111.x | 3614 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.04 | 0 | 1 | 15 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., Kessler, C. S., & Davis, R. M. (2006). Optimization of a nanoparticle suspension for freeze casting. Journal of the American Ceramic Society, 89(8), 2459-2465. | 2006 | 357 | 10.1111/j.1551-2916.2006.01111.x | 3615 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.04 | 0 | 1 | 15 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., Kessler, C. S., & Davis, R. M. (2006). Optimization of a nanoparticle suspension for freeze casting. Journal of the American Ceramic Society, 89(8), 2459-2465. | 2006 | 357 | 10.1111/j.1551-2916.2006.01111.x | 3616 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.04 | 0 | 1 | 15 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., Kessler, C. S., & Davis, R. M. (2006). Optimization of a nanoparticle suspension for freeze casting. Journal of the American Ceramic Society, 89(8), 2459-2465. | 2006 | 357 | 10.1111/j.1551-2916.2006.01111.x | 3617 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.04 | 0 | 2 | 15 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., Kessler, C. S., & Davis, R. M. (2006). Optimization of a nanoparticle suspension for freeze casting. Journal of the American Ceramic Society, 89(8), 2459-2465. | 2006 | 357 | 10.1111/j.1551-2916.2006.01111.x | 3618 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.04 | 0 | 2 | 15 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., Kessler, C. S., & Davis, R. M. (2006). Optimization of a nanoparticle suspension for freeze casting. Journal of the American Ceramic Society, 89(8), 2459-2465. | 2006 | 357 | 10.1111/j.1551-2916.2006.01111.x | 3619 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.04 | 0 | 1 | 15 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., Kessler, C. S., & Davis, R. M. (2006). Optimization of a nanoparticle suspension for freeze casting. Journal of the American Ceramic Society, 89(8), 2459-2465. | 2006 | 357 | 10.1111/j.1551-2916.2006.01111.x | 3620 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.04 | 0 | 1 | 15 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., Kessler, C. S., & Davis, R. M. (2006). Optimization of a nanoparticle suspension for freeze casting. Journal of the American Ceramic Society, 89(8), 2459-2465. | 2006 | 357 | 10.1111/j.1551-2916.2006.01111.x | 3621 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.04 | 0 | 1 | 15 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., Kessler, C. S., & Davis, R. M. (2006). Optimization of a nanoparticle suspension for freeze casting. Journal of the American Ceramic Society, 89(8), 2459-2465. | 2006 | 357 | 10.1111/j.1551-2916.2006.01111.x | 3622 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.04 | 0 | 1 | 15 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., Kessler, C. S., & Davis, R. M. (2006). Optimization of a nanoparticle suspension for freeze casting. Journal of the American Ceramic Society, 89(8), 2459-2465. | 2006 | 357 | 10.1111/j.1551-2916.2006.01111.x | 3623 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.04 | 0 | 1 | 15 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., Kessler, C. S., & Davis, R. M. (2006). Optimization of a nanoparticle suspension for freeze casting. Journal of the American Ceramic Society, 89(8), 2459-2465. | 2006 | 357 | 10.1111/j.1551-2916.2006.01111.x | 3624 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.04 | 0 | 1 | 15 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., Kessler, C. S., & Davis, R. M. (2006). Optimization of a nanoparticle suspension for freeze casting. Journal of the American Ceramic Society, 89(8), 2459-2465. | 2006 | 357 | 10.1111/j.1551-2916.2006.01111.x | 3625 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.04 | 0 | 1 | 15 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., Kessler, C. S., & Davis, R. M. (2006). Optimization of a nanoparticle suspension for freeze casting. Journal of the American Ceramic Society, 89(8), 2459-2465. | 2006 | 357 | 10.1111/j.1551-2916.2006.01111.x | 3626 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.04 | 0 | 1 | 15 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., Kessler, C. S., & Davis, R. M. (2006). Optimization of a nanoparticle suspension for freeze casting. Journal of the American Ceramic Society, 89(8), 2459-2465. | 2006 | 357 | 10.1111/j.1551-2916.2006.01111.x | 3627 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.04 | 0 | 1 | 15 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., Kessler, C. S., & Davis, R. M. (2006). Optimization of a nanoparticle suspension for freeze casting. Journal of the American Ceramic Society, 89(8), 2459-2465. | 2006 | 357 | 10.1111/j.1551-2916.2006.01111.x | 3628 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.04 | 0 | 1 | 15 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., Kessler, C. S., & Davis, R. M. (2006). Optimization of a nanoparticle suspension for freeze casting. Journal of the American Ceramic Society, 89(8), 2459-2465. | 2006 | 357 | 10.1111/j.1551-2916.2006.01111.x | 3629 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.04 | 0 | 1 | 20 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., Kessler, C. S., & Davis, R. M. (2006). Optimization of a nanoparticle suspension for freeze casting. Journal of the American Ceramic Society, 89(8), 2459-2465. | 2006 | 357 | 10.1111/j.1551-2916.2006.01111.x | 3630 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.04 | 0 | 1 | 17 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., Kessler, C. S., & Davis, R. M. (2006). Optimization of a nanoparticle suspension for freeze casting. Journal of the American Ceramic Society, 89(8), 2459-2465. | 2006 | 357 | 10.1111/j.1551-2916.2006.01111.x | 3631 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.04 | 0 | 1 | 15 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., Kessler, C. S., & Davis, R. M. (2006). Optimization of a nanoparticle suspension for freeze casting. Journal of the American Ceramic Society, 89(8), 2459-2465. | 2006 | 357 | 10.1111/j.1551-2916.2006.01111.x | 3632 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.04 | 0 | 1 | 14 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., Kessler, C. S., & Davis, R. M. (2006). Optimization of a nanoparticle suspension for freeze casting. Journal of the American Ceramic Society, 89(8), 2459-2465. | 2006 | 357 | 10.1111/j.1551-2916.2006.01111.x | 3633 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | powder | 0.04 | 0 | 1 | 13 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., Kessler, C. S., & Davis, R. M. (2006). Optimization of a nanoparticle suspension for freeze casting. Journal of the American Ceramic Society, 89(8), 2459-2465. | 2006 | 357 | 10.1111/j.1551-2916.2006.01111.x | 3634 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 45.0 | 1.0 | 100 | powder | 0.04 | 0 | 1 | 13 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., Kessler, C. S., & Davis, R. M. (2006). Optimization of a nanoparticle suspension for freeze casting. Journal of the American Ceramic Society, 89(8), 2459-2465. | 2006 | 357 | 10.1111/j.1551-2916.2006.01111.x | 3635 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.04 | 0 | 1 | 20 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., Kessler, C. S., & Davis, R. M. (2006). Optimization of a nanoparticle suspension for freeze casting. Journal of the American Ceramic Society, 89(8), 2459-2465. | 2006 | 357 | 10.1111/j.1551-2916.2006.01111.x | 3636 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.04 | 0 | 1 | 17 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., Kessler, C. S., & Davis, R. M. (2006). Optimization of a nanoparticle suspension for freeze casting. Journal of the American Ceramic Society, 89(8), 2459-2465. | 2006 | 357 | 10.1111/j.1551-2916.2006.01111.x | 3637 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.04 | 0 | 1 | 15 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., Kessler, C. S., & Davis, R. M. (2006). Optimization of a nanoparticle suspension for freeze casting. Journal of the American Ceramic Society, 89(8), 2459-2465. | 2006 | 357 | 10.1111/j.1551-2916.2006.01111.x | 3638 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.04 | 0 | 1 | 14 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., Kessler, C. S., & Davis, R. M. (2006). Optimization of a nanoparticle suspension for freeze casting. Journal of the American Ceramic Society, 89(8), 2459-2465. | 2006 | 357 | 10.1111/j.1551-2916.2006.01111.x | 3639 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | powder | 0.04 | 0 | 1 | 13 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., Kessler, C. S., & Davis, R. M. (2006). Optimization of a nanoparticle suspension for freeze casting. Journal of the American Ceramic Society, 89(8), 2459-2465. | 2006 | 357 | 10.1111/j.1551-2916.2006.01111.x | 3640 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 45.0 | 1.0 | 100 | powder | 0.04 | 0 | 1 | 13 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3641 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3642 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3643 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3644 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3645 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3646 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 45.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3647 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3648 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3649 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3650 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3651 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3652 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 45.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3653 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3654 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3655 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3656 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3657 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3658 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 45.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3659 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3660 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3661 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3662 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3663 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3664 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 45.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3665 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3666 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3667 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3668 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3669 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3670 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 45.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3671 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3672 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3673 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3674 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3675 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3676 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 45.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3677 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3678 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3679 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3680 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3681 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3682 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 45.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3683 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3684 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3685 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3686 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3687 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3688 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 45.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3689 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3690 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3691 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3692 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3693 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, K., & Zhu, X. (2008). Freeze Casting as a Nanoparticle Material?Forming Method. International Journal of Applied Ceramic Technology, 5(3), 219-227. | 2008 | 358 | 10.1111/j.1744-7402.2008.02204.x | 3694 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 45.0 | 1.0 | 100 | powder | 0.03 | 0 | 1 | 33 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lyu, S. W., Park, Y. M., Yang, T. Y., Ryu, S. C., Stevens, R., & Park, H. C. (2007). Suspension Characteristics and Rheological Properties of Aqueous Alumina/Zirconia Freeze Casting Slurries. In Key Engineering Materials (Vol. 336, pp. 2382-2384). Trans Tech Publications. | 2007 | 365 | 0 | 5548 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Meurice, E., Bouchart, F., Hornez, J. C., Leriche, A., Hautcoeur, D., Lardot, V., ... & Monteiro, F. (2016). Osteoblastic cells colonization inside beta-TCP macroporous structures obtained by ice-templating. Journal of the European Ceramic Society, 36(12), 2895-2901. | 2015 | 385 | 10.1016/j.jeurceramsoc.2015.10.030 | 3765 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 26.0 | 100 | 0 | 1.5 | 2 | 2 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 36.0 | 0.0 | 44.0 | 43.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Miller, S. M., Xiao, X., & Faber, K. T. (2015). Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium. Journal of the European Ceramic Society, 35(13), 3595-3605. | 2015 | 387 | 10.1016/j.jeurceramsoc.2015.05.012 | 3766 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 23.0 | 1.0 | 100 | 0 | 0.35 | 0 | 2 | 0 | 258.0 | 0.0 | 0.0 | one-sided | constant | 19.0 | 0.0 | 18 | 0 | 0 | lamellar | sintered | 62.0 | 54.6 | 32.9 | 22.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Miller, S. M., Xiao, X., & Faber, K. T. (2015). Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium. Journal of the European Ceramic Society, 35(13), 3595-3605. | 2015 | 387 | 10.1016/j.jeurceramsoc.2015.05.012 | 3767 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 23.0 | 1.0 | 100 | 0 | 0.35 | 0 | 2 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 22.0 | 0.0 | 18 | 0 | 0 | lamellar | sintered | 62.0 | 52.5 | 31.2 | 21.3 | 0.0 | 0.0 | 0.0 | 0.0 |
Miller, S. M., Xiao, X., & Faber, K. T. (2015). Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium. Journal of the European Ceramic Society, 35(13), 3595-3605. | 2015 | 387 | 10.1016/j.jeurceramsoc.2015.05.012 | 3768 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 23.0 | 1.0 | 100 | 0 | 0.35 | 0 | 2 | 0 | 228.0 | 0.0 | 0.0 | one-sided | constant | 33.0 | 0.0 | 18 | 0 | 0 | lamellar | sintered | 62.0 | 45.5 | 25.8 | 19.7 | 0.0 | 0.0 | 0.0 | 0.0 |
Miller, S. M., Xiao, X., & Faber, K. T. (2015). Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium. Journal of the European Ceramic Society, 35(13), 3595-3605. | 2015 | 387 | 10.1016/j.jeurceramsoc.2015.05.012 | 3769 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 23.0 | 1.0 | 100 | 0 | 0.35 | 0 | 2 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 15.0 | 0.0 | 18 | 0 | 0 | lamellar | sintered | 62.0 | 78.1 | 49.5 | 28.6 | 0.0 | 0.0 | 0.0 | 0.0 |
Miller, S. M., Xiao, X., & Faber, K. T. (2015). Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium. Journal of the European Ceramic Society, 35(13), 3595-3605. | 2015 | 387 | 10.1016/j.jeurceramsoc.2015.05.012 | 3770 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 23.0 | 1.0 | 100 | 0 | 0.35 | 0 | 2 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 21.0 | 0.0 | 18 | 0 | 0 | lamellar | sintered | 62.0 | 53.3 | 31.9 | 21.4 | 0.0 | 0.0 | 0.0 | 0.0 |
Miller, S. M., Xiao, X., & Faber, K. T. (2015). Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium. Journal of the European Ceramic Society, 35(13), 3595-3605. | 2015 | 387 | 10.1016/j.jeurceramsoc.2015.05.012 | 3771 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 23.0 | 1.0 | 100 | 0 | 0.35 | 0 | 2 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 21.0 | 0.0 | 18 | 0 | 0 | lamellar | sintered | 62.0 | 53.3 | 31.7 | 21.6 | 0.0 | 0.0 | 0.0 | 0.0 |
Miller, S. M., Xiao, X., & Faber, K. T. (2015). Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium. Journal of the European Ceramic Society, 35(13), 3595-3605. | 2015 | 387 | 10.1016/j.jeurceramsoc.2015.05.012 | 3772 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 23.0 | 1.0 | 100 | 0 | 0.35 | 0 | 2 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 25.0 | 0.0 | 18 | 0 | 0 | lamellar | sintered | 62.0 | 43.1 | 24.3 | 18.8 | 0.0 | 0.0 | 0.0 | 0.0 |
Miller, S. M., Xiao, X., & Faber, K. T. (2015). Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium. Journal of the European Ceramic Society, 35(13), 3595-3605. | 2015 | 387 | 10.1016/j.jeurceramsoc.2015.05.012 | 3773 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 23.0 | 1.0 | 100 | 0 | 0.35 | 0 | 2 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 19.0 | 0.0 | 18 | 0 | 0 | lamellar | sintered | 62.0 | 62.3 | 37.6 | 24.7 | 0.0 | 0.0 | 0.0 | 0.0 |
Miller, S. M., Xiao, X., & Faber, K. T. (2015). Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium. Journal of the European Ceramic Society, 35(13), 3595-3605. | 2015 | 387 | 10.1016/j.jeurceramsoc.2015.05.012 | 3774 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 22.0 | 1.0 | 100 | 0 | 0.35 | 0 | 2 | 0 | 288.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 18 | 0 | 0 | dendritic | sintered | 60.9 | 0.0 | 40.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Miller, S. M., Xiao, X., & Faber, K. T. (2015). Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium. Journal of the European Ceramic Society, 35(13), 3595-3605. | 2015 | 387 | 10.1016/j.jeurceramsoc.2015.05.012 | 3775 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 22.0 | 1.0 | 100 | 0 | 0.35 | 0 | 2 | 0 | 298.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 18 | 0 | 0 | dendritic | sintered | 60.9 | 0.0 | 54.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Miller, S. M., Xiao, X., & Faber, K. T. (2015). Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium. Journal of the European Ceramic Society, 35(13), 3595-3605. | 2015 | 387 | 10.1016/j.jeurceramsoc.2015.05.012 | 3776 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 22.0 | 1.0 | 100 | 0 | 0.35 | 0 | 2 | 0 | 288.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 18 | 0 | 0 | dendritic | sintered | 60.9 | 0.0 | 38.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Miller, S. M., Xiao, X., & Faber, K. T. (2015). Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium. Journal of the European Ceramic Society, 35(13), 3595-3605. | 2015 | 387 | 10.1016/j.jeurceramsoc.2015.05.012 | 3777 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 22.0 | 1.0 | 100 | 0 | 0.35 | 0 | 2 | 0 | 278.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 18 | 0 | 0 | dendritic | sintered | 60.9 | 0.0 | 33.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Miller, S. M., Xiao, X., & Faber, K. T. (2015). Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium. Journal of the European Ceramic Society, 35(13), 3595-3605. | 2015 | 387 | 10.1016/j.jeurceramsoc.2015.05.012 | 3778 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 22.0 | 1.0 | 100 | 0 | 0.35 | 0 | 2 | 0 | 268.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 18 | 0 | 0 | dendritic | sintered | 60.9 | 0.0 | 31.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Miller, S. M., Xiao, X., & Faber, K. T. (2015). Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium. Journal of the European Ceramic Society, 35(13), 3595-3605. | 2015 | 387 | 10.1016/j.jeurceramsoc.2015.05.012 | 3779 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 22.0 | 1.0 | 100 | 0 | 0.35 | 0 | 2 | 0 | 288.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 18 | 0 | 0 | dendritic | sintered | 60.9 | 0.0 | 37.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moon, Y. W., Choi, I. J., Koh, Y. H., & Kim, H. E. (2015). Porous alumina ceramic scaffolds with biomimetic macro/micro-porous structure using three-dimensional (3-D) ceramic/camphene-based extrusion. Ceramics International, 41(9), 12371-12377. | 2015 | 393 | 10.1016/j.ceramint.2015.06.069 | 3791 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | 0 | 0.3 | 0 | 2 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 77.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9.5 | 0.0 | 0.0 |
Moon, Y. W., Choi, I. J., Koh, Y. H., & Kim, H. E. (2015). Porous alumina ceramic scaffolds with biomimetic macro/micro-porous structure using three-dimensional (3-D) ceramic/camphene-based extrusion. Ceramics International, 41(9), 12371-12377. | 2015 | 393 | 10.1016/j.ceramint.2015.06.069 | 3792 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | 0 | 0.3 | 0 | 2 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 72.0 | 0.0 | 0.0 | 0.0 | 0.0 | 11.0 | 0.0 | 0.0 |
Moon, Y. W., Choi, I. J., Koh, Y. H., & Kim, H. E. (2015). Porous alumina ceramic scaffolds with biomimetic macro/micro-porous structure using three-dimensional (3-D) ceramic/camphene-based extrusion. Ceramics International, 41(9), 12371-12377. | 2015 | 393 | 10.1016/j.ceramint.2015.06.069 | 3793 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | 0 | 0.3 | 0 | 2 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 67.0 | 0.0 | 0.0 | 0.0 | 0.0 | 29.3 | 0.0 | 0.0 |
Moon, Y. W., Shina, K. H., Sunga, J. H., Koha, Y. H., Choib, W. Y., Jinb, Y., & Kimb, H. E. Highly Aligned Porous Alumina Ceramics by Extruding Unidirectionally Frozen Alumina/Camphene Body. | 2011 | 394 | 10.1016/j.jeurceramsoc.2011.04.033 | 3794 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | 0 | 0.3 | 10 | 2 | 0 | 270.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 83.0 | 148.2 | 130.0 | 18.2 | 0.0 | 0.0 | 0.0 | 0.0 |
Moon, Y. W., Shin, K. H., Koh, Y. H., Choi, W. Y., & Kim, H. E. (2011). Production of highly aligned porous alumina ceramics by extruding frozen alumina/camphene body. Journal of the European Ceramic Society, 31(11), 1945-1950. | 2011 | 395 | 10.1016/j.jeurceramsoc.2011.04.033 | 3795 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | 0 | 0.3 | 10 | 2 | 0 | 270.0 | 0.0 | 0.0 | one-sided | constant | 83.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 83.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moon, Y. W., Shin, K. H., Koh, Y. H., Choi, W. Y., & Kim, H. E. (2012). Porous alumina ceramics with highly aligned pores by heat-treating extruded alumina/camphene body at temperature near its solidification point. Journal of the European Ceramic Society, 32(5), 1029-1034. | 2012 | 396 | 10.1016/j.jeurceramsoc.2011.11.035 | 3797 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | 0 | 0.3 | 10 | 2 | 0 | 276.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 82.0 | 0.0 | 50.0 | 0.0 | 0.0 | 6.25 | 0.0 | 0.0 |
Moon, Y. W., Shin, K. H., Koh, Y. H., Choi, W. Y., & Kim, H. E. (2012). Porous alumina ceramics with highly aligned pores by heat-treating extruded alumina/camphene body at temperature near its solidification point. Journal of the European Ceramic Society, 32(5), 1029-1034. | 2012 | 396 | 10.1016/j.jeurceramsoc.2011.11.035 | 3798 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | 0 | 0.3 | 10 | 2 | 0 | 276.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 82.0 | 0.0 | 90.0 | 0.0 | 0.0 | 10.25 | 0.0 | 0.0 |
Moon, Y. W., Shin, K. H., Koh, Y. H., Choi, W. Y., & Kim, H. E. (2012). Porous alumina ceramics with highly aligned pores by heat-treating extruded alumina/camphene body at temperature near its solidification point. Journal of the European Ceramic Society, 32(5), 1029-1034. | 2012 | 396 | 10.1016/j.jeurceramsoc.2011.11.035 | 3799 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | 0 | 0.3 | 10 | 2 | 0 | 276.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 82.0 | 0.0 | 115.0 | 0.0 | 0.0 | 11.6 | 0.0 | 0.0 |
Moon, Y. W., Shin, K. H., Koh, Y. H., Choi, W. Y., & Kim, H. E. (2012). Porous alumina ceramics with highly aligned pores by heat-treating extruded alumina/camphene body at temperature near its solidification point. Journal of the European Ceramic Society, 32(5), 1029-1034. | 2012 | 396 | 10.1016/j.jeurceramsoc.2011.11.035 | 3800 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | 0 | 0.3 | 10 | 2 | 0 | 276.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 82.0 | 0.0 | 120.0 | 0.0 | 0.0 | 9.25 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2006). Ceramic bodies with complex geometries and ceramic shells by freeze casting using ice as mold material. Journal of the American Ceramic Society, 89(8), 2394-2398. | 2006 | 398 | 10.1111/j.1551-2916.2006.01081.x | 4934 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 43.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Munch, E., Saiz, E., Tomsia, A. P., & Deville, S. (2009). Architectural control of freeze?cast ceramics through additives and templating. Journal of the American Ceramic Society, 92(7), 1534-1539. | 2009 | 414 | 10.1111/j.1551-2916.2009.03087.x | 3859 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.4 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 60.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Munch, E., Saiz, E., Tomsia, A. P., & Deville, S. (2009). Architectural control of freeze?cast ceramics through additives and templating. Journal of the American Ceramic Society, 92(7), 1534-1539. | 2009 | 414 | 10.1111/j.1551-2916.2009.03087.x | 3860 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.4 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 110.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Munch, E., Saiz, E., Tomsia, A. P., & Deville, S. (2009). Architectural control of freeze?cast ceramics through additives and templating. Journal of the American Ceramic Society, 92(7), 1534-1539. | 2009 | 414 | 10.1111/j.1551-2916.2009.03087.x | 3861 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.4 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 25.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 130.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Munch, E., Saiz, E., Tomsia, A. P., & Deville, S. (2009). Architectural control of freeze?cast ceramics through additives and templating. Journal of the American Ceramic Society, 92(7), 1534-1539. | 2009 | 414 | 10.1111/j.1551-2916.2009.03087.x | 3862 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.4 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 10.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 170.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Munch, E., Saiz, E., Tomsia, A. P., & Deville, S. (2009). Architectural control of freeze?cast ceramics through additives and templating. Journal of the American Ceramic Society, 92(7), 1534-1539. | 2009 | 414 | 10.1111/j.1551-2916.2009.03087.x | 3863 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.4 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 50.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Munch, E., Saiz, E., Tomsia, A. P., & Deville, S. (2009). Architectural control of freeze?cast ceramics through additives and templating. Journal of the American Ceramic Society, 92(7), 1534-1539. | 2009 | 414 | 10.1111/j.1551-2916.2009.03087.x | 3864 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.4 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 42.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Munch, E., Saiz, E., Tomsia, A. P., & Deville, S. (2009). Architectural control of freeze?cast ceramics through additives and templating. Journal of the American Ceramic Society, 92(7), 1534-1539. | 2009 | 414 | 10.1111/j.1551-2916.2009.03087.x | 3865 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.4 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 20.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 110.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Munch, E., Saiz, E., Tomsia, A. P., & Deville, S. (2009). Architectural control of freeze?cast ceramics through additives and templating. Journal of the American Ceramic Society, 92(7), 1534-1539. | 2009 | 414 | 10.1111/j.1551-2916.2009.03087.x | 3866 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.4 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 10.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 140.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Munch, E., Saiz, E., Tomsia, A. P., & Deville, S. (2009). Architectural control of freeze?cast ceramics through additives and templating. Journal of the American Ceramic Society, 92(7), 1534-1539. | 2009 | 414 | 10.1111/j.1551-2916.2009.03087.x | 3867 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.4 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Munch, E., Saiz, E., Tomsia, A. P., & Deville, S. (2009). Architectural control of freeze?cast ceramics through additives and templating. Journal of the American Ceramic Society, 92(7), 1534-1539. | 2009 | 414 | 10.1111/j.1551-2916.2009.03087.x | 3868 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.4 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 60.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Munch, E., Saiz, E., Tomsia, A. P., & Deville, S. (2009). Architectural control of freeze?cast ceramics through additives and templating. Journal of the American Ceramic Society, 92(7), 1534-1539. | 2009 | 414 | 10.1111/j.1551-2916.2009.03087.x | 3869 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.4 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 60.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Munch, E., Saiz, E., Tomsia, A. P., & Deville, S. (2009). Architectural control of freeze?cast ceramics through additives and templating. Journal of the American Ceramic Society, 92(7), 1534-1539. | 2009 | 414 | 10.1111/j.1551-2916.2009.03087.x | 3870 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.4 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 50.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Munch, E., Saiz, E., Tomsia, A. P., & Deville, S. (2009). Architectural control of freeze?cast ceramics through additives and templating. Journal of the American Ceramic Society, 92(7), 1534-1539. | 2009 | 414 | 10.1111/j.1551-2916.2009.03087.x | 3871 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.4 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 25.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Munch, E., Saiz, E., Tomsia, A. P., & Deville, S. (2009). Architectural control of freeze?cast ceramics through additives and templating. Journal of the American Ceramic Society, 92(7), 1534-1539. | 2009 | 414 | 10.1111/j.1551-2916.2009.03087.x | 3872 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.4 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 10.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 110.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Munch, E., Saiz, E., Tomsia, A. P., & Deville, S. (2009). Architectural control of freeze?cast ceramics through additives and templating. Journal of the American Ceramic Society, 92(7), 1534-1539. | 2009 | 414 | 10.1111/j.1551-2916.2009.03087.x | 3873 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.4 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 50.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 45.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Munch, E., Saiz, E., Tomsia, A. P., & Deville, S. (2009). Architectural control of freeze?cast ceramics through additives and templating. Journal of the American Ceramic Society, 92(7), 1534-1539. | 2009 | 414 | 10.1111/j.1551-2916.2009.03087.x | 3874 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.4 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Munch, E., Saiz, E., Tomsia, A. P., & Deville, S. (2009). Architectural control of freeze?cast ceramics through additives and templating. Journal of the American Ceramic Society, 92(7), 1534-1539. | 2009 | 414 | 10.1111/j.1551-2916.2009.03087.x | 3875 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.4 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 10.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 110.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Munch, E., Saiz, E., Tomsia, A. P., & Deville, S. (2009). Architectural control of freeze?cast ceramics through additives and templating. Journal of the American Ceramic Society, 92(7), 1534-1539. | 2009 | 414 | 10.1111/j.1551-2916.2009.03087.x | 3876 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.4 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 50.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Munch, E., Saiz, E., Tomsia, A. P., & Deville, S. (2009). Architectural control of freeze?cast ceramics through additives and templating. Journal of the American Ceramic Society, 92(7), 1534-1539. | 2009 | 414 | 10.1111/j.1551-2916.2009.03087.x | 3877 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.4 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 50.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Munch, E., Saiz, E., Tomsia, A. P., & Deville, S. (2009). Architectural control of freeze?cast ceramics through additives and templating. Journal of the American Ceramic Society, 92(7), 1534-1539. | 2009 | 414 | 10.1111/j.1551-2916.2009.03087.x | 3878 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.4 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 40.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Munch, E., Saiz, E., Tomsia, A. P., & Deville, S. (2009). Architectural control of freeze?cast ceramics through additives and templating. Journal of the American Ceramic Society, 92(7), 1534-1539. | 2009 | 414 | 10.1111/j.1551-2916.2009.03087.x | 3879 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.4 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 10.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 140.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Munch, E., Saiz, E., Tomsia, A. P., & Deville, S. (2009). Architectural control of freeze?cast ceramics through additives and templating. Journal of the American Ceramic Society, 92(7), 1534-1539. | 2009 | 414 | 10.1111/j.1551-2916.2009.03087.x | 5973 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 0.4 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 6.0 | 0.0 | 44.0 | 0.0 | 0.0 |
Munch, E., Saiz, E., Tomsia, A. P., & Deville, S. (2009). Architectural control of freeze?cast ceramics through additives and templating. Journal of the American Ceramic Society, 92(7), 1534-1539. | 2009 | 414 | 10.1111/j.1551-2916.2009.03087.x | 5974 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 0.4 | 0 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 8.0 | 0.0 | 26.0 | 0.0 | 0.0 |
Munch, E., Saiz, E., Tomsia, A. P., & Deville, S. (2009). Architectural control of freeze?cast ceramics through additives and templating. Journal of the American Ceramic Society, 92(7), 1534-1539. | 2009 | 414 | 10.1111/j.1551-2916.2009.03087.x | 5975 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 0.4 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 11.0 | 0.0 | 6.0 | 0.0 | 0.0 |
Munch, E., Saiz, E., Tomsia, A. P., & Deville, S. (2009). Architectural control of freeze?cast ceramics through additives and templating. Journal of the American Ceramic Society, 92(7), 1534-1539. | 2009 | 414 | 10.1111/j.1551-2916.2009.03087.x | 5976 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 11.0 | 0.0 | 12.0 | 0.0 | 0.0 |
Nakata, M., Fukushima, M., & Yoshizawa, Y. I. (2008). POROUS ALUMINA CERAMICS BY NOVEL GELATE-FREEZING METHOD. Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials: Ceramic Engineering and Science Proceedings, Volume 28, (7), 139. | 2008 | 419 | 10.1002/9780470339718 | 3892 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | 0 | 400.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 71.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nakata, M., Fukushima, M., & Yoshizawa, Y. I. (2008). POROUS ALUMINA CERAMICS BY NOVEL GELATE-FREEZING METHOD. Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials: Ceramic Engineering and Science Proceedings, Volume 28, (7), 139. | 2008 | 419 | 10.1002/9780470339718 | 3893 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | 0 | 400.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 57.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nakata, M., Fukushima, M., & Yoshizawa, Y. I. (2008). POROUS ALUMINA CERAMICS BY NOVEL GELATE-FREEZING METHOD. Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials: Ceramic Engineering and Science Proceedings, Volume 28, (7), 139. | 2008 | 419 | 10.1002/9780470339718 | 3894 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | 0 | 400.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 69.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nakata, M., Fukushima, M., & Yoshizawa, Y. I. (2008). POROUS ALUMINA CERAMICS BY NOVEL GELATE-FREEZING METHOD. Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials: Ceramic Engineering and Science Proceedings, Volume 28, (7), 139. | 2008 | 419 | 10.1002/9780470339718 | 3895 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | 0 | 400.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 55.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nakata, M.; Tanihata, K.; Yamaguchi, S.; Suganuma, K. (2005). Fabrication of porous alumina sintered bodies by a gelate-freezing method. Journal of the Ceramic Society of Japan (???????????????), 113(1323), 712-715. | 2005 | 420 | 10.2109/jcersj.113.712 | 3896 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | 0 | 0.3 | 7 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 31.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nakata, M.; Tanihata, K.; Yamaguchi, S.; Suganuma, K. (2005). Fabrication of porous alumina sintered bodies by a gelate-freezing method. Journal of the Ceramic Society of Japan (???????????????), 113(1323), 712-715. | 2005 | 420 | 10.2109/jcersj.113.712 | 3897 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | 0 | 0.3 | 5 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 41.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nakata, M.; Tanihata, K.; Yamaguchi, S.; Suganuma, K. (2005). Fabrication of porous alumina sintered bodies by a gelate-freezing method. Journal of the Ceramic Society of Japan (???????????????), 113(1323), 712-715. | 2005 | 420 | 10.2109/jcersj.113.712 | 3898 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 33.0 | 1.0 | 100 | 0 | 0.3 | 15 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 37.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nakata, M.; Tanihata, K.; Yamaguchi, S.; Suganuma, K. (2005). Fabrication of porous alumina sintered bodies by a gelate-freezing method. Journal of the Ceramic Society of Japan (???????????????), 113(1323), 712-715. | 2005 | 420 | 10.2109/jcersj.113.712 | 3899 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 33.0 | 1.0 | 100 | 0 | 0.3 | 10 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 44.0 | 0.0 | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nakata, M.; Tanihata, K.; Yamaguchi, S.; Suganuma, K. (2005). Fabrication of porous alumina sintered bodies by a gelate-freezing method. Journal of the Ceramic Society of Japan (???????????????), 113(1323), 712-715. | 2005 | 420 | 10.2109/jcersj.113.712 | 3900 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 33.0 | 1.0 | 100 | 0 | 0.3 | 7 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 45.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nakata, M.; Tanihata, K.; Yamaguchi, S.; Suganuma, K. (2005). Fabrication of porous alumina sintered bodies by a gelate-freezing method. Journal of the Ceramic Society of Japan (???????????????), 113(1323), 712-715. | 2005 | 420 | 10.2109/jcersj.113.712 | 3901 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 33.0 | 1.0 | 100 | 0 | 0.3 | 2 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 49.0 | 0.0 | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nakata, M.; Tanihata, K.; Yamaguchi, S.; Suganuma, K. (2005). Fabrication of porous alumina sintered bodies by a gelate-freezing method. Journal of the Ceramic Society of Japan (???????????????), 113(1323), 712-715. | 2005 | 420 | 10.2109/jcersj.113.712 | 3902 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | 0 | 0.3 | 7 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 64.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nakata, M.; Tanihata, K.; Yamaguchi, S.; Suganuma, K. (2005). Fabrication of porous alumina sintered bodies by a gelate-freezing method. Journal of the Ceramic Society of Japan (???????????????), 113(1323), 712-715. | 2005 | 420 | 10.2109/jcersj.113.712 | 3903 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | 0 | 0.3 | 5 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 71.0 | 0.0 | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nakata, M.; Tanihata, K.; Yamaguchi, S.; Suganuma, K. (2005). Fabrication of porous alumina sintered bodies by a gelate-freezing method. Journal of the Ceramic Society of Japan (???????????????), 113(1323), 712-715. | 2005 | 420 | 10.2109/jcersj.113.712 | 3904 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | 0 | 0.3 | 5 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 69.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nakata, M.; Tanihata, K.; Yamaguchi, S.; Suganuma, K. (2005). Fabrication of porous alumina sintered bodies by a gelate-freezing method. Journal of the Ceramic Society of Japan (???????????????), 113(1323), 712-715. | 2005 | 420 | 10.2109/jcersj.113.712 | 3905 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | 0 | 0.3 | 5 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Oberacker, R., Waschkies, T., & Hoffmann, M. J. (2011). Microstructure Maps for Unidirectional Freezing of Particle Suspensions. Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials V: Ceramic Engineering and Science Proceedings, Volume 32, 35-44. | 2011 | 438 | 10.1002/9781118095379 | 4035 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | 0 | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 5.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Oberacker, R., Waschkies, T., & Hoffmann, M. J. (2011). Microstructure Maps for Unidirectional Freezing of Particle Suspensions. Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials V: Ceramic Engineering and Science Proceedings, Volume 32, 35-44. | 2011 | 438 | 10.1002/9781118095379 | 4036 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | 0 | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 7.5 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Oberacker, R., Waschkies, T., & Hoffmann, M. J. (2011). Microstructure Maps for Unidirectional Freezing of Particle Suspensions. Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials V: Ceramic Engineering and Science Proceedings, Volume 32, 35-44. | 2011 | 438 | 10.1002/9781118095379 | 4037 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | 0 | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 10.5 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Oberacker, R., Waschkies, T., & Hoffmann, M. J. (2011). Microstructure Maps for Unidirectional Freezing of Particle Suspensions. Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials V: Ceramic Engineering and Science Proceedings, Volume 32, 35-44. | 2011 | 438 | 10.1002/9781118095379 | 4038 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | 0 | 3.3 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 7.5 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 150.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Oberacker, R., Waschkies, T., & Hoffmann, M. J. (2011). Microstructure Maps for Unidirectional Freezing of Particle Suspensions. Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials V: Ceramic Engineering and Science Proceedings, Volume 32, 35-44. | 2011 | 438 | 10.1002/9781118095379 | 4039 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | 0 | 3.3 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 10.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 125.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Oberacker, R., Waschkies, T., & Hoffmann, M. J. (2011). Microstructure Maps for Unidirectional Freezing of Particle Suspensions. Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials V: Ceramic Engineering and Science Proceedings, Volume 32, 35-44. | 2011 | 438 | 10.1002/9781118095379 | 4040 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | 0 | 3.3 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 21.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Oberacker, R., Waschkies, T., & Hoffmann, M. J. (2011). Microstructure Maps for Unidirectional Freezing of Particle Suspensions. Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials V: Ceramic Engineering and Science Proceedings, Volume 32, 35-44. | 2011 | 438 | 10.1002/9781118095379 | 4041 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 5.0 | 1.0 | 100 | 0 | 0.8 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 23.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Oberacker, R., Waschkies, T., & Hoffmann, M. J. (2011). Microstructure Maps for Unidirectional Freezing of Particle Suspensions. Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials V: Ceramic Engineering and Science Proceedings, Volume 32, 35-44. | 2011 | 438 | 10.1002/9781118095379 | 4042 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 0.8 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 29.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Oberacker, R., Waschkies, T., & Hoffmann, M. J. (2011). Microstructure Maps for Unidirectional Freezing of Particle Suspensions. Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials V: Ceramic Engineering and Science Proceedings, Volume 32, 35-44. | 2011 | 438 | 10.1002/9781118095379 | 4043 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | 0 | 0.8 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Peko, C., Groth, B., & Nettleship, I. (2010). The Effect of Polyvinyl Alcohol on the Microstructure and Permeability of Freeze?Cast Alumina. Journal of the American Ceramic Society, 93(1), 115-120. | 2010 | 469 | 10.1111/j.1551-2916.2009.03398.x | 4098 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.0 | 0.0 | 24.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Peko, C., Groth, B., & Nettleship, I. (2010). The Effect of Polyvinyl Alcohol on the Microstructure and Permeability of Freeze?Cast Alumina. Journal of the American Ceramic Society, 93(1), 115-120. | 2010 | 469 | 10.1111/j.1551-2916.2009.03398.x | 4099 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.4 | 5 | 1 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 75.0 | 0.0 | 21.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Peko, C., Groth, B., & Nettleship, I. (2010). The Effect of Polyvinyl Alcohol on the Microstructure and Permeability of Freeze?Cast Alumina. Journal of the American Ceramic Society, 93(1), 115-120. | 2010 | 469 | 10.1111/j.1551-2916.2009.03398.x | 4100 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.4 | 10 | 1 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 75.0 | 0.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Peko, C., Groth, B., & Nettleship, I. (2010). The Effect of Polyvinyl Alcohol on the Microstructure and Permeability of Freeze?Cast Alumina. Journal of the American Ceramic Society, 93(1), 115-120. | 2010 | 469 | 10.1111/j.1551-2916.2009.03398.x | 4101 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.4 | 15 | 1 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 78.0 | 0.0 | 16.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Peko, C., Groth, B., & Nettleship, I. (2010). The Effect of Polyvinyl Alcohol on the Microstructure and Permeability of Freeze?Cast Alumina. Journal of the American Ceramic Society, 93(1), 115-120. | 2010 | 469 | 10.1111/j.1551-2916.2009.03398.x | 4102 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.4 | 20 | 1 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 45.0 | 0.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pekor, C. M., Kisa, P., & Nettleship, I. (2008). Effect of Polyethylene Glycol on the Microstructure of Freeze?Cast Alumina. Journal of the American Ceramic Society, 91(10), 3185-3190. | 2008 | 470 | 10.1111/j.1551-2916.2008.02616.x | 4103 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 16.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 38.1 | 26.2 | 11.9 | 0.0 | 0.0 | 0.0 | 0.0 |
Pekor, C. M., Kisa, P., & Nettleship, I. (2008). Effect of Polyethylene Glycol on the Microstructure of Freeze?Cast Alumina. Journal of the American Ceramic Society, 91(10), 3185-3190. | 2008 | 470 | 10.1111/j.1551-2916.2008.02616.x | 4104 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 33.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 30.5 | 22.9 | 7.6 | 0.0 | 0.0 | 0.0 | 0.0 |
Pekor, C. M., Kisa, P., & Nettleship, I. (2008). Effect of Polyethylene Glycol on the Microstructure of Freeze?Cast Alumina. Journal of the American Ceramic Society, 91(10), 3185-3190. | 2008 | 470 | 10.1111/j.1551-2916.2008.02616.x | 4105 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 16.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 94.0 | 62.0 | 32.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pekor, C. M., Kisa, P., & Nettleship, I. (2008). Effect of Polyethylene Glycol on the Microstructure of Freeze?Cast Alumina. Journal of the American Ceramic Society, 91(10), 3185-3190. | 2008 | 470 | 10.1111/j.1551-2916.2008.02616.x | 4106 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 33.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 26.0 | 20.0 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pekor, C. M., Kisa, P., & Nettleship, I. (2008). Effect of Polyethylene Glycol on the Microstructure of Freeze?Cast Alumina. Journal of the American Ceramic Society, 91(10), 3185-3190. | 2008 | 470 | 10.1111/j.1551-2916.2008.02616.x | 4107 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 16.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 90.0 | 59.0 | 31.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pekor, C. M., Kisa, P., & Nettleship, I. (2008). Effect of Polyethylene Glycol on the Microstructure of Freeze?Cast Alumina. Journal of the American Ceramic Society, 91(10), 3185-3190. | 2008 | 470 | 10.1111/j.1551-2916.2008.02616.x | 4108 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 33.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 23.0 | 15.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pekor, C. M., Kisa, P., & Nettleship, I. (2008). Effect of Polyethylene Glycol on the Microstructure of Freeze?Cast Alumina. Journal of the American Ceramic Society, 91(10), 3185-3190. | 2008 | 470 | 10.1111/j.1551-2916.2008.02616.x | 4109 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 16.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 52.0 | 30.0 | 22.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pekor, C. M., Kisa, P., & Nettleship, I. (2008). Effect of Polyethylene Glycol on the Microstructure of Freeze?Cast Alumina. Journal of the American Ceramic Society, 91(10), 3185-3190. | 2008 | 470 | 10.1111/j.1551-2916.2008.02616.x | 4110 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 33.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 15.0 | 10.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pekor, C. M., Kisa, P., & Nettleship, I. (2008). Effect of Polyethylene Glycol on the Microstructure of Freeze?Cast Alumina. Journal of the American Ceramic Society, 91(10), 3185-3190. | 2008 | 470 | 10.1111/j.1551-2916.2008.02616.x | 4111 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 16.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 67.0 | 35.0 | 32.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pekor, C. M., Kisa, P., & Nettleship, I. (2008). Effect of Polyethylene Glycol on the Microstructure of Freeze?Cast Alumina. Journal of the American Ceramic Society, 91(10), 3185-3190. | 2008 | 470 | 10.1111/j.1551-2916.2008.02616.x | 4112 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 33.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 21.0 | 12.0 | 9.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pekor, C. M., Kisa, P., & Nettleship, I. (2008). Effect of Polyethylene Glycol on the Microstructure of Freeze?Cast Alumina. Journal of the American Ceramic Society, 91(10), 3185-3190. | 2008 | 470 | 10.1111/j.1551-2916.2008.02616.x | 4113 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 16.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 50.0 | 22.0 | 28.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pekor, C. M., Kisa, P., & Nettleship, I. (2008). Effect of Polyethylene Glycol on the Microstructure of Freeze?Cast Alumina. Journal of the American Ceramic Society, 91(10), 3185-3190. | 2008 | 470 | 10.1111/j.1551-2916.2008.02616.x | 4114 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 33.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 16.0 | 8.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pekor, C. M., Kisa, P., & Nettleship, I. (2008). Effect of Polyethylene Glycol on the Microstructure of Freeze?Cast Alumina. Journal of the American Ceramic Society, 91(10), 3185-3190. | 2008 | 470 | 10.1111/j.1551-2916.2008.02616.x | 4115 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 16.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pekor, C. M., Kisa, P., & Nettleship, I. (2008). Effect of Polyethylene Glycol on the Microstructure of Freeze?Cast Alumina. Journal of the American Ceramic Society, 91(10), 3185-3190. | 2008 | 470 | 10.1111/j.1551-2916.2008.02616.x | 4116 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 33.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 29.0 | 22.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pekor, C. M., Kisa, P., & Nettleship, I. (2008). Effect of Polyethylene Glycol on the Microstructure of Freeze?Cast Alumina. Journal of the American Ceramic Society, 91(10), 3185-3190. | 2008 | 470 | 10.1111/j.1551-2916.2008.02616.x | 4117 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 16.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 56.0 | 38.0 | 18.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pekor, C. M., Kisa, P., & Nettleship, I. (2008). Effect of Polyethylene Glycol on the Microstructure of Freeze?Cast Alumina. Journal of the American Ceramic Society, 91(10), 3185-3190. | 2008 | 470 | 10.1111/j.1551-2916.2008.02616.x | 4118 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 33.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 31.0 | 21.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pekor, C. M., Kisa, P., & Nettleship, I. (2008). Effect of Polyethylene Glycol on the Microstructure of Freeze?Cast Alumina. Journal of the American Ceramic Society, 91(10), 3185-3190. | 2008 | 470 | 10.1111/j.1551-2916.2008.02616.x | 4119 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.4 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 16.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 73.0 | 48.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pekor, C. M., Kisa, P., & Nettleship, I. (2008). Effect of Polyethylene Glycol on the Microstructure of Freeze?Cast Alumina. Journal of the American Ceramic Society, 91(10), 3185-3190. | 2008 | 470 | 10.1111/j.1551-2916.2008.02616.x | 4120 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | powder | 0.4 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 33.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 30.0 | 20.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pekor, C. M., Kisa, P., & Nettleship, I. (2008). Effect of Polyethylene Glycol on the Microstructure of Freeze?Cast Alumina. Journal of the American Ceramic Society, 91(10), 3185-3190. | 2008 | 470 | 10.1111/j.1551-2916.2008.02616.x | 4121 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.4 | 3 | 1 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 16.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 88.0 | 58.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pekor, C. M., Kisa, P., & Nettleship, I. (2008). Effect of Polyethylene Glycol on the Microstructure of Freeze?Cast Alumina. Journal of the American Ceramic Society, 91(10), 3185-3190. | 2008 | 470 | 10.1111/j.1551-2916.2008.02616.x | 4122 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.4 | 3 | 1 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 33.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 24.0 | 16.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pekor, C. M., Kisa, P., & Nettleship, I. (2008). Effect of Polyethylene Glycol on the Microstructure of Freeze?Cast Alumina. Journal of the American Ceramic Society, 91(10), 3185-3190. | 2008 | 470 | 10.1111/j.1551-2916.2008.02616.x | 4123 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.4 | 5 | 1 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 16.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 57.0 | 37.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pekor, C. M., Kisa, P., & Nettleship, I. (2008). Effect of Polyethylene Glycol on the Microstructure of Freeze?Cast Alumina. Journal of the American Ceramic Society, 91(10), 3185-3190. | 2008 | 470 | 10.1111/j.1551-2916.2008.02616.x | 4124 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.4 | 5 | 1 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 33.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 35.0 | 25.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pekor, C., & Nettleship, I. (2014). The effect of the molecular weight of polyethylene glycol on the microstructure of freeze-cast alumina. Ceramics International, 40(7), 9171-9177. | 2014 | 471 | 10.1016/j.ceramint.2014.01.134 | 4137 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.4 | 5 | 1 | 0 | 200.0 | 0.0 | 0.0 | immersion | constant | 55.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pekor, C., & Nettleship, I. (2014). The effect of the molecular weight of polyethylene glycol on the microstructure of freeze-cast alumina. Ceramics International, 40(7), 9171-9177. | 2014 | 471 | 10.1016/j.ceramint.2014.01.134 | 4138 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.4 | 5 | 1 | 0 | 200.0 | 0.0 | 0.0 | immersion | constant | 55.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pekor, C., & Nettleship, I. (2014). The effect of the molecular weight of polyethylene glycol on the microstructure of freeze-cast alumina. Ceramics International, 40(7), 9171-9177. | 2014 | 471 | 10.1016/j.ceramint.2014.01.134 | 4139 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.4 | 5 | 1 | 0 | 200.0 | 0.0 | 0.0 | immersion | constant | 55.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 6.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pekor, C., & Nettleship, I. (2014). The effect of the molecular weight of polyethylene glycol on the microstructure of freeze-cast alumina. Ceramics International, 40(7), 9171-9177. | 2014 | 471 | 10.1016/j.ceramint.2014.01.134 | 4140 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.4 | 5 | 1 | 0 | 200.0 | 0.0 | 0.0 | immersion | constant | 55.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 5.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pekor, C., & Nettleship, I. (2014). The effect of the molecular weight of polyethylene glycol on the microstructure of freeze-cast alumina. Ceramics International, 40(7), 9171-9177. | 2014 | 471 | 10.1016/j.ceramint.2014.01.134 | 4141 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 5 | 200.0 | 0.0 | 0.0 | immersion | constant | 55.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Petrini, M., Ferrante, M., & Su, B. (2013). Fabrication and characterization of biomimetic ceramic/polymer composite materials for dental restoration. Dental Materials, 29(4), 375-381. | 2013 | 478 | 10.1016/j.dental.2012.12.004 | 5469 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Petrini, M., Ferrante, M., & Su, B. (2013). Fabrication and characterization of biomimetic ceramic/polymer composite materials for dental restoration. Dental Materials, 29(4), 375-381. | 2013 | 478 | 10.1016/j.dental.2012.12.004 | 5812 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | 0 | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 65.0 | 44.0 | 21.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Preiss, A., Su, B., Collins, S., & Simpson, D. (2012). Tailored graded pore structure in zirconia toughened alumina ceramics using double-side cooling freeze casting. Journal of the European Ceramic Society, 32(8), 1575-1583. | 2012 | 500 | 10.1016/j.jeurceramsoc.2011.12.031 | 4191 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 51.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 263.0 | 1.0 | 0.0 | double-sided | linear | 10.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Preiss, A., Su, B., Collins, S., & Simpson, D. (2012). Tailored graded pore structure in zirconia toughened alumina ceramics using double-side cooling freeze casting. Journal of the European Ceramic Society, 32(8), 1575-1583. | 2012 | 500 | 10.1016/j.jeurceramsoc.2011.12.031 | 4192 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 51.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 263.0 | 1.0 | 0.0 | double-sided | linear | 14.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Preiss, A., Su, B., Collins, S., & Simpson, D. (2012). Tailored graded pore structure in zirconia toughened alumina ceramics using double-side cooling freeze casting. Journal of the European Ceramic Society, 32(8), 1575-1583. | 2012 | 500 | 10.1016/j.jeurceramsoc.2011.12.031 | 4193 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 51.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 263.0 | 1.0 | 0.0 | double-sided | linear | 24.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Preiss, A., Su, B., Collins, S., & Simpson, D. (2012). Tailored graded pore structure in zirconia toughened alumina ceramics using double-side cooling freeze casting. Journal of the European Ceramic Society, 32(8), 1575-1583. | 2012 | 500 | 10.1016/j.jeurceramsoc.2011.12.031 | 4194 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 51.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 263.0 | 1.0 | 0.0 | double-sided | linear | 2.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 40.7 | 28.0 | 11.8 | 0.0 | 0.0 | 0.0 | 0.0 |
Preiss, A., Su, B., Collins, S., & Simpson, D. (2012). Tailored graded pore structure in zirconia toughened alumina ceramics using double-side cooling freeze casting. Journal of the European Ceramic Society, 32(8), 1575-1583. | 2012 | 500 | 10.1016/j.jeurceramsoc.2011.12.031 | 4195 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 51.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 263.0 | 1.0 | 0.0 | double-sided | linear | 14.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 27.8 | 12.8 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Preiss, A., Su, B., Collins, S., & Simpson, D. (2012). Tailored graded pore structure in zirconia toughened alumina ceramics using double-side cooling freeze casting. Journal of the European Ceramic Society, 32(8), 1575-1583. | 2012 | 500 | 10.1016/j.jeurceramsoc.2011.12.031 | 4196 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 51.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 263.0 | 1.0 | 0.0 | double-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 41.7 | 5.2 | 36.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Preiss, A., Su, B., Collins, S., & Simpson, D. (2012). Tailored graded pore structure in zirconia toughened alumina ceramics using double-side cooling freeze casting. Journal of the European Ceramic Society, 32(8), 1575-1583. | 2012 | 500 | 10.1016/j.jeurceramsoc.2011.12.031 | 4197 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 51.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 258.0 | 1.0 | 0.0 | double-sided | linear | 6.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 40.0 | 23.0 | 17.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qiu, S., Tang, Y. F., & Zhao, K. (2016, March). Fabrication of Porous Al2O3 Ceramics by Freeze Drying Technique and Annealing Treatment. In Materials Science Forum (Vol. 848, p. 272). Trans Tech Publications Ltd.. | 2016 | 511 | 10.4028/www.scientific.net/MSF.848.272 | 4204 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | 0 | 0.96 | 0 | 1 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 40.35 | 0.0 | 6.0 | 0.0 | 0.0 | 126.61 | 0.0 | 0.0 |
Qiu, S., Tang, Y. F., & Zhao, K. (2016, March). Fabrication of Porous Al2O3 Ceramics by Freeze Drying Technique and Annealing Treatment. In Materials Science Forum (Vol. 848, p. 272). Trans Tech Publications Ltd.. | 2016 | 511 | 10.4028/www.scientific.net/MSF.848.272 | 4205 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | 0 | 0.96 | 0 | 1 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 48.0 | 0.0 | 22.0 | 0.0 | 0.0 | 53.9 | 0.0 | 0.0 |
Qiu, S., Tang, Y. F., & Zhao, K. (2016, March). Fabrication of Porous Al2O3 Ceramics by Freeze Drying Technique and Annealing Treatment. In Materials Science Forum (Vol. 848, p. 272). Trans Tech Publications Ltd.. | 2016 | 511 | 10.4028/www.scientific.net/MSF.848.272 | 4206 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | 0 | 0.96 | 0 | 1 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 62.5 | 0.0 | 58.0 | 0.0 | 0.0 | 48.7 | 0.0 | 0.0 |
Qiu, S., Tang, Y. F., & Zhao, K. (2016, March). Fabrication of Porous Al2O3 Ceramics by Freeze Drying Technique and Annealing Treatment. In Materials Science Forum (Vol. 848, p. 272). Trans Tech Publications Ltd.. | 2016 | 511 | 10.4028/www.scientific.net/MSF.848.272 | 4207 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | 0 | 0.96 | 0 | 1 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | needle | sintered | 65.0 | 0.0 | 110.0 | 0.0 | 0.0 | 38.9 | 0.0 | 0.0 |
Qiu, S., Tang, Y. F., & Zhao, K. (2016, March). Fabrication of Porous Al2O3 Ceramics by Freeze Drying Technique and Annealing Treatment. In Materials Science Forum (Vol. 848, p. 272). Trans Tech Publications Ltd.. | 2016 | 511 | 10.4028/www.scientific.net/MSF.848.272 | 4208 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | 0 | 0.96 | 0 | 1 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | needle | sintered | 45.5 | 0.0 | 90.0 | 0.0 | 0.0 | 25.9 | 0.0 | 0.0 |
Ries, H. C., Carlesso, M. V., Eigenbrod, C., Kroll, S., & Rezwan, K. (2013, June). On the performance of porous sound absorbent ceramic lining in a combustion chamber test rig. In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition (pp. V004T02A008-V004T02A008). American Society of Mechanical Engineers. | 2013 | 522 | 10.1115/GT2013-95492 | 6080 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | space-holder | 0 | 0.0 | 0.0 | 1 | 0 | 0 | equiaxed | sintered | 80.0 | 0.0 | 1000.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ries, H. C., Carlesso, M. V., Eigenbrod, C., Kroll, S., & Rezwan, K. (2013, June). On the performance of porous sound absorbent ceramic lining in a combustion chamber test rig. In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition (pp. V004T02A008-V004T02A008). American Society of Mechanical Engineers. | 2013 | 522 | 10.1115/GT2013-95492 | 6081 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | space-holder | 0 | 0.0 | 0.0 | 1 | 0 | 0 | equiaxed | sintered | 80.0 | 0.0 | 2600.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ries, H. C., Carlesso, M. V., Eigenbrod, C., Kroll, S., & Rezwan, K. (2013, June). On the performance of porous sound absorbent ceramic lining in a combustion chamber test rig. In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition (pp. V004T02A008-V004T02A008). American Society of Mechanical Engineers. | 2013 | 522 | 10.1115/GT2013-95492 | 6082 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | space-holder | 0 | 0.0 | 0.0 | 1 | 0 | 0 | equiaxed | sintered | 80.0 | 0.0 | 400.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Rodríguez-Parra, J. M., Moreno, R., & Nieto, I. M. (2012). Effect of cooling rate on the microstructure and porosity of alumina produced by freeze casting. Journal of the Serbian Chemical Society, 77(12), 1775-1785. | 2012 | 526 | 10.2298/jsc121018132r | 4236 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 20 | 213.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 4.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Rodríguez-Parra, J. M., Moreno, R., & Nieto, I. M. (2012). Effect of cooling rate on the microstructure and porosity of alumina produced by freeze casting. Journal of the Serbian Chemical Society, 77(12), 1775-1785. | 2012 | 526 | 10.2298/jsc121018132r | 4237 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 20 | 213.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 4.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Rodríguez-Parra, J. M., Moreno, R., & Nieto, I. M. (2012). Effect of cooling rate on the microstructure and porosity of alumina produced by freeze casting. Journal of the Serbian Chemical Society, 77(12), 1775-1785. | 2012 | 526 | 10.2298/jsc121018132r | 4238 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 20 | 183.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 4.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2730 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 22.5 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2731 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 22.5 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 19.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2732 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 22.5 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2733 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 22.5 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2734 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 22.5 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 18.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2735 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 22.5 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2736 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 22.5 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 9.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2737 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 33.4 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2738 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 33.4 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2739 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 33.4 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2740 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 33.4 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2741 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 33.4 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2742 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 33.4 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2743 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 33.4 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2744 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 33.4 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2745 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 33.4 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2746 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 33.4 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2747 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 33.4 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2748 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 33.4 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2749 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 33.4 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2750 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 33.4 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2751 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 33.4 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 9.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2752 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 33.4 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2753 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 33.4 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2754 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 33.4 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2755 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 33.4 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2756 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 33.4 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2757 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 33.4 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 3.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2758 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 33.4 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2759 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 22.6 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 51.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2760 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 33.4 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 41.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2761 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 43.3 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 22.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shanti, N. O., Araki, K., & Halloran, J. W. (2006). Particle redistribution during dendritic solidification of particle suspensions. Journal of the American Ceramic Society, 89(8), 2444-2447. | 2006 | 560 | 10.1111/j.1551-2916.2006.01094.x | 2762 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 52.3 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shen, P., Xi, J., Fu, Y., Shaga, A., Sun, C., & Jiang, Q. (2014). Preparation of high-strength Al?Mg?Si/Al2O3 composites with lamellar structures using freeze casting and pressureless infiltration techniques. Acta Metallurgica Sinica (English Letters), 27(5), 944-950. | 2014 | 565 | 10.1007/s40195-014-0157-9 | 2765 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | 0 | 5.0 | 0 | 0 | 0 | 265.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 69.0 | 50.0 | 32.0 | 18.0 | 0.0 | 5.0 | 0.0 | 0.0 |
Shen, P., Xi, J., Fu, Y., Shaga, A., Sun, C., & Jiang, Q. (2014). Preparation of high-strength Al?Mg?Si/Al2O3 composites with lamellar structures using freeze casting and pressureless infiltration techniques. Acta Metallurgica Sinica (English Letters), 27(5), 944-950. | 2014 | 565 | 10.1007/s40195-014-0157-9 | 2766 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | 0 | 5.0 | 0 | 0 | 0 | 265.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 66.0 | 45.0 | 17.0 | 28.0 | 0.0 | 22.0 | 0.0 | 0.0 |
Shen, P., Xi, J., Fu, Y., Shaga, A., Sun, C., & Jiang, Q. (2014). Preparation of high-strength Al?Mg?Si/Al2O3 composites with lamellar structures using freeze casting and pressureless infiltration techniques. Acta Metallurgica Sinica (English Letters), 27(5), 944-950. | 2014 | 565 | 10.1007/s40195-014-0157-9 | 2767 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 5.0 | 0 | 0 | 0 | 265.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 59.0 | 42.0 | 4.0 | 38.0 | 0.0 | 58.0 | 0.0 | 0.0 |
Shi, G., Wu, Z., Jiang, C., Peng, S., Yan, J., & Wang, Z. (2015). Porous alumina ceramics produced by physical vapor deposition assisted freeze-casting method. Materials Letters, 161, 580-582. | 2015 | 569 | 10.1016/j.matlet.2015.09.037 | 2777 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 5.0 | 1.0 | 83 | 0 | 0.15 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.1 | 0.0 | 0.0 | 0.0 | 0.0 | 26.4 | 0.0 | 0.0 |
Shi, G., Wu, Z., Jiang, C., Peng, S., Yan, J., & Wang, Z. (2015). Porous alumina ceramics produced by physical vapor deposition assisted freeze-casting method. Materials Letters, 161, 580-582. | 2015 | 569 | 10.1016/j.matlet.2015.09.037 | 2778 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 5.0 | 1.0 | 83 | 0 | 0.15 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 66.7 | 0.0 | 0.0 | 0.0 | 0.0 | 22.1 | 0.0 | 0.0 |
Shi, G., Wu, Z., Jiang, C., Peng, S., Yan, J., & Wang, Z. (2015). Porous alumina ceramics produced by physical vapor deposition assisted freeze-casting method. Materials Letters, 161, 580-582. | 2015 | 569 | 10.1016/j.matlet.2015.09.037 | 2779 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 5.0 | 1.0 | 83 | 0 | 0.15 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 68.0 | 0.0 | 0.0 | 0.0 | 0.0 | 21.7 | 0.0 | 0.0 |
Silva, A. M., Nunes, E. H., Souza, D. F., Martens, D. L., da Costa, J. C. D., Houmard, M., & Vasconcelos, W. L. (2015). The influence of Fe 2 O 3 doping on the pore structure and mechanical strength of TiO 2-containing alumina obtained by freeze-casting. Ceramics International, 41(10), 14049-14056. | 2015 | 576 | 10.1016/j.ceramint.2015.07.021 | 2792 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | 0 | 0.8 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 11 | dendritic | sintered | 58.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Silva, A. M., Nunes, E. H., Souza, D. F., Martens, D. L., da Costa, J. C. D., Houmard, M., & Vasconcelos, W. L. (2015). The influence of Fe 2 O 3 doping on the pore structure and mechanical strength of TiO 2-containing alumina obtained by freeze-casting. Ceramics International, 41(10), 14049-14056. | 2015 | 576 | 10.1016/j.ceramint.2015.07.021 | 2793 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 25.0 | 1.0 | 95 | 0 | 0.8 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 20 | dendritic | sintered | 47.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Silva, A. M., Nunes, E. H., Souza, D. F., Martens, D. L., da Costa, J. C. D., Houmard, M., & Vasconcelos, W. L. (2015). The influence of Fe 2 O 3 doping on the pore structure and mechanical strength of TiO 2-containing alumina obtained by freeze-casting. Ceramics International, 41(10), 14049-14056. | 2015 | 576 | 10.1016/j.ceramint.2015.07.021 | 2794 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 25.0 | 1.0 | 93 | 0 | 0.8 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 18 | dendritic | sintered | 53.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Silva, A. M., Nunes, E. H., Souza, D. F., Martens, D. L., da Costa, J. C. D., Houmard, M., & Vasconcelos, W. L. (2015). The influence of Fe 2 O 3 doping on the pore structure and mechanical strength of TiO 2-containing alumina obtained by freeze-casting. Ceramics International, 41(10), 14049-14056. | 2015 | 576 | 10.1016/j.ceramint.2015.07.021 | 2795 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 25.0 | 1.0 | 91 | 0 | 0.8 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 23 | dendritic | sintered | 37.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Silva, A. M., Nunes, E. H., Souza, D. F., Martens, D. L., da Costa, J. C. D., Houmard, M., & Vasconcelos, W. L. (2015). The influence of Fe 2 O 3 doping on the pore structure and mechanical strength of TiO 2-containing alumina obtained by freeze-casting. Ceramics International, 41(10), 14049-14056. | 2015 | 576 | 10.1016/j.ceramint.2015.07.021 | 2796 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 25.0 | 1.0 | 88 | 0 | 0.8 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 28 | dendritic | sintered | 27.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Silva, A. M., Nunes, E. H., Souza, D. F., Martens, D. L., da Costa, J. C. D., Houmard, M., & Vasconcelos, W. L. (2015). The influence of Fe 2 O 3 doping on the pore structure and mechanical strength of TiO 2-containing alumina obtained by freeze-casting. Ceramics International, 41(10), 14049-14056. | 2015 | 576 | 10.1016/j.ceramint.2015.07.021 | 2797 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 25.0 | 1.0 | 86 | 0 | 0.8 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 32 | dendritic | sintered | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Silva, A. M., Nunes, E. H., Souza, D. F., Martens, D. L., da Costa, J. C. D., Houmard, M., & Vasconcelos, W. L. (2015). Effect of titania addition on the properties of freeze-cast alumina samples. Ceramics International, 41(9), 10467-10475. | 2015 | 577 | 10.1016/j.cerarnint.2015.04.132 | 2798 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 15 | dendritic | sintered | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Silva, A. M., Nunes, E. H., Souza, D. F., Martens, D. L., da Costa, J. C. D., Houmard, M., & Vasconcelos, W. L. (2015). Effect of titania addition on the properties of freeze-cast alumina samples. Ceramics International, 41(9), 10467-10475. | 2015 | 577 | 10.1016/j.cerarnint.2015.04.132 | 2804 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 5 | dendritic | sintered | 69.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.0 | 0.0 |
Silva, A. M., Nunes, E. H., Souza, D. F., Martens, D. L., da Costa, J. C. D., Houmard, M., & Vasconcelos, W. L. (2015). Effect of titania addition on the properties of freeze-cast alumina samples. Ceramics International, 41(9), 10467-10475. | 2015 | 577 | 10.1016/j.cerarnint.2015.04.132 | 2810 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 2 | dendritic | sintered | 58.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 23.0 | 0.0 |
Sofie, S. W., & Dogan, F. (2001). Freeze casting of aqueous alumina slurries with glycerol. Journal of the American Ceramic Society, 84(7), 1459-1464. | 2001 | 584 | 10.1111/j.1151-2916.2001.tb00860 | 2848 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 45.0 | 1.0 | 100 | 0 | 0.37 | 1 | 1 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 32.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W., & Dogan, F. (2001). Freeze casting of aqueous alumina slurries with glycerol. Journal of the American Ceramic Society, 84(7), 1459-1464. | 2001 | 584 | 10.1111/j.1151-2916.2001.tb00860 | 2849 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 47.5 | 1.0 | 100 | 0 | 0.37 | 1 | 1 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 28.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W., & Dogan, F. (2001). Freeze casting of aqueous alumina slurries with glycerol. Journal of the American Ceramic Society, 84(7), 1459-1464. | 2001 | 584 | 10.1111/j.1151-2916.2001.tb00860 | 2850 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 50.0 | 1.0 | 100 | 0 | 0.37 | 1 | 1 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W., & Dogan, F. (2001). Freeze casting of aqueous alumina slurries with glycerol. Journal of the American Ceramic Society, 84(7), 1459-1464. | 2001 | 584 | 10.1111/j.1151-2916.2001.tb00860 | 2851 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 52.5 | 1.0 | 100 | 0 | 0.37 | 1 | 1 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 22.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W., & Dogan, F. (2001). Freeze casting of aqueous alumina slurries with glycerol. Journal of the American Ceramic Society, 84(7), 1459-1464. | 2001 | 584 | 10.1111/j.1151-2916.2001.tb00860 | 2852 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 55.0 | 1.0 | 100 | 0 | 0.37 | 1 | 1 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W., & Dogan, F. (2001). Freeze casting of aqueous alumina slurries with glycerol. Journal of the American Ceramic Society, 84(7), 1459-1464. | 2001 | 584 | 10.1111/j.1151-2916.2001.tb00860 | 2853 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 57.5 | 1.0 | 100 | 0 | 0.37 | 1 | 1 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 17.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W., & Dogan, F. (2001). Freeze casting of aqueous alumina slurries with glycerol. Journal of the American Ceramic Society, 84(7), 1459-1464. | 2001 | 584 | 10.1111/j.1151-2916.2001.tb00860 | 2854 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 60.0 | 1.0 | 100 | 0 | 0.37 | 1 | 1 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 13.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W., & Dogan, F. (2001). Freeze casting of aqueous alumina slurries with glycerol. Journal of the American Ceramic Society, 84(7), 1459-1464. | 2001 | 584 | 10.1111/j.1151-2916.2001.tb00860 | 2855 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 62.5 | 1.0 | 100 | 0 | 0.37 | 1 | 1 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 32.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W., & Dogan, F. (2001). Freeze casting of aqueous alumina slurries with glycerol. Journal of the American Ceramic Society, 84(7), 1459-1464. | 2001 | 584 | 10.1111/j.1151-2916.2001.tb00860 | 2856 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 45.0 | 1.0 | 100 | 0 | 0.37 | 1 | 1 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 28.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W., & Dogan, F. (2001). Freeze casting of aqueous alumina slurries with glycerol. Journal of the American Ceramic Society, 84(7), 1459-1464. | 2001 | 584 | 10.1111/j.1151-2916.2001.tb00860 | 2857 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 50.0 | 1.0 | 100 | 0 | 0.37 | 1 | 1 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 24.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W., & Dogan, F. (2001). Freeze casting of aqueous alumina slurries with glycerol. Journal of the American Ceramic Society, 84(7), 1459-1464. | 2001 | 584 | 10.1111/j.1151-2916.2001.tb00860 | 2858 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 52.5 | 1.0 | 100 | 0 | 0.37 | 1 | 1 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W., & Dogan, F. (2001). Freeze casting of aqueous alumina slurries with glycerol. Journal of the American Ceramic Society, 84(7), 1459-1464. | 2001 | 584 | 10.1111/j.1151-2916.2001.tb00860 | 2859 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 55.0 | 1.0 | 100 | 0 | 0.37 | 1 | 1 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 14.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W., & Dogan, F. (2001). Freeze casting of aqueous alumina slurries with glycerol. Journal of the American Ceramic Society, 84(7), 1459-1464. | 2001 | 584 | 10.1111/j.1151-2916.2001.tb00860 | 2860 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 57.5 | 1.0 | 100 | 0 | 0.37 | 1 | 1 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W., & Dogan, F. (2001). Freeze casting of aqueous alumina slurries with glycerol. Journal of the American Ceramic Society, 84(7), 1459-1464. | 2001 | 584 | 10.1111/j.1151-2916.2001.tb00860 | 2861 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 60.0 | 1.0 | 100 | 0 | 0.37 | 1 | 1 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Soon, Y. M., Shin, K. H., Koh, Y. H., Choi, W. Y., & Kim, H. E. (2011). Assembling unidirectionally frozen alumina/camphene bodies for aligned porous alumina ceramics with larger dimensions. Journal of the European Ceramic Society, 31(3), 415-419. | 2011 | 588 | 10.1016/j.jeurceramsoc.2010.09.019 | 2865 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.3 | 0 | 2 | 0 | 306.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 83.0 | 0.0 | 240.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Soon, Y. M., Shin, K. H., Koh, Y. H., Choi, W. Y., & Kim, H. E. (2011). Assembling unidirectionally frozen alumina/camphene bodies for aligned porous alumina ceramics with larger dimensions. Journal of the European Ceramic Society, 31(3), 415-419. | 2011 | 588 | 10.1016/j.jeurceramsoc.2010.09.019 | 2866 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.3 | 0 | 2 | 0 | 306.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 83.0 | 0.0 | 230.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 |
Soon, Y. M., Shin, K. H., Koh, Y. H., Choi, W. Y., & Kim, H. E. (2011). Assembling unidirectionally frozen alumina/camphene bodies for aligned porous alumina ceramics with larger dimensions. Journal of the European Ceramic Society, 31(3), 415-419. | 2011 | 588 | 10.1016/j.jeurceramsoc.2010.09.019 | 2867 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.3 | 0 | 2 | 0 | 306.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 80.0 | 0.0 | 190.0 | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 |
Soon, Y. M., Shin, K. H., Koh, Y. H., Choi, W. Y., & Kim, H. E. (2011). Assembling unidirectionally frozen alumina/camphene bodies for aligned porous alumina ceramics with larger dimensions. Journal of the European Ceramic Society, 31(3), 415-419. | 2011 | 588 | 10.1016/j.jeurceramsoc.2010.09.019 | 2868 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.3 | 0 | 2 | 0 | 306.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 79.0 | 0.0 | 150.0 | 0.0 | 0.0 | 16.0 | 0.0 | 0.0 |
Souza, D. F., Nunes, E. H., Pimenta, D. S., Vasconcelos, D. C., Nascimento, J. F., Grava, W., ... & Vasconcelos, W. L. (2014). Synthesis and structural evaluation of freeze-cast porous alumina. Materials Characterization, 96, 183-195. | 2014 | 590 | 10.1016/j.matchar.2014.08.009 | 2873 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | 0 | 1.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 65.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Souza, D. F., Nunes, E. H., Pimenta, D. S., Vasconcelos, D. C., Nascimento, J. F., Grava, W., ... & Vasconcelos, W. L. (2014). Synthesis and structural evaluation of freeze-cast porous alumina. Materials Characterization, 96, 183-195. | 2014 | 590 | 10.1016/j.matchar.2014.08.009 | 2874 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | 0 | 1.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 64.0 | 0.0 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Souza, D. F., Nunes, E. H., Pimenta, D. S., Vasconcelos, D. C., Nascimento, J. F., Grava, W., ... & Vasconcelos, W. L. (2014). Synthesis and structural evaluation of freeze-cast porous alumina. Materials Characterization, 96, 183-195. | 2014 | 590 | 10.1016/j.matchar.2014.08.009 | 2875 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | 0 | 1.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 60.0 | 0.0 | 8.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Souza, D. F., Nunes, E. H., Pimenta, D. S., Vasconcelos, D. C., Nascimento, J. F., Grava, W., ... & Vasconcelos, W. L. (2014). Synthesis and structural evaluation of freeze-cast porous alumina. Materials Characterization, 96, 183-195. | 2014 | 590 | 10.1016/j.matchar.2014.08.009 | 2876 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | 0 | 1.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 30.0 | 0.0 | 15.25 | 0.0 | 0.0 | 0.0 | 17.0 | 0.0 |
Souza, D. F., Nunes, E. H., Pimenta, D. S., Vasconcelos, D. C., Nascimento, J. F., Grava, W., ... & Vasconcelos, W. L. (2014). Synthesis and structural evaluation of freeze-cast porous alumina. Materials Characterization, 96, 183-195. | 2014 | 590 | 10.1016/j.matchar.2014.08.009 | 2877 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 1.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 20.0 | 0.0 | 15.0 | 0.0 | 0.0 | 0.0 | 24.0 | 0.0 |
Souza, D. F., Nunes, E. H., Pimenta, D. S., Vasconcelos, D. C., Nascimento, J. F., Grava, W., ... & Vasconcelos, W. L. (2014). Synthesis and structural evaluation of freeze-cast porous alumina. Materials Characterization, 96, 183-195. | 2014 | 590 | 10.1016/j.matchar.2014.08.009 | 2878 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | 0 | 1.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 48.0 | 0.0 | 11.0 | 0.0 | 0.0 | 0.0 | 8.8 | 0.0 |
Souza, D. F., Nunes, E. H., Pimenta, D. S., Vasconcelos, D. C., Nascimento, J. F., Grava, W., ... & Vasconcelos, W. L. (2014). Synthesis and structural evaluation of freeze-cast porous alumina. Materials Characterization, 96, 183-195. | 2014 | 590 | 10.1016/j.matchar.2014.08.009 | 2879 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | 0 | 1.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 30.0 | 0.0 | 16.5 | 0.0 | 0.0 | 0.0 | 16.0 | 0.0 |
Souza, D. F., Nunes, E. H., Pimenta, D. S., Vasconcelos, D. C., Nascimento, J. F., Grava, W., ... & Vasconcelos, W. L. (2014). Synthesis and structural evaluation of freeze-cast porous alumina. Materials Characterization, 96, 183-195. | 2014 | 590 | 10.1016/j.matchar.2014.08.009 | 2880 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | 0 | 1.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 28.0 | 0.0 | 17.0 | 0.0 | 0.0 | 0.0 | 15.0 | 0.0 |
Souza, D. F., Nunes, E. H., Pimenta, D. S., Vasconcelos, D. C., Nascimento, J. F., Grava, W., ... & Vasconcelos, W. L. (2014). Synthesis and structural evaluation of freeze-cast porous alumina. Materials Characterization, 96, 183-195. | 2014 | 590 | 10.1016/j.matchar.2014.08.009 | 2881 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | 0 | 1.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 20.0 | 0.0 | 16.5 | 0.0 | 0.0 | 0.0 | 16.0 | 0.0 |
Tallon, C., Moreno, R., & Nieto, I. M. (2009). Shaping of porous alumina bodies by freeze casting. Advances in Applied Ceramics, 108(5), 307-313. | 2009 | 605 | 10.1179/174367608x369280 | 2899 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | 0 | 0.35 | 0 | 0 | 20 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tallon, C., Moreno, R., & Nieto, I. M. (2009). Shaping of porous alumina bodies by freeze casting. Advances in Applied Ceramics, 108(5), 307-313. | 2009 | 605 | 10.1179/174367608x369280 | 2900 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | 0 | 0.35 | 0 | 0 | 20 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 41.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tallon, C., Moreno, R., & Nieto, I. M. (2009). Shaping of porous alumina bodies by freeze casting. Advances in Applied Ceramics, 108(5), 307-313. | 2009 | 605 | 10.1179/174367608x369280 | 2901 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 50.0 | 1.0 | 100 | 0 | 0.35 | 0 | 0 | 20 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 23.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tallon, C., Moreno, R., & Nieto, I. M. (2009). Shaping of porous alumina bodies by freeze casting. Advances in Applied Ceramics, 108(5), 307-313. | 2009 | 605 | 10.1179/174367608x369280 | 2902 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | 0 | 0.35 | 0 | 0 | 10 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 46.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tallon, C., Moreno, R., & Nieto, I. M. (2009). Shaping of porous alumina bodies by freeze casting. Advances in Applied Ceramics, 108(5), 307-313. | 2009 | 605 | 10.1179/174367608x369280 | 2903 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | 0 | 0.35 | 0 | 0 | 20 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 43.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tallon, C., Moreno, R., & Nieto, I. M. (2009). Shaping of porous alumina bodies by freeze casting. Advances in Applied Ceramics, 108(5), 307-313. | 2009 | 605 | 10.1179/174367608x369280 | 2904 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | 0 | 0.35 | 0 | 0 | 20 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 43.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tan, Y. M., Cervantes, O., Nam, S., Molitoris, J. D., & Hooper, J. P. (2016). Dynamic fragmentation of cellular, ice-templated alumina scaffolds. Journal of Applied Physics, 119(2), 024901. | 2016 | 607 | 10.1063/1.4939702 | 2905 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.4 | 2 | 1 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 46.0 | 75.0 | 38.0 | 37.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tan, Y. M., Cervantes, O., Nam, S., Molitoris, J. D., & Hooper, J. P. (2016). Dynamic fragmentation of cellular, ice-templated alumina scaffolds. Journal of Applied Physics, 119(2), 024901. | 2016 | 607 | 10.1063/1.4939702 | 2906 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.4 | 2 | 1 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.0 | 40.0 | 25.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tan, Y. M., Cervantes, O., Nam, S., Molitoris, J. D., & Hooper, J. P. (2016). Dynamic fragmentation of cellular, ice-templated alumina scaffolds. Journal of Applied Physics, 119(2), 024901. | 2016 | 607 | 10.1063/1.4939702 | 2907 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.4 | 2 | 1 | 0 | 0.0 | 1.0 | 0.0 | isotropic | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 75.0 | 23.0 | 18.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, Y., Qiu, S., Miao, Q., & Wu, C. (2016). Fabrication of lamellar porous alumina with axisymmetric structure by directional solidification with applied electric and magnetic fields. Journal of the European Ceramic Society, 36(5), 1233-1240. | 2016 | 614 | 10.1016/j.jeurceramsoc.2015.12.012 | 2932 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 40.0 | 0.0 | 0.0 |
Tang, Y., Qiu, S., Miao, Q., & Wu, C. (2016). Fabrication of lamellar porous alumina with axisymmetric structure by directional solidification with applied electric and magnetic fields. Journal of the European Ceramic Society, 36(5), 1233-1240. | 2016 | 614 | 10.1016/j.jeurceramsoc.2015.12.012 | 2933 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, Y., Qiu, S., Miao, Q., & Wu, C. (2016). Fabrication of lamellar porous alumina with axisymmetric structure by directional solidification with applied electric and magnetic fields. Journal of the European Ceramic Society, 36(5), 1233-1240. | 2016 | 614 | 10.1016/j.jeurceramsoc.2015.12.012 | 2934 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 42.0 | 0.0 | 0.0 |
Tang, Y., Qiu, S., Miao, Q., & Wu, C. (2016). Fabrication of lamellar porous alumina with axisymmetric structure by directional solidification with applied electric and magnetic fields. Journal of the European Ceramic Society, 36(5), 1233-1240. | 2016 | 614 | 10.1016/j.jeurceramsoc.2015.12.012 | 2935 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 44.0 | 0.0 | 0.0 |
Tang, Y., Qiu, S., Miao, Q., & Wu, C. (2016). Fabrication of lamellar porous alumina with axisymmetric structure by directional solidification with applied electric and magnetic fields. Journal of the European Ceramic Society, 36(5), 1233-1240. | 2016 | 614 | 10.1016/j.jeurceramsoc.2015.12.012 | 2936 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, Y., Qiu, S., Miao, Q., & Wu, C. (2016). Fabrication of lamellar porous alumina with axisymmetric structure by directional solidification with applied electric and magnetic fields. Journal of the European Ceramic Society, 36(5), 1233-1240. | 2016 | 614 | 10.1016/j.jeurceramsoc.2015.12.012 | 2937 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, Y., Qiu, S., Miao, Q., & Wu, C. (2016). Fabrication of lamellar porous alumina with axisymmetric structure by directional solidification with applied electric and magnetic fields. Journal of the European Ceramic Society, 36(5), 1233-1240. | 2016 | 614 | 10.1016/j.jeurceramsoc.2015.12.012 | 2938 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, Y., Qiu, S., Miao, Q., & Wu, C. (2016). Fabrication of lamellar porous alumina with axisymmetric structure by directional solidification with applied electric and magnetic fields. Journal of the European Ceramic Society, 36(5), 1233-1240. | 2016 | 614 | 10.1016/j.jeurceramsoc.2015.12.012 | 2939 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, Y., Qiu, S., Wu, C., Miao, Q., & Zhao, K. (2016). Freeze cast fabrication of porous ceramics using tert-butyl alcohol?water crystals as template. Journal of the European Ceramic Society, 36(6), 1513-1518. | 2016 | 615 | 10.1016/j.jeurceramsoc.2015.12.047 | 2940 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 1.0 | 0 | 1 | 0 | 248.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 58.0 | 0.0 | 0.0 | 0.0 | 0.0 | 23.0 | 0.0 | 0.0 |
Tang, Y., Qiu, S., Wu, C., Miao, Q., & Zhao, K. (2016). Freeze cast fabrication of porous ceramics using tert-butyl alcohol?water crystals as template. Journal of the European Ceramic Society, 36(6), 1513-1518. | 2016 | 615 | 10.1016/j.jeurceramsoc.2015.12.047 | 2941 | ceramic | Al2O3 | water | 89 | TBA | 10 | 20.0 | 1.0 | 100 | powder | 1.0 | 0 | 1 | 0 | 248.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 |
Tang, Y., Qiu, S., Wu, C., Miao, Q., & Zhao, K. (2016). Freeze cast fabrication of porous ceramics using tert-butyl alcohol?water crystals as template. Journal of the European Ceramic Society, 36(6), 1513-1518. | 2016 | 615 | 10.1016/j.jeurceramsoc.2015.12.047 | 2942 | ceramic | Al2O3 | water | 80 | TBA | 20 | 20.0 | 1.0 | 100 | powder | 1.0 | 0 | 1 | 0 | 248.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.0 | 0.0 |
Tang, Y., Qiu, S., Wu, C., Miao, Q., & Zhao, K. (2016). Freeze cast fabrication of porous ceramics using tert-butyl alcohol?water crystals as template. Journal of the European Ceramic Society, 36(6), 1513-1518. | 2016 | 615 | 10.1016/j.jeurceramsoc.2015.12.047 | 2943 | ceramic | Al2O3 | water | 69 | TBA | 30 | 20.0 | 1.0 | 100 | powder | 1.0 | 0 | 1 | 0 | 248.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 42.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 |
Tang, Y., Qiu, S., Wu, C., Miao, Q., & Zhao, K. (2016). Freeze cast fabrication of porous ceramics using tert-butyl alcohol?water crystals as template. Journal of the European Ceramic Society, 36(6), 1513-1518. | 2016 | 615 | 10.1016/j.jeurceramsoc.2015.12.047 | 2944 | ceramic | Al2O3 | water | 60 | TBA | 40 | 20.0 | 1.0 | 100 | powder | 1.0 | 0 | 1 | 0 | 248.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 48.0 | 0.0 | 0.0 | 0.0 | 0.0 | 12.0 | 0.0 | 0.0 |
Tang, Y., Qiu, S., Wu, C., Miao, Q., & Zhao, K. (2016). Freeze cast fabrication of porous ceramics using tert-butyl alcohol?water crystals as template. Journal of the European Ceramic Society, 36(6), 1513-1518. | 2016 | 615 | 10.1016/j.jeurceramsoc.2015.12.047 | 2945 | ceramic | Al2O3 | water | 50 | TBA | 50 | 20.0 | 1.0 | 100 | powder | 1.0 | 0 | 1 | 0 | 248.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 |
Tang, Y., Qiu, S., Wu, C., Miao, Q., & Zhao, K. (2016). Freeze cast fabrication of porous ceramics using tert-butyl alcohol?water crystals as template. Journal of the European Ceramic Society, 36(6), 1513-1518. | 2016 | 615 | 10.1016/j.jeurceramsoc.2015.12.047 | 2946 | ceramic | Al2O3 | water | 40 | TBA | 60 | 20.0 | 1.0 | 100 | powder | 1.0 | 0 | 1 | 0 | 248.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 |
Tang, Y., Qiu, S., Wu, C., Miao, Q., & Zhao, K. (2016). Freeze cast fabrication of porous ceramics using tert-butyl alcohol?water crystals as template. Journal of the European Ceramic Society, 36(6), 1513-1518. | 2016 | 615 | 10.1016/j.jeurceramsoc.2015.12.047 | 2947 | ceramic | Al2O3 | water | 30 | TBA | 69 | 20.0 | 1.0 | 100 | powder | 1.0 | 0 | 1 | 0 | 248.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 22.0 | 0.0 | 0.0 |
Tang, Y., Qiu, S., Wu, C., Miao, Q., & Zhao, K. (2016). Freeze cast fabrication of porous ceramics using tert-butyl alcohol?water crystals as template. Journal of the European Ceramic Society, 36(6), 1513-1518. | 2016 | 615 | 10.1016/j.jeurceramsoc.2015.12.047 | 2948 | ceramic | Al2O3 | water | 20 | TBA | 80 | 20.0 | 1.0 | 100 | powder | 1.0 | 0 | 1 | 0 | 248.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 48.0 | 0.0 | 0.0 | 0.0 | 0.0 | 23.0 | 0.0 | 0.0 |
Tang, Y., Qiu, S., Wu, C., Miao, Q., & Zhao, K. (2016). Freeze cast fabrication of porous ceramics using tert-butyl alcohol?water crystals as template. Journal of the European Ceramic Society, 36(6), 1513-1518. | 2016 | 615 | 10.1016/j.jeurceramsoc.2015.12.047 | 2949 | ceramic | Al2O3 | water | 10 | TBA | 89 | 20.0 | 1.0 | 100 | powder | 1.0 | 0 | 1 | 0 | 248.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 47.0 | 0.0 | 0.0 | 0.0 | 0.0 | 50.0 | 0.0 | 0.0 |
Tang, Y., Qiu, S., Wu, C., Miao, Q., & Zhao, K. (2016). Freeze cast fabrication of porous ceramics using tert-butyl alcohol?water crystals as template. Journal of the European Ceramic Society, 36(6), 1513-1518. | 2016 | 615 | 10.1016/j.jeurceramsoc.2015.12.047 | 2950 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 1.0 | 0 | 1 | 0 | 248.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 48.0 | 0.0 | 0.0 | 0.0 | 0.0 | 60.0 | 0.0 | 0.0 |
Tang, Y., Miao, Q., Liu, Y., Wu, Z., Zhang, W., & Zhao, K. (2014, August). Fabrication and Biological Properties of Bionic Structure Porous Alumina Ceramics with Spherical/lamellar Pores. In Materials Science Forum (Vol. 815). | 2015 | 617 | 0 | 2956 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.96 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 34.0 | 0.0 | 0.0 |
Tang, Y., Miao, Q., Liu, Y., Wu, Z., Zhang, W., & Zhao, K. (2014, August). Fabrication and Biological Properties of Bionic Structure Porous Alumina Ceramics with Spherical/lamellar Pores. In Materials Science Forum (Vol. 815). | 2015 | 617 | 0 | 2957 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.96 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 67.0 | 0.0 | 0.0 | 0.0 | 0.0 | 32.0 | 0.0 | 0.0 |
Tang, Y., Miao, Q., Liu, Y., Wu, Z., Zhang, W., & Zhao, K. (2014, August). Fabrication and Biological Properties of Bionic Structure Porous Alumina Ceramics with Spherical/lamellar Pores. In Materials Science Forum (Vol. 815). | 2015 | 617 | 0 | 2958 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.96 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 73.0 | 0.0 | 0.0 | 0.0 | 0.0 | 34.0 | 0.0 | 0.0 |
Tang, Y., Miao, Q., Liu, Y., Wu, Z., Zhang, W., & Zhao, K. (2014, August). Fabrication and Biological Properties of Bionic Structure Porous Alumina Ceramics with Spherical/lamellar Pores. In Materials Science Forum (Vol. 815). | 2015 | 617 | 0 | 2959 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.96 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 59.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, Y., Miao, Q., Liu, Y., Wu, Z., Zhang, W., & Zhao, K. (2014, August). Fabrication and Biological Properties of Bionic Structure Porous Alumina Ceramics with Spherical/lamellar Pores. In Materials Science Forum (Vol. 815). | 2015 | 617 | 0 | 2960 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 45.0 | 1.0 | 100 | powder | 0.96 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 63.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, Y., Miao, Q., Liu, Y., Wu, Z., Zhang, W., & Zhao, K. (2014, August). Fabrication and Biological Properties of Bionic Structure Porous Alumina Ceramics with Spherical/lamellar Pores. In Materials Science Forum (Vol. 815). | 2015 | 617 | 0 | 2961 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.96 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 67.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, Y., Miao, Q., Qiu, S., Zhao, K., & Hu, L. (2014). Novel freeze-casting fabrication of aligned lamellar porous alumina with a centrosymmetric structure. Journal of the European Ceramic Society, 34(15), 4077-4082. | 2014 | 618 | 10.1016/j.jeurceramsoc.2014.05.040 | 2962 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 84.0 | 0.0 | 0.0 |
Tang, Y., Miao, Q., Qiu, S., Zhao, K., & Hu, L. (2014). Novel freeze-casting fabrication of aligned lamellar porous alumina with a centrosymmetric structure. Journal of the European Ceramic Society, 34(15), 4077-4082. | 2014 | 618 | 10.1016/j.jeurceramsoc.2014.05.040 | 2963 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 42.0 | 0.0 | 0.0 | 0.0 | 0.0 | 44.0 | 0.0 | 0.0 |
Tang, Y., Miao, Q., Qiu, S., Zhao, K., & Hu, L. (2014). Novel freeze-casting fabrication of aligned lamellar porous alumina with a centrosymmetric structure. Journal of the European Ceramic Society, 34(15), 4077-4082. | 2014 | 618 | 10.1016/j.jeurceramsoc.2014.05.040 | 2964 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 56.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 |
Tang, Y., Miao, Q., Qiu, S., Zhao, K., & Hu, L. (2014). Novel freeze-casting fabrication of aligned lamellar porous alumina with a centrosymmetric structure. Journal of the European Ceramic Society, 34(15), 4077-4082. | 2014 | 618 | 10.1016/j.jeurceramsoc.2014.05.040 | 2965 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 28.0 | 0.0 | 0.0 | 0.0 | 0.0 | 82.0 | 0.0 | 0.0 |
Tang, Y., Miao, Q., Qiu, S., Zhao, K., & Hu, L. (2014). Novel freeze-casting fabrication of aligned lamellar porous alumina with a centrosymmetric structure. Journal of the European Ceramic Society, 34(15), 4077-4082. | 2014 | 618 | 10.1016/j.jeurceramsoc.2014.05.040 | 2966 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 39.0 | 0.0 | 0.0 | 0.0 | 0.0 | 38.0 | 0.0 | 0.0 |
Tang, Y., Miao, Q., Qiu, S., Zhao, K., & Hu, L. (2014). Novel freeze-casting fabrication of aligned lamellar porous alumina with a centrosymmetric structure. Journal of the European Ceramic Society, 34(15), 4077-4082. | 2014 | 618 | 10.1016/j.jeurceramsoc.2014.05.040 | 2967 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18.0 | 0.0 | 0.0 |
Tang, Y. F., Zhao, K., Wei, J. Q., & Qin, Y. S. (2010). Fabrication of aligned lamellar porous alumina using directional solidification of aqueous slurries with an applied electrostatic field. Journal of the European Ceramic Society, 30(9), 1963-1965. | 2010 | 619 | 10.1016/j.jeurceramsoc.2010.03.012 | 2968 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 77.1 | 0.0 | 53.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, Y. F., Zhao, K., Wei, J. Q., & Qin, Y. S. (2010). Fabrication of aligned lamellar porous alumina using directional solidification of aqueous slurries with an applied electrostatic field. Journal of the European Ceramic Society, 30(9), 1963-1965. | 2010 | 619 | 10.1016/j.jeurceramsoc.2010.03.012 | 2969 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 78.2 | 0.0 | 102.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, Y. F., Zhao, K., Wei, J. Q., & Qin, Y. S. (2010). Fabrication of aligned lamellar porous alumina using directional solidification of aqueous slurries with an applied electrostatic field. Journal of the European Ceramic Society, 30(9), 1963-1965. | 2010 | 619 | 10.1016/j.jeurceramsoc.2010.03.012 | 2970 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 77.9 | 0.0 | 165.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, Y. F., Zhao, K., Wei, J. Q., & Qin, Y. S. (2010). Fabrication of aligned lamellar porous alumina using directional solidification of aqueous slurries with an applied electrostatic field. Journal of the European Ceramic Society, 30(9), 1963-1965. | 2010 | 619 | 10.1016/j.jeurceramsoc.2010.03.012 | 2971 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 78.9 | 0.0 | 278.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tomeckova, V., & Halloran, J. W. (2012). Porous ceramics by photopolymerization with terpene?acrylate vehicles. Journal of the American Ceramic Society, 95(12), 3763-3768. | 2012 | 624 | 10.1111/j.1551-2916.2012.05444.x | 4270 | ceramic | Al2O3 | camphene | 40 | camphor | 20 | 3.0 | 1.0 | 100 | powder | 0.4 | 0 | 2 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 7.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tomeckova, V., & Halloran, J. W. (2012). Porous ceramics by photopolymerization with terpene?acrylate vehicles. Journal of the American Ceramic Society, 95(12), 3763-3768. | 2012 | 624 | 10.1111/j.1551-2916.2012.05444.x | 4271 | ceramic | Al2O3 | camphene | 40 | camphor | 20 | 15.0 | 1.0 | 100 | powder | 0.4 | 0 | 2 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 4.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tomeckova, V., & Halloran, J. W. (2012). Porous ceramics by photopolymerization with terpene?acrylate vehicles. Journal of the American Ceramic Society, 95(12), 3763-3768. | 2012 | 624 | 10.1111/j.1551-2916.2012.05444.x | 4272 | ceramic | Al2O3 | camphene | 40 | camphor | 20 | 25.0 | 1.0 | 100 | powder | 0.4 | 0 | 2 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tomeckova, V., & Halloran, J. W. (2012). Porous ceramics by photopolymerization with terpene?acrylate vehicles. Journal of the American Ceramic Society, 95(12), 3763-3768. | 2012 | 624 | 10.1111/j.1551-2916.2012.05444.x | 4273 | ceramic | Al2O3 | camphene | 40 | camphor | 20 | 35.0 | 1.0 | 100 | powder | 0.4 | 0 | 2 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Vijayan, S., Narasimman, R., & Prabhakaran, K. (2013). Dispersion and setting of powder suspensions in concentrated aqueous urea solutions for the preparation of porous alumina ceramics with aligned pores. Journal of the American Ceramic Society, 96(9), 2779-2784. | 2013 | 632 | 10.1111/jace.12484 | 2985 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.34 | 0 | 80 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 28.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Vijayan, S., Narasimman, R., & Prabhakaran, K. (2013). Dispersion and setting of powder suspensions in concentrated aqueous urea solutions for the preparation of porous alumina ceramics with aligned pores. Journal of the American Ceramic Society, 96(9), 2779-2784. | 2013 | 632 | 10.1111/jace.12484 | 2986 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.34 | 0 | 80 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 31.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Vijayan, S., Narasimman, R., & Prabhakaran, K. (2013). Dispersion and setting of powder suspensions in concentrated aqueous urea solutions for the preparation of porous alumina ceramics with aligned pores. Journal of the American Ceramic Society, 96(9), 2779-2784. | 2013 | 632 | 10.1111/jace.12484 | 2987 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.34 | 0 | 80 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 32.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Vijayan, S., Narasimman, R., & Prabhakaran, K. (2013). Dispersion and setting of powder suspensions in concentrated aqueous urea solutions for the preparation of porous alumina ceramics with aligned pores. Journal of the American Ceramic Society, 96(9), 2779-2784. | 2013 | 632 | 10.1111/jace.12484 | 2988 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.34 | 0 | 80 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 35.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Vijayan, S., Narasimman, R., & Prabhakaran, K. (2015). Alumina Powder Dispersions in Molten Urea for the Preparation of Macroporous Alumina Ceramics by Freeze Casting. In Materials Science Forum (Vol. 830, pp. 433-435). Trans Tech Publications. | 2015 | 633 | 10.4028/www.scientific.net/MSF.830-831.433 | 2989 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 50.0 | 1.0 | 100 | spherical | 0.34 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Vijayan, S., Narasimman, R., & Prabhakaran, K. (2014). Freeze gelcasting of hydrogenated vegetable oil-in-aqueous alumina slurry emulsions for the preparation of macroporous ceramics. Journal of the European Ceramic Society, 34(16), 4347-4354. | 2014 | 634 | 10.1016/j.jeurceramsoc.2014.07.014 | 5806 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 71.0 | 0.0 | 13.0 | 0.0 | 0.0 | 40.0 | 0.0 | 2200.0 |
Vijayan, S., Narasimman, R., & Prabhakaran, K. (2014). Freeze gelcasting of hydrogenated vegetable oil-in-aqueous alumina slurry emulsions for the preparation of macroporous ceramics. Journal of the European Ceramic Society, 34(16), 4347-4354. | 2014 | 634 | 10.1016/j.jeurceramsoc.2014.07.014 | 5807 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 75.0 | 0.0 | 11.0 | 0.0 | 0.0 | 30.0 | 0.0 | 1800.0 |
Vijayan, S., Narasimman, R., & Prabhakaran, K. (2014). Freeze gelcasting of hydrogenated vegetable oil-in-aqueous alumina slurry emulsions for the preparation of macroporous ceramics. Journal of the European Ceramic Society, 34(16), 4347-4354. | 2014 | 634 | 10.1016/j.jeurceramsoc.2014.07.014 | 5808 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 77.0 | 0.0 | 9.0 | 0.0 | 0.0 | 28.0 | 0.0 | 1600.0 |
Vijayan, S., Narasimman, R., & Prabhakaran, K. (2014). Freeze gelcasting of hydrogenated vegetable oil-in-aqueous alumina slurry emulsions for the preparation of macroporous ceramics. Journal of the European Ceramic Society, 34(16), 4347-4354. | 2014 | 634 | 10.1016/j.jeurceramsoc.2014.07.014 | 5809 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 82.0 | 0.0 | 9.5 | 0.0 | 0.0 | 23.0 | 0.0 | 1300.0 |
Vijayan, S., Narasimman, R., & Prabhakaran, K. (2014). Freeze gelcasting of hydrogenated vegetable oil-in-aqueous alumina slurry emulsions for the preparation of macroporous ceramics. Journal of the European Ceramic Society, 34(16), 4347-4354. | 2014 | 634 | 10.1016/j.jeurceramsoc.2014.07.014 | 5810 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 83.0 | 0.0 | 8.7 | 0.0 | 0.0 | 7.0 | 0.0 | 400.0 |
Vijayan, S., Narasimman, R., & Prabhakaran, K. (2014). Freeze gelcasting of hydrogenated vegetable oil-in-aqueous alumina slurry emulsions for the preparation of macroporous ceramics. Journal of the European Ceramic Society, 34(16), 4347-4354. | 2014 | 634 | 10.1016/j.jeurceramsoc.2014.07.014 | 5811 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 84.0 | 0.0 | 7.1 | 0.0 | 0.0 | 6.0 | 0.0 | 300.0 |
Vijayan, S., Narasimman, R., & Prabhakaran, K. (2015). Freeze gelcasting of naphthalene-in-aqueous alumina slurry emulsions for the preparation of macroporous alumina ceramics. Ceramics International, 41(1), 1487-1494. | 2015 | 635 | 10.1016/j.ceramint.2014.09.083 | 2990 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 0.34 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 35.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Vijayan, S., Narasimman, R., & Prabhakaran, K. (2015). Freeze gelcasting of naphthalene-in-aqueous alumina slurry emulsions for the preparation of macroporous alumina ceramics. Ceramics International, 41(1), 1487-1494. | 2015 | 635 | 10.1016/j.ceramint.2014.09.083 | 2991 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 0.34 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 18.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Vijayan, S., Narasimman, R., & Prabhakaran, K. (2015). Freeze gelcasting of naphthalene-in-aqueous alumina slurry emulsions for the preparation of macroporous alumina ceramics. Ceramics International, 41(1), 1487-1494. | 2015 | 635 | 10.1016/j.ceramint.2014.09.083 | 2992 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 0.34 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Vijayan, S., Narasimman, R., & Prabhakaran, K. (2015). Freeze gelcasting of naphthalene-in-aqueous alumina slurry emulsions for the preparation of macroporous alumina ceramics. Ceramics International, 41(1), 1487-1494. | 2015 | 635 | 10.1016/j.ceramint.2014.09.083 | 2993 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 0.34 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Vijayan, S., Narasimman, R., & Prabhakaran, K. (2015). Freeze gelcasting of naphthalene-in-aqueous alumina slurry emulsions for the preparation of macroporous alumina ceramics. Ceramics International, 41(1), 1487-1494. | 2015 | 635 | 10.1016/j.ceramint.2014.09.083 | 2994 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 0.34 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 65.0 | 0.0 | 11.0 | 0.0 | 0.0 | 28.0 | 0.0 | 1200.0 |
Vijayan, S., Narasimman, R., & Prabhakaran, K. (2015). Freeze gelcasting of naphthalene-in-aqueous alumina slurry emulsions for the preparation of macroporous alumina ceramics. Ceramics International, 41(1), 1487-1494. | 2015 | 635 | 10.1016/j.ceramint.2014.09.083 | 2995 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 0.34 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 71.0 | 0.0 | 10.0 | 0.0 | 0.0 | 17.5 | 0.0 | 1000.0 |
Vijayan, S., Narasimman, R., & Prabhakaran, K. (2015). Freeze gelcasting of naphthalene-in-aqueous alumina slurry emulsions for the preparation of macroporous alumina ceramics. Ceramics International, 41(1), 1487-1494. | 2015 | 635 | 10.1016/j.ceramint.2014.09.083 | 2996 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 0.34 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 73.0 | 0.0 | 8.0 | 0.0 | 0.0 | 14.0 | 0.0 | 600.0 |
Vijayan, S., Narasimman, R., & Prabhakaran, K. (2015). Freeze gelcasting of naphthalene-in-aqueous alumina slurry emulsions for the preparation of macroporous alumina ceramics. Ceramics International, 41(1), 1487-1494. | 2015 | 635 | 10.1016/j.ceramint.2014.09.083 | 2997 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 0.34 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 76.0 | 0.0 | 7.0 | 0.0 | 0.0 | 8.0 | 0.0 | 600.0 |
Vijayan, S., Narasimman, R., & Prabhakaran, K. (2015). Freeze gelcasting of naphthalene-in-aqueous alumina slurry emulsions for the preparation of macroporous alumina ceramics. Ceramics International, 41(1), 1487-1494. | 2015 | 635 | 10.1016/j.ceramint.2014.09.083 | 2998 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 0.34 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 78.0 | 0.0 | 5.0 | 0.0 | 0.0 | 7.5 | 0.0 | 400.0 |
Walter, C., Barg, S., Ni, N., Maher, R. C., Garc?a-Tuñón, E., Ismail, M. M. Z., ... & Saiz, E. (2013). A novel approach for the fabrication of carbon nanofibre/ceramic porous structures. Journal of the European Ceramic Society, 33(13), 2365-2374. | 2013 | 638 | 10.1016/j.jeurceramsoc.2013.04.024 | 3000 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 6.0 | 1.0 | 100 | 0 | 0.3 | 1 | 1 | 0 | 0.0 | 1.0 | 0.0 | isotropic | linear | 10.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Walter, C., Barg, S., Ni, N., Maher, R. C., Garc?a-Tuñón, E., Ismail, M. M. Z., ... & Saiz, E. (2013). A novel approach for the fabrication of carbon nanofibre/ceramic porous structures. Journal of the European Ceramic Society, 33(13), 2365-2374. | 2013 | 638 | 10.1016/j.jeurceramsoc.2013.04.024 | 3001 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 6.0 | 1.0 | 100 | 0 | 0.3 | 1 | 1 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 22.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 32.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Walter, C., Barg, S., Ni, N., Maher, R. C., Garc?a-Tuñón, E., Ismail, M. M. Z., ... & Saiz, E. (2013). A novel approach for the fabrication of carbon nanofibre/ceramic porous structures. Journal of the European Ceramic Society, 33(13), 2365-2374. | 2013 | 638 | 10.1016/j.jeurceramsoc.2013.04.024 | 3002 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 6.0 | 1.0 | 100 | 0 | 0.3 | 1 | 1 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 34.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 19.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Walter, C., Barg, S., Ni, N., Maher, R. C., Garc?a-Tuñón, E., Ismail, M. M. Z., ... & Saiz, E. (2013). A novel approach for the fabrication of carbon nanofibre/ceramic porous structures. Journal of the European Ceramic Society, 33(13), 2365-2374. | 2013 | 638 | 10.1016/j.jeurceramsoc.2013.04.024 | 3003 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 6.0 | 1.0 | 100 | 0 | 0.3 | 1 | 1 | 0 | 0.0 | 15.0 | 0.0 | one-sided | linear | 45.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 19.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Walter, C., Barg, S., Ni, N., Maher, R. C., Garc?a-Tuñón, E., Ismail, M. M. Z., ... & Saiz, E. (2013). A novel approach for the fabrication of carbon nanofibre/ceramic porous structures. Journal of the European Ceramic Society, 33(13), 2365-2374. | 2013 | 638 | 10.1016/j.jeurceramsoc.2013.04.024 | 3004 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 11.0 | 1.0 | 100 | 0 | 0.3 | 1 | 1 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 90.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 73.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Walter, C., Barg, S., Ni, N., Maher, R. C., Garc?a-Tuñón, E., Ismail, M. M. Z., ... & Saiz, E. (2013). A novel approach for the fabrication of carbon nanofibre/ceramic porous structures. Journal of the European Ceramic Society, 33(13), 2365-2374. | 2013 | 638 | 10.1016/j.jeurceramsoc.2013.04.024 | 3005 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 11.0 | 1.0 | 100 | 0 | 0.3 | 1 | 1 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 19.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 42.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Walter, C., Barg, S., Ni, N., Maher, R. C., Garc?a-Tuñón, E., Ismail, M. M. Z., ... & Saiz, E. (2013). A novel approach for the fabrication of carbon nanofibre/ceramic porous structures. Journal of the European Ceramic Society, 33(13), 2365-2374. | 2013 | 638 | 10.1016/j.jeurceramsoc.2013.04.024 | 3006 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 11.0 | 1.0 | 100 | 0 | 0.3 | 1 | 1 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 29.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 24.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Walter, C., Barg, S., Ni, N., Maher, R. C., Garc?a-Tuñón, E., Ismail, M. M. Z., ... & Saiz, E. (2013). A novel approach for the fabrication of carbon nanofibre/ceramic porous structures. Journal of the European Ceramic Society, 33(13), 2365-2374. | 2013 | 638 | 10.1016/j.jeurceramsoc.2013.04.024 | 3007 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 11.0 | 1.0 | 100 | 0 | 0.3 | 1 | 1 | 0 | 0.0 | 15.0 | 0.0 | one-sided | linear | 40.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 24.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Walter, C., Barg, S., Ni, N., Maher, R. C., Garc?a-Tuñón, E., Ismail, M. M. Z., ... & Saiz, E. (2013). A novel approach for the fabrication of carbon nanofibre/ceramic porous structures. Journal of the European Ceramic Society, 33(13), 2365-2374. | 2013 | 638 | 10.1016/j.jeurceramsoc.2013.04.024 | 3008 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 17.0 | 1.0 | 100 | 0 | 0.3 | 1 | 1 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 11.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Walter, C., Barg, S., Ni, N., Maher, R. C., Garc?a-Tuñón, E., Ismail, M. M. Z., ... & Saiz, E. (2013). A novel approach for the fabrication of carbon nanofibre/ceramic porous structures. Journal of the European Ceramic Society, 33(13), 2365-2374. | 2013 | 638 | 10.1016/j.jeurceramsoc.2013.04.024 | 3009 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 17.0 | 1.0 | 100 | 0 | 0.3 | 1 | 1 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 24.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 39.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Walter, C., Barg, S., Ni, N., Maher, R. C., Garc?a-Tuñón, E., Ismail, M. M. Z., ... & Saiz, E. (2013). A novel approach for the fabrication of carbon nanofibre/ceramic porous structures. Journal of the European Ceramic Society, 33(13), 2365-2374. | 2013 | 638 | 10.1016/j.jeurceramsoc.2013.04.024 | 3010 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 17.0 | 1.0 | 100 | 0 | 0.3 | 1 | 1 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 32.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 27.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Walter, C., Barg, S., Ni, N., Maher, R. C., Garc?a-Tuñón, E., Ismail, M. M. Z., ... & Saiz, E. (2013). A novel approach for the fabrication of carbon nanofibre/ceramic porous structures. Journal of the European Ceramic Society, 33(13), 2365-2374. | 2013 | 638 | 10.1016/j.jeurceramsoc.2013.04.024 | 3011 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 17.0 | 1.0 | 100 | 0 | 0.3 | 1 | 1 | 0 | 0.0 | 15.0 | 0.0 | one-sided | linear | 45.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 22.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Walter, C., Barg, S., Ni, N., Maher, R. C., Garc?a-Tuñón, E., Ismail, M. M. Z., ... & Saiz, E. (2013). A novel approach for the fabrication of carbon nanofibre/ceramic porous structures. Journal of the European Ceramic Society, 33(13), 2365-2374. | 2013 | 638 | 10.1016/j.jeurceramsoc.2013.04.024 | 3012 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | 0 | 0.3 | 1 | 1 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 11.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Walter, C., Barg, S., Ni, N., Maher, R. C., Garc?a-Tuñón, E., Ismail, M. M. Z., ... & Saiz, E. (2013). A novel approach for the fabrication of carbon nanofibre/ceramic porous structures. Journal of the European Ceramic Society, 33(13), 2365-2374. | 2013 | 638 | 10.1016/j.jeurceramsoc.2013.04.024 | 3013 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | 0 | 0.3 | 1 | 1 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 25.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 34.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Walter, C., Barg, S., Ni, N., Maher, R. C., Garc?a-Tuñón, E., Ismail, M. M. Z., ... & Saiz, E. (2013). A novel approach for the fabrication of carbon nanofibre/ceramic porous structures. Journal of the European Ceramic Society, 33(13), 2365-2374. | 2013 | 638 | 10.1016/j.jeurceramsoc.2013.04.024 | 3014 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | 0 | 0.3 | 1 | 1 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 34.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 26.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Walter, C., Barg, S., Ni, N., Maher, R. C., Garc?a-Tuñón, E., Ismail, M. M. Z., ... & Saiz, E. (2013). A novel approach for the fabrication of carbon nanofibre/ceramic porous structures. Journal of the European Ceramic Society, 33(13), 2365-2374. | 2013 | 638 | 10.1016/j.jeurceramsoc.2013.04.024 | 3015 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | 0 | 0.3 | 1 | 1 | 0 | 0.0 | 15.0 | 0.0 | one-sided | linear | 44.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 22.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2009). Control of Lamellae Spacing During Freeze Casting of Ceramics Using Double?Side Cooling as a Novel Processing Route. Journal of the American Ceramic Society, 92(s1). | 2009 | 653 | 10.1111/j.1551-2916.2008.02673.x | 1735 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 22.0 | 1.0 | 100 | powder | 1.0 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 11.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 45.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2009). Control of Lamellae Spacing During Freeze Casting of Ceramics Using Double?Side Cooling as a Novel Processing Route. Journal of the American Ceramic Society, 92(s1). | 2009 | 653 | 10.1111/j.1551-2916.2008.02673.x | 1736 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 22.0 | 1.0 | 100 | powder | 1.0 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 5.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 101.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2009). Control of Lamellae Spacing During Freeze Casting of Ceramics Using Double?Side Cooling as a Novel Processing Route. Journal of the American Ceramic Society, 92(s1). | 2009 | 653 | 10.1111/j.1551-2916.2008.02673.x | 1737 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 22.0 | 1.0 | 100 | powder | 1.0 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 4.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 170.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2009). Control of Lamellae Spacing During Freeze Casting of Ceramics Using Double?Side Cooling as a Novel Processing Route. Journal of the American Ceramic Society, 92(s1). | 2009 | 653 | 10.1111/j.1551-2916.2008.02673.x | 1738 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 22.0 | 1.0 | 100 | powder | 1.0 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 3.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 250.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2009). Control of Lamellae Spacing During Freeze Casting of Ceramics Using Double?Side Cooling as a Novel Processing Route. Journal of the American Ceramic Society, 92(s1). | 2009 | 653 | 10.1111/j.1551-2916.2008.02673.x | 1739 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 1.0 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | double-sided | linear | 8.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 120.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2009). Control of Lamellae Spacing During Freeze Casting of Ceramics Using Double?Side Cooling as a Novel Processing Route. Journal of the American Ceramic Society, 92(s1). | 2009 | 653 | 10.1111/j.1551-2916.2008.02673.x | 1740 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 1.0 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | double-sided | linear | 8.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 125.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2009). Control of Lamellae Spacing During Freeze Casting of Ceramics Using Double?Side Cooling as a Novel Processing Route. Journal of the American Ceramic Society, 92(s1). | 2009 | 653 | 10.1111/j.1551-2916.2008.02673.x | 1741 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 1.0 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | double-sided | linear | 8.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 124.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2009). Control of Lamellae Spacing During Freeze Casting of Ceramics Using Double?Side Cooling as a Novel Processing Route. Journal of the American Ceramic Society, 92(s1). | 2009 | 653 | 10.1111/j.1551-2916.2008.02673.x | 1742 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 22.0 | 1.0 | 100 | powder | 1.0 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | double-sided | linear | 8.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 125.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2009). Control of Lamellae Spacing During Freeze Casting of Ceramics Using Double?Side Cooling as a Novel Processing Route. Journal of the American Ceramic Society, 92(s1). | 2009 | 653 | 10.1111/j.1551-2916.2008.02673.x | 5938 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 22.0 | 1.0 | 100 | powder | 1.0 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | double-sided | linear | 8.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 127.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2009). Control of Lamellae Spacing During Freeze Casting of Ceramics Using Double?Side Cooling as a Novel Processing Route. Journal of the American Ceramic Society, 92(s1). | 2009 | 653 | 10.1111/j.1551-2916.2008.02673.x | 5939 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 22.0 | 1.0 | 100 | powder | 1.0 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | double-sided | linear | 8.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 130.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2009). Control of Lamellae Spacing During Freeze Casting of Ceramics Using Double?Side Cooling as a Novel Processing Route. Journal of the American Ceramic Society, 92(s1). | 2009 | 653 | 10.1111/j.1551-2916.2008.02673.x | 5940 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 22.0 | 1.0 | 100 | powder | 1.0 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | double-sided | linear | 8.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 135.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2009). Control of Lamellae Spacing During Freeze Casting of Ceramics Using Double?Side Cooling as a Novel Processing Route. Journal of the American Ceramic Society, 92(s1). | 2009 | 653 | 10.1111/j.1551-2916.2008.02673.x | 5941 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 22.0 | 1.0 | 100 | powder | 1.0 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | double-sided | linear | 8.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 142.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2009). Control of Lamellae Spacing During Freeze Casting of Ceramics Using Double?Side Cooling as a Novel Processing Route. Journal of the American Ceramic Society, 92(s1). | 2009 | 653 | 10.1111/j.1551-2916.2008.02673.x | 5942 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 1.0 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | double-sided | linear | 8.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2009). Control of Lamellae Spacing During Freeze Casting of Ceramics Using Double?Side Cooling as a Novel Processing Route. Journal of the American Ceramic Society, 92(s1). | 2009 | 653 | 10.1111/j.1551-2916.2008.02673.x | 5943 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 1.0 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | double-sided | linear | 8.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2009). Control of Lamellae Spacing During Freeze Casting of Ceramics Using Double?Side Cooling as a Novel Processing Route. Journal of the American Ceramic Society, 92(s1). | 2009 | 653 | 10.1111/j.1551-2916.2008.02673.x | 5944 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 1.0 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | double-sided | linear | 8.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1743 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 3.3 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 5.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 190.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1744 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 3.3 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 8.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 130.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1745 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 3.3 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 10.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1746 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 0.25 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 5.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1747 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 0.25 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 8.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1748 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 0.25 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 10.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1749 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 2.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 200.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1750 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 3.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 150.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1751 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 4.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1752 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 5.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 110.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1753 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 5.5 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 190.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1754 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 8.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 180.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1755 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 10.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 170.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1756 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 20.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1757 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1758 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 5.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 10.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 35.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1759 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 5.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 10.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1760 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 5.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 28.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1761 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 5.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 7.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1762 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 5.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 5.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 190.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1763 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 10.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1764 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 25.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1765 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 2.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 290.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1766 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 7.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1767 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 5.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 90.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1768 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 4.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 110.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1769 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 10.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 90.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1770 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 3.3 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 300.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1771 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 5.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 190.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1772 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 9.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1773 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 20.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1774 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1775 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 10.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1776 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 4.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 300.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1777 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 5.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 200.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1778 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 6.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 150.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1779 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 7.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1780 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 8.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 95.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1781 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 15.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Waschkies, T., Oberacker, R., & Hoffmann, M. J. (2011). Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 59(13), 5135-5145. | 2011 | 654 | 10.1016/j.actamat.2011.04.046 | 1782 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.8 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 25.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, J. Z., Hu, X. Z., Sultana, R., Day, R. E., & Ichim, P. (2015). Structure design and manufacturing of layered bioceramic scaffolds for load-bearing bone reconstruction. Biomedical Materials, 10(4), 045006. | 2015 | 706 | 10.1088/1748-6041/10/4/045006 | 4806 | ceramic | Al2O3 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yook, S. W., Jung, H. D., Park, C. H., Shin, K. H., Koh, Y. H., Estrin, Y., & Kim, H. E. (2012). Reverse freeze casting: a new method for fabricating highly porous titanium scaffolds with aligned large pores. Acta biomaterialia, 8(6), 2401-2410. | 2012 | 721 | 10.1016/j.actbio.2012.03.020 | 1237 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 276.0 | 0.0 | 0.0 | reverse | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 300.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yoon, B. H., Choi, W. Y., Kim, H. E., Kim, J. H., & Koh, Y. H. (2008). Aligned porous alumina ceramics with high compressive strengths for bone tissue engineering. Scripta materialia, 58(7), 537-540. | 2008 | 726 | 10.1016/j.scriptamat.2007.11.006 | 1252 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | 0 | 0.3 | 0 | 5 | 0 | 276.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 82.5 | 0.0 | 210.0 | 0.0 | 0.0 | 11.0 | 0.0 | 0.0 |
Yoon, B. H., Choi, W. Y., Kim, H. E., Kim, J. H., & Koh, Y. H. (2008). Aligned porous alumina ceramics with high compressive strengths for bone tissue engineering. Scripta materialia, 58(7), 537-540. | 2008 | 726 | 10.1016/j.scriptamat.2007.11.006 | 1253 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | 0 | 0.3 | 0 | 5 | 0 | 276.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 74.0 | 0.0 | 153.0 | 0.0 | 0.0 | 22.5 | 0.0 | 0.0 |
Yoon, B. H., Choi, W. Y., Kim, H. E., Kim, J. H., & Koh, Y. H. (2008). Aligned porous alumina ceramics with high compressive strengths for bone tissue engineering. Scripta materialia, 58(7), 537-540. | 2008 | 726 | 10.1016/j.scriptamat.2007.11.006 | 1254 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | 0 | 0.3 | 0 | 5 | 0 | 276.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 65.0 | 0.0 | 138.0 | 0.0 | 0.0 | 50.0 | 0.0 | 0.0 |
Yoon, B. H., Choi, W. Y., Kim, H. E., Kim, J. H., & Koh, Y. H. (2008). Aligned porous alumina ceramics with high compressive strengths for bone tissue engineering. Scripta materialia, 58(7), 537-540. | 2008 | 726 | 10.1016/j.scriptamat.2007.11.006 | 1255 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | 0 | 0.3 | 0 | 5 | 0 | 276.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 59.0 | 0.0 | 102.0 | 0.0 | 0.0 | 95.0 | 0.0 | 0.0 |
Yoon, H. J., Kim, U. C., Kim, J. H., Koh, Y. H., Choi, W. Y., & Kim, H. E. (2010). Macroporous alumina ceramics with aligned microporous walls by unidirectionally freezing foamed aqueous ceramic suspensions. Journal of the American Ceramic Society, 93(6), 1580-1582. | 2010 | 731 | 10.1111/j.1551-2916.2010.03627.x | 2089 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.3 | 0 | 1 | 0 | 203.0 | 0.0 | 0.0 | immersion | constant | 500.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yoon, H. J., Kim, U. C., Kim, J. H., Koh, Y. H., Choi, W. Y., & Kim, H. E. (2010). Macroporous alumina ceramics with aligned microporous walls by unidirectionally freezing foamed aqueous ceramic suspensions. Journal of the American Ceramic Society, 93(6), 1580-1582. | 2010 | 731 | 10.1111/j.1551-2916.2010.03627.x | 2090 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.3 | 1 | 1 | 0 | 203.0 | 0.0 | 0.0 | immersion | constant | 500.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yoon, H. J., Kim, U. C., Kim, J. H., Koh, Y. H., Choi, W. Y., & Kim, H. E. (2010). Macroporous alumina ceramics with aligned microporous walls by unidirectionally freezing foamed aqueous ceramic suspensions. Journal of the American Ceramic Society, 93(6), 1580-1582. | 2010 | 731 | 10.1111/j.1551-2916.2010.03627.x | 2091 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.3 | 3 | 1 | 0 | 203.0 | 0.0 | 0.0 | immersion | constant | 500.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yoon, H. J., Kim, U. C., Kim, J. H., Koh, Y. H., Choi, W. Y., & Kim, H. E. (2010). Macroporous alumina ceramics with aligned microporous walls by unidirectionally freezing foamed aqueous ceramic suspensions. Journal of the American Ceramic Society, 93(6), 1580-1582. | 2010 | 731 | 10.1111/j.1551-2916.2010.03627.x | 2092 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.3 | 5 | 1 | 0 | 203.0 | 0.0 | 0.0 | immersion | constant | 500.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yoon, H. J., Kim, U. C., Kim, J. H., Koh, Y. H., Choi, W. Y., & Kim, H. E. (2010). Macroporous alumina ceramics with aligned microporous walls by unidirectionally freezing foamed aqueous ceramic suspensions. Journal of the American Ceramic Society, 93(6), 1580-1582. | 2010 | 731 | 10.1111/j.1551-2916.2010.03627.x | 2093 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.3 | 7 | 1 | 0 | 203.0 | 0.0 | 0.0 | immersion | constant | 500.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.6 | 0.0 | 0.0 |
Jia-Xue, Y., Jin-Cheng, W., Li-Lin, W., Zhi-Jun, W., Jun-Jie, L., & Xin, L. Can secondary nucleation exist in ice banding of freezing colloidal suspensions?. | 2015 | 734 | 0 | 2094 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 9.74 | 1.0 | 100 | powder | 0.05 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 16.0 | 0.0 | 0 | 0 | 0 | lenses | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jia-Xue, Y., Jin-Cheng, W., Li-Lin, W., Zhi-Jun, W., Jun-Jie, L., & Xin, L. Can secondary nucleation exist in ice banding of freezing colloidal suspensions?. | 2015 | 734 | 0 | 2095 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 9.74 | 1.0 | 100 | powder | 0.05 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 16.0 | 0.0 | 0 | 0 | 0 | lenses | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jia-Xue, Y., Jin-Cheng, W., Li-Lin, W., Zhi-Jun, W., Jun-Jie, L., & Xin, L. Can secondary nucleation exist in ice banding of freezing colloidal suspensions?. | 2015 | 734 | 0 | 2096 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 9.74 | 1.0 | 100 | powder | 0.05 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 16.0 | 0.0 | 0 | 0 | 0 | lenses | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jia-Xue, Y., Jin-Cheng, W., Li-Lin, W., Zhi-Jun, W., Jun-Jie, L., & Xin, L. Can secondary nucleation exist in ice banding of freezing colloidal suspensions?. | 2015 | 734 | 0 | 2097 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 9.74 | 1.0 | 100 | powder | 0.05 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 16.0 | 0.0 | 0 | 0 | 0 | lenses | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jia-Xue, Y., Jin-Cheng, W., Li-Lin, W., Zhi-Jun, W., Jun-Jie, L., & Xin, L. Can secondary nucleation exist in ice banding of freezing colloidal suspensions?. | 2015 | 734 | 0 | 2098 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 9.74 | 1.0 | 100 | powder | 0.05 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 16.0 | 0.0 | 0 | 0 | 0 | lenses | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jia-Xue, Y., Jin-Cheng, W., Li-Lin, W., Zhi-Jun, W., Jun-Jie, L., & Xin, L. Can secondary nucleation exist in ice banding of freezing colloidal suspensions?. | 2015 | 734 | 0 | 2099 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 9.74 | 1.0 | 100 | powder | 0.05 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 16.0 | 0.0 | 0 | 0 | 0 | lenses | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jia-Xue, Y., Jin-Cheng, W., Li-Lin, W., Zhi-Jun, W., Jun-Jie, L., & Xin, L. Can secondary nucleation exist in ice banding of freezing colloidal suspensions?. | 2015 | 734 | 0 | 2100 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 9.74 | 1.0 | 100 | powder | 0.05 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 16.0 | 0.0 | 0 | 0 | 0 | lenses | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jia-Xue, Y., Jin-Cheng, W., Li-Lin, W., Zhi-Jun, W., Jun-Jie, L., & Xin, L. Can secondary nucleation exist in ice banding of freezing colloidal suspensions?. | 2015 | 734 | 0 | 2101 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 9.74 | 1.0 | 100 | powder | 0.05 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 16.0 | 0.0 | 0 | 0 | 0 | lenses | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jia-Xue, Y., Jin-Cheng, W., Li-Lin, W., Zhi-Jun, W., Jun-Jie, L., & Xin, L. Can secondary nucleation exist in ice banding of freezing colloidal suspensions?. | 2015 | 734 | 0 | 2102 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 9.74 | 1.0 | 100 | powder | 0.05 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 16.0 | 0.0 | 0 | 0 | 0 | lenses | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
You, J., Wang, J., Wang, L., Wang, Z., Li, J., & Lin, X. (2016). Formation mechanism of ice banding in freezing colloidal suspensions. arXiv preprint arXiv:1605.03802. | 2016 | 735 | 0 | 2103 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.97 | 1.0 | 100 | powder | 0.05 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.8 | 0.0 | 0 | 0 | 0 | lenses | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
You, J., Wang, J., Wang, L., Wang, Z., Li, J., & Lin, X. (2016). Formation mechanism of ice banding in freezing colloidal suspensions. arXiv preprint arXiv:1605.03802. | 2016 | 735 | 0 | 2104 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.97 | 1.0 | 100 | powder | 0.05 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 3.5 | 0.0 | 0 | 0 | 0 | lenses | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
You, J., Wang, J., Wang, L., Wang, Z., Li, J., & Lin, X. (2016). Formation mechanism of ice banding in freezing colloidal suspensions. arXiv preprint arXiv:1605.03802. | 2016 | 735 | 0 | 2105 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.97 | 1.0 | 100 | powder | 0.05 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 8.22 | 0.0 | 0 | 0 | 0 | lenses | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
You, J., Wang, J., Wang, L., Wang, Z., Li, J., & Lin, X. (2016). Formation mechanism of ice banding in freezing colloidal suspensions. arXiv preprint arXiv:1605.03802. | 2016 | 735 | 0 | 2106 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.97 | 1.0 | 100 | powder | 0.05 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 16.0 | 0.0 | 0 | 0 | 0 | lenses | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
You, J., Wang, J., Wang, L., Wang, Z., Li, J., & Lin, X. (2016). Formation mechanism of ice banding in freezing colloidal suspensions. arXiv preprint arXiv:1605.03802. | 2016 | 735 | 0 | 2107 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 9.74 | 1.0 | 100 | powder | 0.05 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 18.0 | 0.0 | 0 | 0 | 0 | lenses | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yu, M., Zhou, K., Zhang, Y., & Zhang, D. (2014). Porous Al 2 O 3 microspheres prepared by a novel ice-templated spray drying technique. Ceramics International, 40(1), 1215-1219. | 2014 | 741 | 10.1016/j.ceramint.2013.05.120 | 6086 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jing, Z. E. N. G., Zhang, Y., Zhou, K. C., & Zhang, D. (2014). Effects of alcohol additives on pore structure and morphology of freeze-cast ceramics. Transactions of Nonf | 2014 | 752 | 10.1016/s1003-6326(14)63116-2 | 2172 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 74.5 | 0.0 | 0.0 | 0.0 | 0.0 | 13.5 | 0.0 | 0.0 |
Jing, Z. E. N. G., Zhang, Y., Zhou, K. C., & Zhang, D. (2014). Effects of alcohol additives on pore structure and morphology of freeze-cast ceramics. Transactions of Nonf | 2014 | 752 | 10.1016/s1003-6326(14)63116-2 | 2173 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 10 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 73.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14.8 | 0.0 | 0.0 |
Jing, Z. E. N. G., Zhang, Y., Zhou, K. C., & Zhang, D. (2014). Effects of alcohol additives on pore structure and morphology of freeze-cast ceramics. Transactions of Nonf | 2014 | 752 | 10.1016/s1003-6326(14)63116-2 | 2174 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 30 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 69.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18.2 | 0.0 | 0.0 |
Jing, Z. E. N. G., Zhang, Y., Zhou, K. C., & Zhang, D. (2014). Effects of alcohol additives on pore structure and morphology of freeze-cast ceramics. Transactions of Nonf | 2014 | 752 | 10.1016/s1003-6326(14)63116-2 | 2175 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 10 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 74.5 | 0.0 | 0.0 | 0.0 | 0.0 | 13.6 | 0.0 | 0.0 |
Jing, Z. E. N. G., Zhang, Y., Zhou, K. C., & Zhang, D. (2014). Effects of alcohol additives on pore structure and morphology of freeze-cast ceramics. Transactions of Nonf | 2014 | 752 | 10.1016/s1003-6326(14)63116-2 | 2176 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 30 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 73.5 | 0.0 | 0.0 | 0.0 | 0.0 | 14.5 | 0.0 | 0.0 |
Zhang, D., Zhang, Y., Xie, R., & Zhou, K. (2012). Freeze gelcasting of aqueous alumina suspensions for porous ceramics. Ceramics International, 38(7), 6063-6066. | 2012 | 755 | 10.1016/j.ceramint.2012.04.044 | 2189 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 84.0 | 0.0 | 0.0 | 0.0 | 0.0 | 21.0 | 0.0 | 0.0 |
Zhang, D., Zhang, Y., Xie, R., & Zhou, K. (2012). Freeze gelcasting of aqueous alumina suspensions for porous ceramics. Ceramics International, 38(7), 6063-6066. | 2012 | 755 | 10.1016/j.ceramint.2012.04.044 | 2190 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 26.0 | 0.0 | 0.0 |
Zhang, D., Zhang, Y., Xie, R., & Zhou, K. (2012). Freeze gelcasting of aqueous alumina suspensions for porous ceramics. Ceramics International, 38(7), 6063-6066. | 2012 | 755 | 10.1016/j.ceramint.2012.04.044 | 2191 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 67.0 | 0.0 | 0.0 | 0.0 | 0.0 | 34.0 | 0.0 | 0.0 |
Zhang, D., Zhang, Y., Xie, R., & Zhou, K. (2012). Freeze gelcasting of aqueous alumina suspensions for porous ceramics. Ceramics International, 38(7), 6063-6066. | 2012 | 755 | 10.1016/j.ceramint.2012.04.044 | 2192 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 45.0 | 0.0 | 0.0 |
Zhang, D., Zhang, Y., Xie, R., & Zhou, K. (2012). Freeze gelcasting of aqueous alumina suspensions for porous ceramics. Ceramics International, 38(7), 6063-6066. | 2012 | 755 | 10.1016/j.ceramint.2012.04.044 | 2193 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, D., Zhang, Y., Xie, R., & Zhou, K. (2012). Freeze gelcasting of aqueous alumina suspensions for porous ceramics. Ceramics International, 38(7), 6063-6066. | 2012 | 755 | 10.1016/j.ceramint.2012.04.044 | 2194 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, D., Zhang, Y., Xie, R., & Zhou, K. (2012). Freeze gelcasting of aqueous alumina suspensions for porous ceramics. Ceramics International, 38(7), 6063-6066. | 2012 | 755 | 10.1016/j.ceramint.2012.04.044 | 2195 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, D., Zhang, Y., Xie, R., & Zhou, K. (2012). Freeze gelcasting of aqueous alumina suspensions for porous ceramics. Ceramics International, 38(7), 6063-6066. | 2012 | 755 | 10.1016/j.ceramint.2012.04.044 | 2196 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, D., Zhang, Y., Xie, R., & Zhou, K. (2012). Freeze gelcasting of aqueous alumina suspensions for porous ceramics. Ceramics International, 38(7), 6063-6066. | 2012 | 755 | 10.1016/j.ceramint.2012.04.044 | 2197 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, D., Zhang, Y., Xie, R., & Zhou, K. (2012). Freeze gelcasting of aqueous alumina suspensions for porous ceramics. Ceramics International, 38(7), 6063-6066. | 2012 | 755 | 10.1016/j.ceramint.2012.04.044 | 2198 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.5 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, D., Zhang, Y., Xie, R., & Zhou, K. (2012). Freeze gelcasting of aqueous alumina suspensions for porous ceramics. Ceramics International, 38(7), 6063-6066. | 2012 | 755 | 10.1016/j.ceramint.2012.04.044 | 2199 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.5 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, D., Zhang, Y., Xie, R., & Zhou, K. (2012). Freeze gelcasting of aqueous alumina suspensions for porous ceramics. Ceramics International, 38(7), 6063-6066. | 2012 | 755 | 10.1016/j.ceramint.2012.04.044 | 2200 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 0.5 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14.0 | 0.0 | 0.0 |
Zhang, D., Zhang, Y., Xie, R., & Zhou, K. (2012). Freeze gelcasting of aqueous alumina suspensions for porous ceramics. Ceramics International, 38(7), 6063-6066. | 2012 | 755 | 10.1016/j.ceramint.2012.04.044 | 2201 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.5 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 67.0 | 0.0 | 0.0 | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 |
Zhang, D., Zhang, Y., Xie, R., & Zhou, K. (2012). Freeze gelcasting of aqueous alumina suspensions for porous ceramics. Ceramics International, 38(7), 6063-6066. | 2012 | 755 | 10.1016/j.ceramint.2012.04.044 | 2202 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.5 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 58.0 | 0.0 | 0.0 | 0.0 | 0.0 | 16.0 | 0.0 | 0.0 |
Zhang, D., Zhang, Y., Xie, R., & Zhou, K. (2012). Freeze gelcasting of aqueous alumina suspensions for porous ceramics. Ceramics International, 38(7), 6063-6066. | 2012 | 755 | 10.1016/j.ceramint.2012.04.044 | 2203 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | powder | 0.5 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 43.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18.0 | 0.0 | 0.0 |
Zhang, H. X., Zhao, C. Z., & Hong, C. Q. (2015). Aligned and porous alumina ceramics prepared by camphene-based freeze-casting route: microstructure and properties. Materials Research Innovations, 19(sup4), S34-S38. | 2015 | 760 | 10.1179/1432891715z.0000000001512 | 2210 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 8.0 | 1.0 | 100 | 0 | 0.0 | 0 | 1 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 80.5 | 0.0 | 45.0 | 0.0 | 0.0 | 5.8 | 0.0 | 0.0 |
Zhang, H. X., Zhao, C. Z., & Hong, C. Q. (2015). Aligned and porous alumina ceramics prepared by camphene-based freeze-casting route: microstructure and properties. Materials Research Innovations, 19(sup4), S34-S38. | 2015 | 760 | 10.1179/1432891715z.0000000001512 | 2211 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | 0 | 0.0 | 0 | 1 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 74.0 | 0.0 | 30.0 | 0.0 | 0.0 | 10.5 | 0.0 | 0.0 |
Zhang, H. X., Zhao, C. Z., & Hong, C. Q. (2015). Aligned and porous alumina ceramics prepared by camphene-based freeze-casting route: microstructure and properties. Materials Research Innovations, 19(sup4), S34-S38. | 2015 | 760 | 10.1179/1432891715z.0000000001512 | 2212 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | 0 | 0.0 | 0 | 1 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 71.8 | 0.0 | 20.0 | 0.0 | 0.0 | 13.0 | 0.0 | 0.0 |
Zhang, H. X., Zhao, C. Z., & Hong, C. Q. (2015). Aligned and porous alumina ceramics prepared by camphene-based freeze-casting route: microstructure and properties. Materials Research Innovations, 19(sup4), S34-S38. | 2015 | 760 | 10.1179/1432891715z.0000000001512 | 2213 | ceramic | Al2O3 | camphene | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | 0 | 0.0 | 0 | 1 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 67.5 | 0.0 | 15.0 | 0.0 | 0.0 | 23.5 | 0.0 | 0.0 |
Zhang, X. Y., Zhang, Y., & Zhang, D. (2012). Effect of particle size on the lamellar pore microstructure of porous Al2O3 ceramics fabricated by the unidirectional freezing. In Applied Mechanics and Materials (Vol. 184, pp. 818-825). Trans Tech Publications. | 2012 | 771 | 10.4028/www.scientific.net/AMM.184-185.818 | 2270 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | 0 | 0.6 | 0 | 0 | 0 | 83.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14.0 | 0.0 | 0.0 |
Zhang, X. Y., Zhang, Y., & Zhang, D. (2012). Effect of particle size on the lamellar pore microstructure of porous Al2O3 ceramics fabricated by the unidirectional freezing. In Applied Mechanics and Materials (Vol. 184, pp. 818-825). Trans Tech Publications. | 2012 | 771 | 10.4028/www.scientific.net/AMM.184-185.818 | 2271 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | 0 | 0.6 | 0 | 0 | 0 | 83.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 16.0 | 0.0 | 0.0 |
Zhang, X. Y., Zhang, Y., & Zhang, D. (2012). Effect of particle size on the lamellar pore microstructure of porous Al2O3 ceramics fabricated by the unidirectional freezing. In Applied Mechanics and Materials (Vol. 184, pp. 818-825). Trans Tech Publications. | 2012 | 771 | 10.4028/www.scientific.net/AMM.184-185.818 | 2272 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 0.6 | 0 | 0 | 0 | 83.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 68.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 |
Zhang, X. Y., Zhang, Y., & Zhang, D. (2012). Effect of particle size on the lamellar pore microstructure of porous Al2O3 ceramics fabricated by the unidirectional freezing. In Applied Mechanics and Materials (Vol. 184, pp. 818-825). Trans Tech Publications. | 2012 | 771 | 10.4028/www.scientific.net/AMM.184-185.818 | 2273 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | 0 | 0.6 | 0 | 0 | 0 | 83.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, X. Y., Zhang, Y., & Zhang, D. (2012). Effect of particle size on the lamellar pore microstructure of porous Al2O3 ceramics fabricated by the unidirectional freezing. In Applied Mechanics and Materials (Vol. 184, pp. 818-825). Trans Tech Publications. | 2012 | 771 | 10.4028/www.scientific.net/AMM.184-185.818 | 2274 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | 0 | 0.02 | 0 | 5 | 0 | 83.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, X. Y., Zhang, Y., & Zhang, D. (2012). Effect of particle size on the lamellar pore microstructure of porous Al2O3 ceramics fabricated by the unidirectional freezing. In Applied Mechanics and Materials (Vol. 184, pp. 818-825). Trans Tech Publications. | 2012 | 771 | 10.4028/www.scientific.net/AMM.184-185.818 | 2275 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | 0 | 0.02 | 0 | 5 | 0 | 83.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, X. Y., Zhang, Y., & Zhang, D. (2012). Effect of particle size on the lamellar pore microstructure of porous Al2O3 ceramics fabricated by the unidirectional freezing. In Applied Mechanics and Materials (Vol. 184, pp. 818-825). Trans Tech Publications. | 2012 | 771 | 10.4028/www.scientific.net/AMM.184-185.818 | 2276 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 0.02 | 0 | 5 | 0 | 83.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, X. Y., Zhang, Y., & Zhang, D. (2012). Effect of particle size on the lamellar pore microstructure of porous Al2O3 ceramics fabricated by the unidirectional freezing. In Applied Mechanics and Materials (Vol. 184, pp. 818-825). Trans Tech Publications. | 2012 | 771 | 10.4028/www.scientific.net/AMM.184-185.818 | 2277 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | 0 | 0.02 | 0 | 5 | 0 | 83.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, X. Y., Zhang, Y., & Zhang, D. (2012). Effect of particle size on the lamellar pore microstructure of porous Al2O3 ceramics fabricated by the unidirectional freezing. In Applied Mechanics and Materials (Vol. 184, pp. 818-825). Trans Tech Publications. | 2012 | 771 | 10.4028/www.scientific.net/AMM.184-185.818 | 2278 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | 0 | 0.6 | 0 | 5 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, X. Y., Zhang, Y., & Zhang, D. (2012). Effect of particle size on the lamellar pore microstructure of porous Al2O3 ceramics fabricated by the unidirectional freezing. In Applied Mechanics and Materials (Vol. 184, pp. 818-825). Trans Tech Publications. | 2012 | 771 | 10.4028/www.scientific.net/AMM.184-185.818 | 2279 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | 0 | 0.02 | 0 | 5 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Hu, L., & Han, J. (2009). Preparation of a dense/porous bilayered ceramic by applying an electric field during freeze casting. Journal of the American Ceramic Society, 92(8), 1874-1876. | 2009 | 776 | 10.1111/j.1551-2916.2009.03110.x | 2320 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | 0 | 0.4 | 0 | 1 | 10 | 0.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 24.0 | 10.0 | 14.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Hu, L., Han, J., & Jiang, Z. (2010). Freeze casting of aqueous alumina slurries with glycerol for porous ceramics. Ceramics international, 36(2), 617-621. | 2010 | 777 | 10.1016/j.ceramint.2009.09.036 | 2321 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 10 | 0.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 64.1 | 0.0 | 0.0 | 0.0 | 0.0 | 127.6 | 0.0 | 0.0 |
Zhang, Y., Hu, L., Han, J., & Jiang, Z. (2010). Freeze casting of aqueous alumina slurries with glycerol for porous ceramics. Ceramics international, 36(2), 617-621. | 2010 | 777 | 10.1016/j.ceramint.2009.09.036 | 2322 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 10 | 0.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 48.2 | 0.0 | 0.0 | 0.0 | 0.0 | 255.1 | 0.0 | 0.0 |
Zhang, Y., Hu, L., Han, J., & Jiang, Z. (2010). Freeze casting of aqueous alumina slurries with glycerol for porous ceramics. Ceramics international, 36(2), 617-621. | 2010 | 777 | 10.1016/j.ceramint.2009.09.036 | 2323 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.9 | 0.0 | 0.0 | 0.0 | 0.0 | 96.4 | 0.0 | 0.0 |
Zhang, Y., Hu, L., Han, J., & Jiang, Z. (2010). Freeze casting of aqueous alumina slurries with glycerol for porous ceramics. Ceramics international, 36(2), 617-621. | 2010 | 777 | 10.1016/j.ceramint.2009.09.036 | 2324 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 49.3 | 0.0 | 0.0 | 0.0 | 0.0 | 194.2 | 0.0 | 0.0 |
Zhang, Y., Zhou, K., Zeng, J., & Zhang, D. (2013). Control of pore structures and sizes in freeze cast ceramics. Advances in Applied Ceramics, 112(7), 405-411. | 2013 | 779 | 10.1179/1743676113y.0000000100 | 2328 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.05 | 0 | 0 | 0 | 173.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 52.7 | 50.0 | 44.0 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zhou, K., Zeng, J., & Zhang, D. (2013). Control of pore structures and sizes in freeze cast ceramics. Advances in Applied Ceramics, 112(7), 405-411. | 2013 | 779 | 10.1179/1743676113y.0000000100 | 2329 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.05 | 0 | 0 | 0 | 173.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 43.8 | 39.0 | 28.0 | 11.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zhou, K., Zeng, J., & Zhang, D. (2013). Control of pore structures and sizes in freeze cast ceramics. Advances in Applied Ceramics, 112(7), 405-411. | 2013 | 779 | 10.1179/1743676113y.0000000100 | 2330 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | 0 | 0.05 | 0 | 0 | 0 | 173.0 | 15.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 38.6 | 39.0 | 16.0 | 23.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhao, H., Yue, Y., Guo, L., Wu, J., Zhang, Y., Li, X., ... & Han, X. (2016). Cloning Nacre's 3D Interlocking Skeleton in Engineering Composites to Achieve Exceptional Mechanical Properties. Advanced materials, 28(25), 5099-5105. | 2016 | 782 | 10.1002/adma.201600839 | 5182 | ceramic | Al2O3 | 0.0 | 0 | 0.0 | 0 | 25.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zheng, J., Winnubst, L., Fang, S., & Salamon, D. (2011). Manipulation of sintering behavior by initial freeze pressing an aqueous alumina suspension. Advanced Engineering Materials, 13(1?2), 77-81. | 2011 | 788 | 10.1002/adem.201000199 | 4809 | ceramic | Al2O3 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zheng, J., Salamon, D., Lefferts, L., Wessling, M., & Winnubst, L. (2010). Ceramic microfluidic monoliths by ice templating. Microporous and mesoporous materials, 134(1), 216-219. | 2010 | 789 | 10.1016/j.micromeso.2010.05.012 | 2379 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 33.0 | 1.0 | 100 | powder | 0.3 | 0 | 10 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 5 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zheng, J., Salamon, D., Lefferts, L., Wessling, M., & Winnubst, L. (2010). Ceramic microfluidic monoliths by ice templating. Microporous and mesoporous materials, 134(1), 216-219. | 2010 | 789 | 10.1016/j.micromeso.2010.05.012 | 2380 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 33.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 5 | lamellar | sintered | 0.0 | 0.0 | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zheng, J., Salamon, D., Lefferts, L., Wessling, M., & Winnubst, L. (2010). Ceramic microfluidic monoliths by ice templating. Microporous and mesoporous materials, 134(1), 216-219. | 2010 | 789 | 10.1016/j.micromeso.2010.05.012 | 2381 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 33.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 1 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zheng, J., Salamon, D., Lefferts, L., Wessling, M., & Winnubst, L. (2010). Ceramic microfluidic monoliths by ice templating. Microporous and mesoporous materials, 134(1), 216-219. | 2010 | 789 | 10.1016/j.micromeso.2010.05.012 | 2382 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 33.0 | 1.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 7 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zou, J., Zhang, Y., & Li, R. (2011). Effect of Suspension State on the Pore Structure of Freeze?Cast Ceramics. International Journal of Applied Ceramic Technology, 8(2), 482-489. | 2011 | 801 | 10.1111/j.1744-7402.2009.02458.x | 1783 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 33.3 | 1.0 | 100 | powder | 2.5 | 5 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zou, J., Zhang, Y., & Li, R. (2011). Effect of Suspension State on the Pore Structure of Freeze?Cast Ceramics. International Journal of Applied Ceramic Technology, 8(2), 482-489. | 2011 | 801 | 10.1111/j.1744-7402.2009.02458.x | 1784 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | powder | 2.5 | 5 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zou, J., Zhang, Y., & Li, R. (2011). Effect of Suspension State on the Pore Structure of Freeze?Cast Ceramics. International Journal of Applied Ceramic Technology, 8(2), 482-489. | 2011 | 801 | 10.1111/j.1744-7402.2009.02458.x | 1785 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | powder | 2.5 | 5 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 54.5 | 0.0 | 5.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zou, J., Zhang, Y., & Li, R. (2011). Effect of Suspension State on the Pore Structure of Freeze?Cast Ceramics. International Journal of Applied Ceramic Technology, 8(2), 482-489. | 2011 | 801 | 10.1111/j.1744-7402.2009.02458.x | 1786 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | powder | 2.5 | 5 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zou, J., Zhang, Y., & Li, R. (2011). Effect of Suspension State on the Pore Structure of Freeze?Cast Ceramics. International Journal of Applied Ceramic Technology, 8(2), 482-489. | 2011 | 801 | 10.1111/j.1744-7402.2009.02458.x | 1787 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | powder | 2.5 | 5 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 53.9 | 0.0 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zou, J., Zhang, Y., & Li, R. (2011). Effect of Suspension State on the Pore Structure of Freeze?Cast Ceramics. International Journal of Applied Ceramic Technology, 8(2), 482-489. | 2011 | 801 | 10.1111/j.1744-7402.2009.02458.x | 1788 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | powder | 2.5 | 5 | 1 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 53.7 | 0.0 | 4.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zou, J., Zhang, Y., & Li, R. (2011). Effect of Suspension State on the Pore Structure of Freeze?Cast Ceramics. International Journal of Applied Ceramic Technology, 8(2), 482-489. | 2011 | 801 | 10.1111/j.1744-7402.2009.02458.x | 1789 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | powder | 2.5 | 5 | 2 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zou, J., Zhang, Y., & Li, R. (2011). Effect of Suspension State on the Pore Structure of Freeze?Cast Ceramics. International Journal of Applied Ceramic Technology, 8(2), 482-489. | 2011 | 801 | 10.1111/j.1744-7402.2009.02458.x | 1790 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 100 | powder | 2.5 | 5 | 3 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zuo, K. H., Zeng, Y. P., & Lin, Q. L. (2012). Porous Alumina Ceramics Fabricated by Freeze Casting Method. In Advanced Materials Research (Vol. 518, pp. 665-668). Trans Tech Publications. | 2012 | 804 | 82.70.Dd, 81.30.Fb, 64.75.Yz, 05.40.Jc | 1797 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.6 | 0 | 1 | 0 | 255.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 71.02 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zuo, K. H., Zeng, Y. P., & Lin, Q. L. (2012). Porous Alumina Ceramics Fabricated by Freeze Casting Method. In Advanced Materials Research (Vol. 518, pp. 665-668). Trans Tech Publications. | 2012 | 804 | 82.70.Dd, 81.30.Fb, 64.75.Yz, 05.40.Jc | 1798 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.6 | 0 | 1 | 0 | 255.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.35 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zuo, K. H., Zeng, Y. P., & Lin, Q. L. (2012). Porous Alumina Ceramics Fabricated by Freeze Casting Method. In Advanced Materials Research (Vol. 518, pp. 665-668). Trans Tech Publications. | 2012 | 804 | 82.70.Dd, 81.30.Fb, 64.75.Yz, 05.40.Jc | 1799 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 37.0 | 1.0 | 100 | powder | 0.6 | 0 | 1 | 0 | 255.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 54.54 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zuo, K. H., Zeng, Y. P., & Lin, Q. L. (2012). Porous Alumina Ceramics Fabricated by Freeze Casting Method. In Advanced Materials Research (Vol. 518, pp. 665-668). Trans Tech Publications. | 2012 | 804 | 82.70.Dd, 81.30.Fb, 64.75.Yz, 05.40.Jc | 1800 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 37.0 | 1.0 | 100 | powder | 0.6 | 0 | 1 | 0 | 255.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 46.38 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1052 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 16.9 | 0.0 | 16 | 15 | 0 | lamellar | sintered | 82.0 | 19.0 | 15.0 | 4.0 | 14.2 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1053 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 15.5 | 0.0 | 15 | 25 | 0 | lamellar | sintered | 74.0 | 31.0 | 18.0 | 10.0 | 15.2 | 8.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1054 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 17.8 | 0.0 | 17 | 34 | 0 | lamellar | sintered | 65.0 | 28.0 | 15.0 | 10.0 | 6.8 | 87.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1055 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 13.6 | 0.0 | 13 | 15 | 0 | lamellar | sintered | 82.0 | 22.0 | 20.0 | 7.0 | 12.6 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1056 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 14.9 | 0.0 | 14 | 25 | 0 | lamellar | sintered | 0.0 | 23.0 | 16.0 | 10.0 | 11.7 | 22.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1057 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 17.8 | 0.0 | 17 | 34 | 0 | lamellar | sintered | 56.0 | 23.0 | 13.0 | 25.0 | 5.4 | 52.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1058 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 26.2 | 0.0 | 26 | 15 | 0 | lamellar | sintered | 82.0 | 13.0 | 10.0 | 3.0 | 13.7 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1059 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 29.4 | 0.0 | 29 | 25 | 0 | lamellar | sintered | 73.0 | 16.0 | 6.0 | 6.0 | 2.3 | 50.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1060 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 31.7 | 0.0 | 31 | 34 | 0 | dendritic | sintered | 60.0 | 10.0 | 4.0 | 4.0 | 1.7 | 130.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1061 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 24.0 | 0.0 | 23 | 15 | 0 | lamellar | sintered | 77.0 | 13.0 | 12.0 | 3.0 | 11.5 | 18.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1062 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 27.2 | 0.0 | 27 | 25 | 0 | lamellar | sintered | 0.0 | 15.0 | 8.0 | 5.0 | 7.6 | 39.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1063 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 28.3 | 0.0 | 28 | 34 | 0 | lamellar | sintered | 52.0 | 17.0 | 6.0 | 7.0 | 5.5 | 100.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1064 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 15 | 0 | lamellar | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1065 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 25 | 0 | lamellar | sintered | 72.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1066 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 34 | 0 | lamellar | sintered | 64.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1067 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 15 | 0 | lamellar | sintered | 79.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1068 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 25 | 0 | lamellar | sintered | 64.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1069 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 34 | 0 | lamellar | sintered | 54.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1070 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 19.6 | 0.0 | 19 | 15 | 0 | lamellar | sintered | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1071 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 15.9 | 0.0 | 15 | 25 | 0 | lamellar | sintered | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1072 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 16.1 | 0.0 | 16 | 34 | 0 | lamellar | sintered | 68.0 | 0.0 | 0.0 | 0.0 | 0.0 | 33.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1073 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 13.6 | 0.0 | 12 | 15 | 0 | lamellar | sintered | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1074 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 14.7 | 0.0 | 14 | 25 | 0 | lamellar | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 22.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1075 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 17.8 | 0.0 | 17 | 34 | 0 | lamellar | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 52.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1076 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 18.5 | 0.0 | 18 | 15 | 0 | lamellar | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1077 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 20.0 | 0.0 | 20 | 15 | 0 | lamellar | sintered | 81.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1078 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 21.0 | 0.0 | 20 | 15 | 0 | lamellar | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1079 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 22.0 | 0.0 | 21 | 15 | 0 | lamellar | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1080 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 24.5 | 0.0 | 24 | 15 | 0 | lamellar | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1081 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 25.0 | 0.0 | 25 | 15 | 0 | lamellar | sintered | 81.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1082 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 26.2 | 0.0 | 26 | 15 | 0 | lamellar | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1083 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 28.0 | 0.0 | 28 | 25 | 0 | lamellar | sintered | 73.0 | 0.0 | 0.0 | 0.0 | 0.0 | 40.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1084 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 25.0 | 0.0 | 25 | 25 | 0 | lamellar | sintered | 73.0 | 0.0 | 0.0 | 0.0 | 0.0 | 39.5 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1085 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 25.5 | 0.0 | 25 | 25 | 0 | lamellar | sintered | 73.0 | 0.0 | 0.0 | 0.0 | 0.0 | 30.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1086 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 13.0 | 0.0 | 12 | 34 | 0 | lamellar | sintered | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 32.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1087 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 19.0 | 0.0 | 18 | 34 | 0 | lamellar | sintered | 67.0 | 0.0 | 0.0 | 0.0 | 0.0 | 72.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1088 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 35.0 | 0.0 | 34 | 34 | 0 | lamellar | sintered | 62.0 | 0.0 | 0.0 | 0.0 | 0.0 | 115.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1089 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 15.0 | 0.0 | 15 | 15 | 0 | lamellar | sintered | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1090 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 16.0 | 0.0 | 15 | 15 | 0 | lamellar | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1091 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 17.0 | 0.0 | 17 | 15 | 0 | lamellar | sintered | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1092 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 18.0 | 0.0 | 18 | 15 | 0 | lamellar | sintered | 79.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1093 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 21.0 | 0.0 | 20 | 15 | 0 | lamellar | sintered | 79.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1094 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 22.0 | 0.0 | 21 | 15 | 0 | lamellar | sintered | 79.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1095 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 23.0 | 0.0 | 23 | 15 | 0 | lamellar | sintered | 79.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1096 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 29.0 | 0.0 | 28 | 15 | 0 | lamellar | sintered | 79.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1097 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 33.0 | 0.0 | 33 | 15 | 0 | lamellar | sintered | 79.0 | 0.0 | 0.0 | 0.0 | 0.0 | 12.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1098 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 17.5 | 0.0 | 17 | 25 | 0 | lamellar | sintered | 63.0 | 0.0 | 0.0 | 0.0 | 0.0 | 30.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1099 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 18.0 | 0.0 | 18 | 25 | 0 | lamellar | sintered | 63.0 | 0.0 | 0.0 | 0.0 | 0.0 | 22.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1100 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 20.0 | 0.0 | 20 | 25 | 0 | lamellar | sintered | 63.5 | 0.0 | 0.0 | 0.0 | 0.0 | 30.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1101 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 21.0 | 0.0 | 20 | 25 | 0 | lamellar | sintered | 63.5 | 0.0 | 0.0 | 0.0 | 0.0 | 32.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1102 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 23.0 | 0.0 | 23 | 25 | 0 | lamellar | sintered | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 25.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1103 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 23.5 | 0.0 | 23 | 25 | 0 | lamellar | sintered | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1104 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 25.0 | 0.0 | 25 | 25 | 0 | lamellar | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 40.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1105 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 25.5 | 0.0 | 25 | 25 | 0 | lamellar | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 40.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1106 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 27.5 | 0.0 | 27 | 25 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 45.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1107 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 19.0 | 0.0 | 18 | 34 | 0 | lamellar | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 65.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1108 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 20.0 | 0.0 | 20 | 34 | 0 | lamellar | sintered | 56.0 | 0.0 | 0.0 | 0.0 | 0.0 | 65.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1109 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 25.0 | 0.0 | 25 | 34 | 0 | lamellar | sintered | 54.0 | 0.0 | 0.0 | 0.0 | 0.0 | 98.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1110 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 27.0 | 0.0 | 27 | 34 | 0 | lamellar | sintered | 53.0 | 0.0 | 0.0 | 0.0 | 0.0 | 95.0 | 0.0 | 0.0 |
Ghosh, D., Dhavale, N., Banda, M., & Kang, H. (2016). A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceramics International, 42(14), 16138-16147. | 2016 | 811 | http://dx.doi.org/10.1016/j.ceramint.2016.07.131 | 1111 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 35.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 27.0 | 0.0 | 27 | 34 | 0 | lamellar | sintered | 53.0 | 0.0 | 0.0 | 0.0 | 0.0 | 90.0 | 0.0 | 0.0 |
Hu, X., Yang, L., Li, L., Xie, D., & Du, H. (2016). Freeze casting of composite system with stable fiber network and movable particles. Journal of the European Ceramic Society, 36(16), 4147-4153. | 2016 | 817 | 10.1016/j.jeurceramsoc.2016.05.049 | 2078 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 1.0 | 1.0 | 100 | fiber | 3.0 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 92.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.0 | 0.0 |
Hu, X., Yang, L., Li, L., Xie, D., & Du, H. (2016). Freeze casting of composite system with stable fiber network and movable particles. Journal of the European Ceramic Society, 36(16), 4147-4153. | 2016 | 817 | 10.1016/j.jeurceramsoc.2016.05.049 | 2079 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 1.0 | 1.0 | 100 | fiber | 3.0 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 92.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7 | 0.0 | 0.0 |
Hu, X., Yang, L., Li, L., Xie, D., & Du, H. (2016). Freeze casting of composite system with stable fiber network and movable particles. Journal of the European Ceramic Society, 36(16), 4147-4153. | 2016 | 817 | 10.1016/j.jeurceramsoc.2016.05.049 | 2080 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 1.0 | 1.0 | 100 | fiber | 3.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 91.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.17 | 0.0 | 0.0 |
Hu, X., Yang, L., Li, L., Xie, D., & Du, H. (2016). Freeze casting of composite system with stable fiber network and movable particles. Journal of the European Ceramic Society, 36(16), 4147-4153. | 2016 | 817 | 10.1016/j.jeurceramsoc.2016.05.049 | 2081 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 1.0 | 1.0 | 100 | fiber | 3.0 | 5 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 90.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.76 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1613 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 79.0 | 8.0 | 5.5 | 2.5 | 0.0 | 9.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1614 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 82.0 | 9.0 | 7.0 | 2.0 | 0.0 | 9.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1615 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 82.0 | 10.0 | 5.5 | 4.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1616 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 25.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 79.5 | 17.0 | 14.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1617 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 24.5 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 81.9 | 10.0 | 8.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1618 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 22.5 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 83.0 | 12.0 | 9.9 | 2.1 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1619 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 22.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.0 | 12.0 | 9.9 | 2.1 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1620 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 20.5 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.5 | 17.0 | 12.5 | 4.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1621 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 20.5 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 81.5 | 11.0 | 8.5 | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1622 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 18.5 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 82.4 | 14.0 | 11.0 | 3.0 | 0.0 | 3.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1623 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 16.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 82.5 | 14.0 | 10.0 | 4.0 | 0.0 | 2.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1624 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 97 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 13.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 81.0 | 18.0 | 0.0 | 5.0 | 0.0 | 4.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1625 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 97 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 16.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.5 | 18.0 | 0.0 | 5.0 | 0.0 | 4.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1626 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 97 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 16.5 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 81.0 | 19.0 | 15.0 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1627 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 97 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 18.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.0 | 15.0 | 11.0 | 3.8 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1628 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 97 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 22.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.5 | 12.0 | 9.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1629 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 97 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 23.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.0 | 13.0 | 10.5 | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1630 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 97 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 25.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.5 | 12.0 | 9.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1631 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 97 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.5 | 11.0 | 8.5 | 2.5 | 0.0 | 7.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1632 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 97 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 33.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.0 | 10.0 | 7.8 | 2.2 | 0.0 | 7.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1633 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 94 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 18.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.0 | 15.0 | 11.0 | 4.0 | 0.0 | 5.5 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1634 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 94 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 19.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 79.0 | 13.0 | 9.0 | 3.8 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1635 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 94 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 22.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.0 | 12.0 | 9.8 | 2.2 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1636 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 94 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 23.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.0 | 11.5 | 9.2 | 2.3 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1637 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 94 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 24.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 79.0 | 10.0 | 8.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1638 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 94 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 78.0 | 9.0 | 7.0 | 2.0 | 0.0 | 19.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1639 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 94 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.0 | 8.0 | 6.2 | 1.8 | 0.0 | 20.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1640 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 89 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 15.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.5 | 19.5 | 0.0 | 5.0 | 0.0 | 12.5 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1641 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 89 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 18.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 81.0 | 15.0 | 11.5 | 3.5 | 0.0 | 12.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1642 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 89 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 18.5 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.5 | 15.0 | 11.5 | 3.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1643 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 89 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 19.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.5 | 15.0 | 11.5 | 3.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1644 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 89 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 24.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.0 | 12.0 | 10.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1645 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 89 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 24.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.5 | 11.0 | 8.9 | 2.1 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1646 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 89 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 26.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 79.5 | 9.0 | 7.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1647 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 89 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 26.5 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.5 | 10.0 | 8.1 | 1.9 | 0.0 | 14.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1648 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 89 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 79.5 | 10.0 | 8.2 | 1.8 | 0.0 | 14.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1649 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 80 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 13.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 81.0 | 18.0 | 13.8 | 4.2 | 0.0 | 16.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1650 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 80 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 14.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 82.0 | 15.5 | 11.4 | 3.9 | 0.0 | 16.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1651 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 80 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 16.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 82.0 | 14.0 | 10.0 | 3.8 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1652 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 80 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 18.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 82.0 | 14.0 | 10.1 | 3.9 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1653 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 80 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 21.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 82.0 | 11.0 | 8.8 | 2.2 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1654 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 80 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 24.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 81.0 | 10.0 | 7.9 | 2.1 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1655 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 80 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 24.5 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 82.0 | 8.0 | 6.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1656 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 80 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 82.0 | 8.0 | 6.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1657 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 80 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 82.0 | 6.0 | 4.1 | 1.9 | 0.0 | 13.0 | 0.0 | 0.0 |
Ghosh, D., Kang, H., Banda, M., & Kamaha, V. (2017). Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Materialia, 125, 1-14. | 2017 | 819 | 10.1016/j.actamat.2016.11.047 | 1658 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 80 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 82.0 | 5.0 | 3.0 | 2.0 | 0.0 | 12.5 | 0.0 | 0.0 |
Tang, Y., Qiu, S., Li, M., & Zhao, K. (2017). Fabrication of alumina/copper heat dissipation substrates by freeze tape casting and melt infiltration for high-power LED. Journal of Alloys and Compounds, 690, 469-477. | 2017 | 826 | 10.1016/j.jallcom.2016.08.149 | 2403 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 4.0 | 0 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 110.0 | 0.0 | 6.36 | 0.0 | 0.0 | 0.0 |
Tang, Y., Qiu, S., Li, M., & Zhao, K. (2017). Fabrication of alumina/copper heat dissipation substrates by freeze tape casting and melt infiltration for high-power LED. Journal of Alloys and Compounds, 690, 469-477. | 2017 | 826 | 10.1016/j.jallcom.2016.08.149 | 2404 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 4.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 90.0 | 0.0 | 2.22 | 0.0 | 0.0 | 0.0 |
Tang, Y., Qiu, S., Li, M., & Zhao, K. (2017). Fabrication of alumina/copper heat dissipation substrates by freeze tape casting and melt infiltration for high-power LED. Journal of Alloys and Compounds, 690, 469-477. | 2017 | 826 | 10.1016/j.jallcom.2016.08.149 | 2405 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 4.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 50.0 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 |
Tang, Y., Qiu, S., Li, M., & Zhao, K. (2017). Fabrication of alumina/copper heat dissipation substrates by freeze tape casting and melt infiltration for high-power LED. Journal of Alloys and Compounds, 690, 469-477. | 2017 | 826 | 10.1016/j.jallcom.2016.08.149 | 2406 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | powder | 4.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 68.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, Y., Qiu, S., Li, M., & Zhao, K. (2017). Fabrication of alumina/copper heat dissipation substrates by freeze tape casting and melt infiltration for high-power LED. Journal of Alloys and Compounds, 690, 469-477. | 2017 | 826 | 10.1016/j.jallcom.2016.08.149 | 2407 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 4.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 62.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, Y., Qiu, S., Li, M., & Zhao, K. (2017). Fabrication of alumina/copper heat dissipation substrates by freeze tape casting and melt infiltration for high-power LED. Journal of Alloys and Compounds, 690, 469-477. | 2017 | 826 | 10.1016/j.jallcom.2016.08.149 | 2408 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 4.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 58.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 118 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 16.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 83.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 106.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 119 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 17.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 83.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 0.0 | 86.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 120 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 18.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 0.0 | 99.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 121 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 19.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 0.0 | 35.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 122 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 19.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 123 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 20.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 83.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 0.0 | 109.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 124 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 21.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 0.0 | 105.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 125 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 22.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 0.0 | 21.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 126 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 23.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 0.0 | 175.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 127 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 24.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 0.0 | 143.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 128 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 24.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 81.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 0.0 | 92.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 129 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 26.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 81.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 0.0 | 180.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 130 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 26.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 81.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 0.0 | 0.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 131 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 27.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 81.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 0.0 | 0.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 132 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 89 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 133 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 89 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 15.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 81.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 470.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 134 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 89 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 18.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 81.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9.0 | 0.0 | 475.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 135 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 89 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 18.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 81.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.0 | 0.0 | 149.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 136 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 89 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 19.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 81.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 264.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 137 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 89 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 23.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 81.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14.0 | 0.0 | 338.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 138 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 89 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 23.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 81.0 | 0.0 | 0.0 | 0.0 | 0.0 | 12.0 | 0.0 | 530.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 139 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 89 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 24.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 81.0 | 0.0 | 0.0 | 0.0 | 0.0 | 16.0 | 0.0 | 589.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 140 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 89 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 25.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 81.0 | 0.0 | 0.0 | 0.0 | 0.0 | 16.0 | 0.0 | 351.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 141 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 89 | powder | 0.9 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 25.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 81.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14.0 | 0.0 | 410.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 142 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 14.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 81.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 0.0 | 28.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 143 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 16.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 0.0 | 198.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 144 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 16.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 81.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 0.0 | 16.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 145 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 18.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14.0 | 0.0 | 314.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 146 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 19.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 77.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 0.0 | 59.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 147 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 21.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 77.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.0 | 0.0 | 149.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 148 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 22.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 77.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9.0 | 0.0 | 186.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 149 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 23.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 77.0 | 0.0 | 0.0 | 0.0 | 0.0 | 11.0 | 0.0 | 215.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 150 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 23.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 77.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9.0 | 0.0 | 276.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 151 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 24.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 77.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 152 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 28.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 153 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 154 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 89 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 14.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 155 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 89 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 15.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 156 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 89 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 16.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 157 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 89 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 17.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 158 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 89 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 19.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 159 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 89 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 20.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 160 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 89 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 20.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 161 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 89 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 21.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 162 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 89 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 22.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 163 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 89 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 23.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghosh, D., Banda, M., Kang, H., & Dhavale, N. (2016). Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scripta Materialia, 125, 29-33. | 2016 | 847 | 10.1016/j.scriptamat.2016.07.030 | 164 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 15.0 | 1.0 | 89 | powder | 0.3 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 25.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Großberger, S., Fey, T., & Lee, G. (2016). Vacuum-induced surface freezing to produce monoliths of aligned porous alumina. Materials, 9(12), 983. | 2016 | 855 | 10.3390/ma9120983 | 4316 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 12.8 | 1.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 255.0 | 10.0 | 0.0 | one-sided | linear | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Großberger, S., Fey, T., & Lee, G. (2016). Vacuum-induced surface freezing to produce monoliths of aligned porous alumina. Materials, 9(12), 983. | 2016 | 855 | 10.3390/ma9120983 | 4317 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 6.4 | 1.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 255.0 | 10.0 | 0.0 | one-sided | linear | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Großberger, S., Fey, T., & Lee, G. (2016). Vacuum-induced surface freezing to produce monoliths of aligned porous alumina. Materials, 9(12), 983. | 2016 | 855 | 10.3390/ma9120983 | 4318 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 3.2 | 1.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 255.0 | 10.0 | 0.0 | one-sided | linear | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Souza, D. F., Nunes, E. H. M., Vasconcelos, D. C. L., & Vasconcelos, W. L. (2016). Processing and structural evaluation of ceramic materials prepared by freeze-casting method. Cerâmica, 62(364), 351-357. | 2016 | 885 | 10.1590/0366-69132016623642054 | 6087 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 15.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 74.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Souza, D. F., Nunes, E. H. M., Vasconcelos, D. C. L., & Vasconcelos, W. L. (2016). Processing and structural evaluation of ceramic materials prepared by freeze-casting method. Cerâmica, 62(364), 351-357. | 2016 | 885 | 10.1590/0366-69132016623642054 | 6088 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Souza, D. F., Nunes, E. H. M., Vasconcelos, D. C. L., & Vasconcelos, W. L. (2016). Processing and structural evaluation of ceramic materials prepared by freeze-casting method. Cerâmica, 62(364), 351-357. | 2016 | 885 | 10.1590/0366-69132016623642054 | 6089 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 25.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Souza, D. F., Nunes, E. H. M., Vasconcelos, D. C. L., & Vasconcelos, W. L. (2016). Processing and structural evaluation of ceramic materials prepared by freeze-casting method. Cerâmica, 62(364), 351-357. | 2016 | 885 | 10.1590/0366-69132016623642054 | 6090 | ceramic | Al2O3 | TBA | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 46.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, L., You, J., Wang, Z., Wang, J., & Lin, X. (2016). Interface instability modes in freezing colloidal suspensions: revealed from onset of planar instability. Scientific reports, 6. | 2016 | 892 | 10.1038/srep23358 | 5728 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 1.31 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, L., You, J., Wang, Z., Wang, J., & Lin, X. (2016). Interface instability modes in freezing colloidal suspensions: revealed from onset of planar instability. Scientific reports, 6. | 2016 | 892 | 10.1038/srep23358 | 5729 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 3.63 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, L., You, J., Wang, Z., Wang, J., & Lin, X. (2016). Interface instability modes in freezing colloidal suspensions: revealed from onset of planar instability. Scientific reports, 6. | 2016 | 892 | 10.1038/srep23358 | 5730 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 7.75 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutierrez, E. S., Reece, M., & Grobert, N. (2012). Bio-Inspired Ceramic/Carbon Composites (No. 1507-EN-01). IMPERIAL COLL LONDON (UNITED KINGDOM). | 2012 | 916 | 0 | 4967 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutierrez, E. S., Reece, M., & Grobert, N. (2012). Bio-Inspired Ceramic/Carbon Composites (No. 1507-EN-01). IMPERIAL COLL LONDON (UNITED KINGDOM). | 2012 | 916 | 0 | 4968 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutierrez, E. S., Reece, M., & Grobert, N. (2012). Bio-Inspired Ceramic/Carbon Composites (No. 1507-EN-01). IMPERIAL COLL LONDON (UNITED KINGDOM). | 2012 | 916 | 0 | 4969 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutierrez, E. S., Reece, M., & Grobert, N. (2012). Bio-Inspired Ceramic/Carbon Composites (No. 1507-EN-01). IMPERIAL COLL LONDON (UNITED KINGDOM). | 2012 | 916 | 0 | 4970 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutierrez, E. S., Reece, M., & Grobert, N. (2012). Bio-Inspired Ceramic/Carbon Composites (No. 1507-EN-01). IMPERIAL COLL LONDON (UNITED KINGDOM). | 2012 | 916 | 0 | 4971 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutierrez, E. S., Reece, M., & Grobert, N. (2012). Bio-Inspired Ceramic/Carbon Composites (No. 1507-EN-01). IMPERIAL COLL LONDON (UNITED KINGDOM). | 2012 | 916 | 0 | 4972 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutierrez, E. S., Reece, M., & Grobert, N. (2012). Bio-Inspired Ceramic/Carbon Composites (No. 1507-EN-01). IMPERIAL COLL LONDON (UNITED KINGDOM). | 2012 | 916 | 0 | 4973 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutierrez, E. S., Reece, M., & Grobert, N. (2012). Bio-Inspired Ceramic/Carbon Composites (No. 1507-EN-01). IMPERIAL COLL LONDON (UNITED KINGDOM). | 2012 | 916 | 0 | 4974 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutierrez, E. S., Reece, M., & Grobert, N. (2012). Bio-Inspired Ceramic/Carbon Composites (No. 1507-EN-01). IMPERIAL COLL LONDON (UNITED KINGDOM). | 2012 | 916 | 0 | 4975 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutierrez, E. S., Reece, M., & Grobert, N. (2012). Bio-Inspired Ceramic/Carbon Composites (No. 1507-EN-01). IMPERIAL COLL LONDON (UNITED KINGDOM). | 2012 | 916 | 0 | 4976 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutierrez, E. S., Reece, M., & Grobert, N. (2012). Bio-Inspired Ceramic/Carbon Composites (No. 1507-EN-01). IMPERIAL COLL LONDON (UNITED KINGDOM). | 2012 | 916 | 0 | 4977 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutierrez, E. S., Reece, M., & Grobert, N. (2012). Bio-Inspired Ceramic/Carbon Composites (No. 1507-EN-01). IMPERIAL COLL LONDON (UNITED KINGDOM). | 2012 | 916 | 0 | 4978 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutierrez, E. S., Reece, M., & Grobert, N. (2012). Bio-Inspired Ceramic/Carbon Composites (No. 1507-EN-01). IMPERIAL COLL LONDON (UNITED KINGDOM). | 2012 | 916 | 0 | 4979 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutierrez, E. S., Reece, M., & Grobert, N. (2012). Bio-Inspired Ceramic/Carbon Composites (No. 1507-EN-01). IMPERIAL COLL LONDON (UNITED KINGDOM). | 2012 | 916 | 0 | 4980 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutierrez, E. S., Reece, M., & Grobert, N. (2012). Bio-Inspired Ceramic/Carbon Composites (No. 1507-EN-01). IMPERIAL COLL LONDON (UNITED KINGDOM). | 2012 | 916 | 0 | 4981 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutierrez, E. S., Reece, M., & Grobert, N. (2012). Bio-Inspired Ceramic/Carbon Composites (No. 1507-EN-01). IMPERIAL COLL LONDON (UNITED KINGDOM). | 2012 | 916 | 0 | 4982 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutierrez, E. S., Reece, M., & Grobert, N. (2012). Bio-Inspired Ceramic/Carbon Composites (No. 1507-EN-01). IMPERIAL COLL LONDON (UNITED KINGDOM). | 2012 | 916 | 0 | 4983 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutierrez, E. S., Reece, M., & Grobert, N. (2012). Bio-Inspired Ceramic/Carbon Composites (No. 1507-EN-01). IMPERIAL COLL LONDON (UNITED KINGDOM). | 2012 | 916 | 0 | 4984 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutierrez, E. S., Reece, M., & Grobert, N. (2012). Bio-Inspired Ceramic/Carbon Composites (No. 1507-EN-01). IMPERIAL COLL LONDON (UNITED KINGDOM). | 2012 | 916 | 0 | 4985 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutierrez, E. S., Reece, M., & Grobert, N. (2012). Bio-Inspired Ceramic/Carbon Composites (No. 1507-EN-01). IMPERIAL COLL LONDON (UNITED KINGDOM). | 2012 | 916 | 0 | 4986 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutierrez, E. S., Reece, M., & Grobert, N. (2012). Bio-Inspired Ceramic/Carbon Composites (No. 1507-EN-01). IMPERIAL COLL LONDON (UNITED KINGDOM). | 2012 | 916 | 0 | 4987 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutierrez, E. S., Reece, M., & Grobert, N. (2012). Bio-Inspired Ceramic/Carbon Composites (No. 1507-EN-01). IMPERIAL COLL LONDON (UNITED KINGDOM). | 2012 | 916 | 0 | 4988 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutierrez, E. S., Reece, M., & Grobert, N. (2012). Bio-Inspired Ceramic/Carbon Composites (No. 1507-EN-01). IMPERIAL COLL LONDON (UNITED KINGDOM). | 2012 | 916 | 0 | 5813 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 10.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutierrez, E. S., Reece, M., & Grobert, N. (2012). Bio-Inspired Ceramic/Carbon Composites (No. 1507-EN-01). IMPERIAL COLL LONDON (UNITED KINGDOM). | 2012 | 916 | 0 | 5814 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 20.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutierrez, E. S., Reece, M., & Grobert, N. (2012). Bio-Inspired Ceramic/Carbon Composites (No. 1507-EN-01). IMPERIAL COLL LONDON (UNITED KINGDOM). | 2012 | 916 | 0 | 5815 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 35.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutierrez, E. S., Reece, M., & Grobert, N. (2012). Bio-Inspired Ceramic/Carbon Composites (No. 1507-EN-01). IMPERIAL COLL LONDON (UNITED KINGDOM). | 2012 | 916 | 0 | 5816 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 42.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutierrez, E. S., Reece, M., & Grobert, N. (2012). Bio-Inspired Ceramic/Carbon Composites (No. 1507-EN-01). IMPERIAL COLL LONDON (UNITED KINGDOM). | 2012 | 916 | 0 | 5817 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 10.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutierrez, E. S., Reece, M., & Grobert, N. (2012). Bio-Inspired Ceramic/Carbon Composites (No. 1507-EN-01). IMPERIAL COLL LONDON (UNITED KINGDOM). | 2012 | 916 | 0 | 5818 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 20.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 90.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutierrez, E. S., Reece, M., & Grobert, N. (2012). Bio-Inspired Ceramic/Carbon Composites (No. 1507-EN-01). IMPERIAL COLL LONDON (UNITED KINGDOM). | 2012 | 916 | 0 | 5819 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutierrez, E. S., Reece, M., & Grobert, N. (2012). Bio-Inspired Ceramic/Carbon Composites (No. 1507-EN-01). IMPERIAL COLL LONDON (UNITED KINGDOM). | 2012 | 916 | 0 | 5820 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 40.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Frank, M. B., Naleway, S. E., Haroush, T., Liu, C. H., Siu, S. H., Ng, J., ... & Graeve, O. A. (2017). Stiff, porous scaffolds from magnetized alumina particles aligned by magnetic freeze casting. Materials Science and Engineering: C, 77, 484-492. | 2017 | 953 | 10.1016/j.msec.2017.03.246 | 5951 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 83.74 | 0.0 | 0.0 | 2.32 | 0.0 | 0.0 | 0.0 | 0.0 |
Frank, M. B., Naleway, S. E., Haroush, T., Liu, C. H., Siu, S. H., Ng, J., ... & Graeve, O. A. (2017). Stiff, porous scaffolds from magnetized alumina particles aligned by magnetic freeze casting. Materials Science and Engineering: C, 77, 484-492. | 2017 | 953 | 10.1016/j.msec.2017.03.246 | 5952 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | magnetic | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 84.77 | 0.0 | 0.0 | 2.31 | 0.0 | 0.0 | 0.0 | 0.0 |
Frank, M. B., Naleway, S. E., Haroush, T., Liu, C. H., Siu, S. H., Ng, J., ... & Graeve, O. A. (2017). Stiff, porous scaffolds from magnetized alumina particles aligned by magnetic freeze casting. Materials Science and Engineering: C, 77, 484-492. | 2017 | 953 | 10.1016/j.msec.2017.03.246 | 5953 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | magnetic | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 85.29 | 0.0 | 0.0 | 2.34 | 0.0 | 0.0 | 0.0 | 0.0 |
Frank, M. B., Naleway, S. E., Haroush, T., Liu, C. H., Siu, S. H., Ng, J., ... & Graeve, O. A. (2017). Stiff, porous scaffolds from magnetized alumina particles aligned by magnetic freeze casting. Materials Science and Engineering: C, 77, 484-492. | 2017 | 953 | 10.1016/j.msec.2017.03.246 | 5954 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 83.35 | 0.0 | 0.0 | 2.53 | 0.0 | 0.0 | 0.0 | 0.0 |
Frank, M. B., Naleway, S. E., Haroush, T., Liu, C. H., Siu, S. H., Ng, J., ... & Graeve, O. A. (2017). Stiff, porous scaffolds from magnetized alumina particles aligned by magnetic freeze casting. Materials Science and Engineering: C, 77, 484-492. | 2017 | 953 | 10.1016/j.msec.2017.03.246 | 5955 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | magnetic | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 83.44 | 0.0 | 0.0 | 2.58 | 0.0 | 0.0 | 0.0 | 0.0 |
Frank, M. B., Naleway, S. E., Haroush, T., Liu, C. H., Siu, S. H., Ng, J., ... & Graeve, O. A. (2017). Stiff, porous scaffolds from magnetized alumina particles aligned by magnetic freeze casting. Materials Science and Engineering: C, 77, 484-492. | 2017 | 953 | 10.1016/j.msec.2017.03.246 | 5956 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | magnetic | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 81.6 | 0.0 | 0.0 | 2.56 | 0.0 | 0.0 | 0.0 | 0.0 |
Frank, M. B., Naleway, S. E., Haroush, T., Liu, C. H., Siu, S. H., Ng, J., ... & Graeve, O. A. (2017). Stiff, porous scaffolds from magnetized alumina particles aligned by magnetic freeze casting. Materials Science and Engineering: C, 77, 484-492. | 2017 | 953 | 10.1016/j.msec.2017.03.246 | 5957 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 82.6 | 0.0 | 0.0 | 2.85 | 0.0 | 0.0 | 0.0 | 0.0 |
Frank, M. B., Naleway, S. E., Haroush, T., Liu, C. H., Siu, S. H., Ng, J., ... & Graeve, O. A. (2017). Stiff, porous scaffolds from magnetized alumina particles aligned by magnetic freeze casting. Materials Science and Engineering: C, 77, 484-492. | 2017 | 953 | 10.1016/j.msec.2017.03.246 | 5958 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | magnetic | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 82.33 | 0.0 | 0.0 | 2.91 | 0.0 | 0.0 | 0.0 | 0.0 |
Frank, M. B., Naleway, S. E., Haroush, T., Liu, C. H., Siu, S. H., Ng, J., ... & Graeve, O. A. (2017). Stiff, porous scaffolds from magnetized alumina particles aligned by magnetic freeze casting. Materials Science and Engineering: C, 77, 484-492. | 2017 | 953 | 10.1016/j.msec.2017.03.246 | 5959 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | magnetic | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 81.83 | 0.0 | 0.0 | 3.04 | 0.0 | 0.0 | 0.0 | 0.0 |
Gro?berger, S., Fey, T., & Lee, G. (2017). Freezing kinetics of vacuum-induced surface directional freezing in a glass vial. Chemical Engineering Science, 167, 154-160. | 2017 | 954 | 10.1016/j.ces.2017.03.066 | 5960 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 12.8 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | vacuum | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gro?berger, S., Fey, T., & Lee, G. (2017). Freezing kinetics of vacuum-induced surface directional freezing in a glass vial. Chemical Engineering Science, 167, 154-160. | 2017 | 954 | 10.1016/j.ces.2017.03.066 | 5961 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 6.4 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | vacuum | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gro?berger, S., Fey, T., & Lee, G. (2017). Freezing kinetics of vacuum-induced surface directional freezing in a glass vial. Chemical Engineering Science, 167, 154-160. | 2017 | 954 | 10.1016/j.ces.2017.03.066 | 5962 | ceramic | Al2O3 | water | 100 | 0.0 | 0 | 3.2 | 1.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | vacuum | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naviroj, M., Voorhees, P. W., & Faber, K. T. (2017). Suspension-and solution-based freeze casting for porous ceramics. Journal of Materials Research, 1-11. | 2017 | 1002 | 10.1557/jmr.2017.133 | 6157 | ceramic | Al2O3 | cyclooctane | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.35 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 15.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 13.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naviroj, M., Voorhees, P. W., & Faber, K. T. (2017). Suspension-and solution-based freeze casting for porous ceramics. Journal of Materials Research, 1-11. | 2017 | 1002 | 10.1557/jmr.2017.133 | 6158 | ceramic | Al2O3 | cyclohexane | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.35 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 15.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 17.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naviroj, M., Voorhees, P. W., & Faber, K. T. (2017). Suspension-and solution-based freeze casting for porous ceramics. Journal of Materials Research, 1-11. | 2017 | 1002 | 10.1557/jmr.2017.133 | 6159 | ceramic | Al2O3 | dioxane | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.35 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 15.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 33.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naviroj, M., Voorhees, P. W., & Faber, K. T. (2017). Suspension-and solution-based freeze casting for porous ceramics. Journal of Materials Research, 1-11. | 2017 | 1002 | 10.1557/jmr.2017.133 | 6160 | ceramic | Al2O3 | dimethyl carbonate | 100 | 0.0 | 0 | 15.0 | 1.0 | 100 | powder | 0.35 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 15.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 36.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Arabi, N., & Zamanian, A. (2013). Effect of cooling rate and gelatin concentration on the microstructural and mechanical properties of ice template gelatin scaffolds. Biotechnology and applied biochemistry, 60(6), 573-579. | 2013 | 8 | 10.1002/bab.1120 | 30 | polymer | gelatin | water | 100 | 0.0 | 0 | 0.75 | 48.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 99.0 | 0.0 | 38.0 | 0.0 | 3.6 | 0.1 | 0.0 | 0.0 |
Arabi, N., & Zamanian, A. (2013). Effect of cooling rate and gelatin concentration on the microstructural and mechanical properties of ice template gelatin scaffolds. Biotechnology and applied biochemistry, 60(6), 573-579. | 2013 | 8 | 10.1002/bab.1120 | 31 | polymer | gelatin | water | 100 | 0.0 | 0 | 0.24 | 48.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 96.5 | 0.0 | 42.0 | 0.0 | 1.12 | 0.35 | 0.0 | 0.0 |
Arabi, N., & Zamanian, A. (2013). Effect of cooling rate and gelatin concentration on the microstructural and mechanical properties of ice template gelatin scaffolds. Biotechnology and applied biochemistry, 60(6), 573-579. | 2013 | 8 | 10.1002/bab.1120 | 32 | polymer | gelatin | water | 100 | 0.0 | 0 | 0.38 | 48.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 94.8 | 0.0 | 45.0 | 0.0 | 1.67 | 0.9 | 0.0 | 0.0 |
Arabi, N., & Zamanian, A. (2013). Effect of cooling rate and gelatin concentration on the microstructural and mechanical properties of ice template gelatin scaffolds. Biotechnology and applied biochemistry, 60(6), 573-579. | 2013 | 8 | 10.1002/bab.1120 | 33 | polymer | gelatin | water | 100 | 0.0 | 0 | 0.75 | 48.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 3.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 99.0 | 0.0 | 80.0 | 0.0 | 3.6 | 0.1 | 0.0 | 0.0 |
Arabi, N., & Zamanian, A. (2013). Effect of cooling rate and gelatin concentration on the microstructural and mechanical properties of ice template gelatin scaffolds. Biotechnology and applied biochemistry, 60(6), 573-579. | 2013 | 8 | 10.1002/bab.1120 | 34 | polymer | gelatin | water | 100 | 0.0 | 0 | 0.24 | 48.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 3.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 96.5 | 0.0 | 50.0 | 0.0 | 1.12 | 0.36 | 0.0 | 0.0 |
Arabi, N., & Zamanian, A. (2013). Effect of cooling rate and gelatin concentration on the microstructural and mechanical properties of ice template gelatin scaffolds. Biotechnology and applied biochemistry, 60(6), 573-579. | 2013 | 8 | 10.1002/bab.1120 | 35 | polymer | gelatin | water | 100 | 0.0 | 0 | 0.38 | 48.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 3.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 94.8 | 0.0 | 40.0 | 0.0 | 1.17 | 0.96 | 0.0 | 0.0 |
Arabi, N., & Zamanian, A. (2013). Effect of cooling rate and gelatin concentration on the microstructural and mechanical properties of ice template gelatin scaffolds. Biotechnology and applied biochemistry, 60(6), 573-579. | 2013 | 8 | 10.1002/bab.1120 | 36 | polymer | gelatin | water | 100 | 0.0 | 0 | 0.75 | 48.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 99.0 | 0.0 | 0.0 | 0.0 | 1.25 | 0.1 | 0.0 | 0.0 |
Arabi, N., & Zamanian, A. (2013). Effect of cooling rate and gelatin concentration on the microstructural and mechanical properties of ice template gelatin scaffolds. Biotechnology and applied biochemistry, 60(6), 573-579. | 2013 | 8 | 10.1002/bab.1120 | 37 | polymer | gelatin | water | 100 | 0.0 | 0 | 0.24 | 48.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 96.5 | 0.0 | 0.0 | 0.0 | 1.18 | 0.4 | 0.0 | 0.0 |
Arabi, N., & Zamanian, A. (2013). Effect of cooling rate and gelatin concentration on the microstructural and mechanical properties of ice template gelatin scaffolds. Biotechnology and applied biochemistry, 60(6), 573-579. | 2013 | 8 | 10.1002/bab.1120 | 38 | polymer | gelatin | water | 100 | 0.0 | 0 | 0.38 | 48.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 94.8 | 0.0 | 35.0 | 0.0 | 0.83 | 1.15 | 0.0 | 0.0 |
Saglam, A., Perets, A., Canver, A. C., Li, H. L., Kollins, K., Cohen, G., ... & Lelkes, P. I. (2013). Angioneural crosstalk in scaffolds with oriented microchannels for regenerative spinal cord injury repair. Journal of Molecular Neuroscience, 49(2), 334-346. | 2013 | 542 | 10.1007/s12031-012-9863-9 | 5401 | polymer | gelatin | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Saglam, A., Perets, A., Canver, A. C., Li, H. L., Kollins, K., Cohen, G., ... & Lelkes, P. I. (2013). Angioneural crosstalk in scaffolds with oriented microchannels for regenerative spinal cord injury repair. Journal of Molecular Neuroscience, 49(2), 334-346. | 2013 | 542 | 10.1007/s12031-012-9863-9 | 5402 | polymer | gelatin | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 110.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Saglam, A., Perets, A., Canver, A. C., Li, H. L., Kollins, K., Cohen, G., ... & Lelkes, P. I. (2013). Angioneural crosstalk in scaffolds with oriented microchannels for regenerative spinal cord injury repair. Journal of Molecular Neuroscience, 49(2), 334-346. | 2013 | 542 | 10.1007/s12031-012-9863-9 | 5403 | polymer | gelatin | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 210.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Saglam, A., Perets, A., Canver, A. C., Li, H. L., Kollins, K., Cohen, G., ... & Lelkes, P. I. (2013). Angioneural crosstalk in scaffolds with oriented microchannels for regenerative spinal cord injury repair. Journal of Molecular Neuroscience, 49(2), 334-346. | 2013 | 542 | 10.1007/s12031-012-9863-9 | 5404 | polymer | gelatin | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 250.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Saglam, A., Perets, A., Canver, A. C., Li, H. L., Kollins, K., Cohen, G., ... & Lelkes, P. I. (2013). Angioneural crosstalk in scaffolds with oriented microchannels for regenerative spinal cord injury repair. Journal of Molecular Neuroscience, 49(2), 334-346. | 2013 | 542 | 10.1007/s12031-012-9863-9 | 5405 | polymer | gelatin | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 280.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Saglam, A., Perets, A., Canver, A. C., Li, H. L., Kollins, K., Cohen, G., ... & Lelkes, P. I. (2013). Angioneural crosstalk in scaffolds with oriented microchannels for regenerative spinal cord injury repair. Journal of Molecular Neuroscience, 49(2), 334-346. | 2013 | 542 | 10.1007/s12031-012-9863-9 | 5406 | polymer | gelatin | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 290.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Saglam, A., Perets, A., Canver, A. C., Li, H. L., Kollins, K., Cohen, G., ... & Lelkes, P. I. (2013). Angioneural crosstalk in scaffolds with oriented microchannels for regenerative spinal cord injury repair. Journal of Molecular Neuroscience, 49(2), 334-346. | 2013 | 542 | 10.1007/s12031-012-9863-9 | 5407 | polymer | gelatin | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 310.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Saglam, A., Perets, A., Canver, A. C., Li, H. L., Kollins, K., Cohen, G., ... & Lelkes, P. I. (2013). Angioneural crosstalk in scaffolds with oriented microchannels for regenerative spinal cord injury repair. Journal of Molecular Neuroscience, 49(2), 334-346. | 2013 | 542 | 10.1007/s12031-012-9863-9 | 5408 | polymer | gelatin | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Saglam, A., Perets, A., Canver, A. C., Li, H. L., Kollins, K., Cohen, G., ... & Lelkes, P. I. (2013). Angioneural crosstalk in scaffolds with oriented microchannels for regenerative spinal cord injury repair. Journal of Molecular Neuroscience, 49(2), 334-346. | 2013 | 542 | 10.1007/s12031-012-9863-9 | 5409 | polymer | gelatin | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Saglam, A., Perets, A., Canver, A. C., Li, H. L., Kollins, K., Cohen, G., ... & Lelkes, P. I. (2013). Angioneural crosstalk in scaffolds with oriented microchannels for regenerative spinal cord injury repair. Journal of Molecular Neuroscience, 49(2), 334-346. | 2013 | 542 | 10.1007/s12031-012-9863-9 | 5410 | polymer | gelatin | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Saglam, A., Perets, A., Canver, A. C., Li, H. L., Kollins, K., Cohen, G., ... & Lelkes, P. I. (2013). Angioneural crosstalk in scaffolds with oriented microchannels for regenerative spinal cord injury repair. Journal of Molecular Neuroscience, 49(2), 334-346. | 2013 | 542 | 10.1007/s12031-012-9863-9 | 5411 | polymer | gelatin | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Saglam, A., Perets, A., Canver, A. C., Li, H. L., Kollins, K., Cohen, G., ... & Lelkes, P. I. (2013). Angioneural crosstalk in scaffolds with oriented microchannels for regenerative spinal cord injury repair. Journal of Molecular Neuroscience, 49(2), 334-346. | 2013 | 542 | 10.1007/s12031-012-9863-9 | 5412 | polymer | gelatin | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Saglam, A., Perets, A., Canver, A. C., Li, H. L., Kollins, K., Cohen, G., ... & Lelkes, P. I. (2013). Angioneural crosstalk in scaffolds with oriented microchannels for regenerative spinal cord injury repair. Journal of Molecular Neuroscience, 49(2), 334-346. | 2013 | 542 | 10.1007/s12031-012-9863-9 | 5413 | polymer | gelatin | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Saglam, A., Perets, A., Canver, A. C., Li, H. L., Kollins, K., Cohen, G., ... & Lelkes, P. I. (2013). Angioneural crosstalk in scaffolds with oriented microchannels for regenerative spinal cord injury repair. Journal of Molecular Neuroscience, 49(2), 334-346. | 2013 | 542 | 10.1007/s12031-012-9863-9 | 5414 | polymer | gelatin | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Saglam, A., Perets, A., Canver, A. C., Li, H. L., Kollins, K., Cohen, G., ... & Lelkes, P. I. (2013). Angioneural crosstalk in scaffolds with oriented microchannels for regenerative spinal cord injury repair. Journal of Molecular Neuroscience, 49(2), 334-346. | 2013 | 542 | 10.1007/s12031-012-9863-9 | 5415 | polymer | gelatin | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Saglam, A., Perets, A., Canver, A. C., Li, H. L., Kollins, K., Cohen, G., ... & Lelkes, P. I. (2013). Angioneural crosstalk in scaffolds with oriented microchannels for regenerative spinal cord injury repair. Journal of Molecular Neuroscience, 49(2), 334-346. | 2013 | 542 | 10.1007/s12031-012-9863-9 | 5416 | polymer | gelatin | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Saglam, A., Perets, A., Canver, A. C., Li, H. L., Kollins, K., Cohen, G., ... & Lelkes, P. I. (2013). Angioneural crosstalk in scaffolds with oriented microchannels for regenerative spinal cord injury repair. Journal of Molecular Neuroscience, 49(2), 334-346. | 2013 | 542 | 10.1007/s12031-012-9863-9 | 5417 | polymer | gelatin | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Saglam, A., Perets, A., Canver, A. C., Li, H. L., Kollins, K., Cohen, G., ... & Lelkes, P. I. (2013). Angioneural crosstalk in scaffolds with oriented microchannels for regenerative spinal cord injury repair. Journal of Molecular Neuroscience, 49(2), 334-346. | 2013 | 542 | 10.1007/s12031-012-9863-9 | 5418 | polymer | gelatin | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Saglam, A., Perets, A., Canver, A. C., Li, H. L., Kollins, K., Cohen, G., ... & Lelkes, P. I. (2013). Angioneural crosstalk in scaffolds with oriented microchannels for regenerative spinal cord injury repair. Journal of Molecular Neuroscience, 49(2), 334-346. | 2013 | 542 | 10.1007/s12031-012-9863-9 | 5419 | polymer | gelatin | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Saglam, A., Perets, A., Canver, A. C., Li, H. L., Kollins, K., Cohen, G., ... & Lelkes, P. I. (2013). Angioneural crosstalk in scaffolds with oriented microchannels for regenerative spinal cord injury repair. Journal of Molecular Neuroscience, 49(2), 334-346. | 2013 | 542 | 10.1007/s12031-012-9863-9 | 5420 | polymer | gelatin | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Saglam, A., Perets, A., Canver, A. C., Li, H. L., Kollins, K., Cohen, G., ... & Lelkes, P. I. (2013). Angioneural crosstalk in scaffolds with oriented microchannels for regenerative spinal cord injury repair. Journal of Molecular Neuroscience, 49(2), 334-346. | 2013 | 542 | 10.1007/s12031-012-9863-9 | 5421 | polymer | gelatin | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Scanlon, S., Aggeli, A., Boden, N., McLeish, T. C., Hine, P., Koopmans, R. J., & Crowder, C. (2009). Organisation of self-assembling peptide nanostructures into macroscopically ordered lamella-like layers by ice crystallisation. Soft Matter, 5(6), 1237-1246. | 2009 | 545 | 10.1039/b815558e | 5558 | polymer | gelatin | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wu, X., Liu, Y., Li, X., Wen, P., Zhang, Y., Long, Y., ... & Gao, J. (2010). Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta biomaterialia, 6(3), 1167-1177. | 2010 | 668 | 10.1016/j.actbio.2009.08.041 | 2450 | polymer | gelatin | water | 100 | 0.0 | 0 | 0.39 | 48.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 99.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wu, X., Liu, Y., Li, X., Wen, P., Zhang, Y., Long, Y., ... & Gao, J. (2010). Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta biomaterialia, 6(3), 1167-1177. | 2010 | 668 | 10.1016/j.actbio.2009.08.041 | 2451 | polymer | gelatin | water | 100 | 0.0 | 0 | 0.16 | 48.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 97.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.06 | 0.0 | 0.0 |
Wu, X., Liu, Y., Li, X., Wen, P., Zhang, Y., Long, Y., ... & Gao, J. (2010). Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta biomaterialia, 6(3), 1167-1177. | 2010 | 668 | 10.1016/j.actbio.2009.08.041 | 2452 | polymer | gelatin | water | 100 | 0.0 | 0 | 1.55 | 48.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 97.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 |
Wu, X., Liu, Y., Li, X., Wen, P., Zhang, Y., Long, Y., ... & Gao, J. (2010). Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta biomaterialia, 6(3), 1167-1177. | 2010 | 668 | 10.1016/j.actbio.2009.08.041 | 2453 | polymer | gelatin | water | 100 | 0.0 | 0 | 2.0 | 48.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 95.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.17 | 0.0 | 0.0 |
Wu, X., Liu, Y., Li, X., Wen, P., Zhang, Y., Long, Y., ... & Gao, J. (2010). Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta biomaterialia, 6(3), 1167-1177. | 2010 | 668 | 10.1016/j.actbio.2009.08.041 | 2454 | polymer | gelatin | water | 100 | 0.0 | 0 | 2.34 | 48.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 94.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.22 | 0.0 | 0.0 |
Wu, X., Liu, Y., Li, X., Wen, P., Zhang, Y., Long, Y., ... & Gao, J. (2010). Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta biomaterialia, 6(3), 1167-1177. | 2010 | 668 | 10.1016/j.actbio.2009.08.041 | 2455 | polymer | gelatin | water | 100 | 0.0 | 0 | 2.34 | 48.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 96.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 |
Wu, X., Liu, Y., Li, X., Wen, P., Zhang, Y., Long, Y., ... & Gao, J. (2010). Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta biomaterialia, 6(3), 1167-1177. | 2010 | 668 | 10.1016/j.actbio.2009.08.041 | 2456 | polymer | gelatin | water | 100 | 0.0 | 0 | 2.34 | 48.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 96.25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.14 | 0.0 | 0.0 |
Wu, X., Liu, Y., Li, X., Wen, P., Zhang, Y., Long, Y., ... & Gao, J. (2010). Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta biomaterialia, 6(3), 1167-1177. | 2010 | 668 | 10.1016/j.actbio.2009.08.041 | 2457 | polymer | gelatin | water | 100 | 0.0 | 0 | 2.34 | 48.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 95.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.16 | 0.0 | 0.0 |
Wu, X., Liu, Y., Li, X., Wen, P., Zhang, Y., Long, Y., ... & Gao, J. (2010). Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta biomaterialia, 6(3), 1167-1177. | 2010 | 668 | 10.1016/j.actbio.2009.08.041 | 2458 | polymer | gelatin | water | 100 | 0.0 | 0 | 2.34 | 48.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 95.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.17 | 0.0 | 0.0 |
Wu, X., Liu, Y., Li, X., Wen, P., Zhang, Y., Long, Y., ... & Gao, J. (2010). Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta biomaterialia, 6(3), 1167-1177. | 2010 | 668 | 10.1016/j.actbio.2009.08.041 | 2459 | polymer | gelatin | water | 100 | 0.0 | 0 | 2.34 | 48.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 95.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.11 | 0.0 | 0.0 |
Asuncion, M. C. T., Goh, J. C. H., & Toh, S. L. (2016). Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing. Materials Science and Engineering: C, 67, 646-656. | 2016 | 13 | doi.org/10.1016/j.msec.2016.05.087 | 83 | polymer | silk fibroin | water | 100 | 0.0 | 0 | 5.0 | 93.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 6 | 0 | 0 | cellular | green | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Asuncion, M. C. T., Goh, J. C. H., & Toh, S. L. (2016). Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing. Materials Science and Engineering: C, 67, 646-656. | 2016 | 13 | doi.org/10.1016/j.msec.2016.05.087 | 84 | polymer | silk fibroin | water | 100 | 0.0 | 0 | 5.0 | 93.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.22 | 0.0 | 0.0 |
Asuncion, M. C. T., Goh, J. C. H., & Toh, S. L. (2016). Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing. Materials Science and Engineering: C, 67, 646-656. | 2016 | 13 | doi.org/10.1016/j.msec.2016.05.087 | 85 | polymer | silk fibroin | water | 100 | 0.0 | 0 | 5.0 | 93.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Asuncion, M. C. T., Goh, J. C. H., & Toh, S. L. (2016). Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing. Materials Science and Engineering: C, 67, 646-656. | 2016 | 13 | doi.org/10.1016/j.msec.2016.05.087 | 86 | polymer | silk fibroin | water | 100 | 0.0 | 0 | 5.0 | 93.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Asuncion, M. C. T., Goh, J. C. H., & Toh, S. L. (2016). Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing. Materials Science and Engineering: C, 67, 646-656. | 2016 | 13 | doi.org/10.1016/j.msec.2016.05.087 | 87 | polymer | silk fibroin | water | 100 | 0.0 | 0 | 13.0 | 93.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 64.0 | 0.0 | 22.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Asuncion, M. C. T., Goh, J. C. H., & Toh, S. L. (2016). Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing. Materials Science and Engineering: C, 67, 646-656. | 2016 | 13 | doi.org/10.1016/j.msec.2016.05.087 | 88 | polymer | silk fibroin | water | 100 | 0.0 | 0 | 13.0 | 93.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 15 | 0 | 0 | lamellar | green | 64.0 | 0.0 | 19.0 | 0.0 | 0.0 | 0.01 | 0.0 | 0.01 |
Asuncion, M. C. T., Goh, J. C. H., & Toh, S. L. (2016). Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing. Materials Science and Engineering: C, 67, 646-656. | 2016 | 13 | doi.org/10.1016/j.msec.2016.05.087 | 89 | polymer | silk fibroin | water | 100 | 0.0 | 0 | 13.0 | 93.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 64.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Asuncion, M. C. T., Goh, J. C. H., & Toh, S. L. (2016). Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing. Materials Science and Engineering: C, 67, 646-656. | 2016 | 13 | doi.org/10.1016/j.msec.2016.05.087 | 90 | polymer | silk fibroin | water | 100 | 0.0 | 0 | 13.0 | 93.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 64.0 | 0.0 | 9.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Asuncion, M. C. T., Goh, J. C. H., & Toh, S. L. (2016). Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing. Materials Science and Engineering: C, 67, 646-656. | 2016 | 13 | doi.org/10.1016/j.msec.2016.05.087 | 91 | polymer | silk fibroin | water | 100 | 0.0 | 0 | 21.0 | 93.0 | 100 | dissolved | 0.0 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 88.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Asuncion, M. C. T., Goh, J. C. H., & Toh, S. L. (2016). Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing. Materials Science and Engineering: C, 67, 646-656. | 2016 | 13 | doi.org/10.1016/j.msec.2016.05.087 | 92 | polymer | silk fibroin | water | 100 | 0.0 | 0 | 21.0 | 93.0 | 100 | dissolved | 0.0 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 88.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.01 |
Asuncion, M. C. T., Goh, J. C. H., & Toh, S. L. (2016). Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing. Materials Science and Engineering: C, 67, 646-656. | 2016 | 13 | doi.org/10.1016/j.msec.2016.05.087 | 93 | polymer | silk fibroin | water | 100 | 0.0 | 0 | 21.0 | 93.0 | 100 | dissolved | 0.0 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 88.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Asuncion, M. C. T., Goh, J. C. H., & Toh, S. L. (2016). Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing. Materials Science and Engineering: C, 67, 646-656. | 2016 | 13 | doi.org/10.1016/j.msec.2016.05.087 | 94 | polymer | silk fibroin | water | 100 | 0.0 | 0 | 21.0 | 93.0 | 100 | dissolved | 0.0 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 88.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Asuncion, M. C. T., Goh, J. C. H., & Toh, S. L. (2016). Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing. Materials Science and Engineering: C, 67, 646-656. | 2016 | 13 | doi.org/10.1016/j.msec.2016.05.087 | 95 | polymer | silk fibroin | water | 100 | 0.0 | 0 | 30.0 | 93.0 | 100 | dissolved | 0.0 | 20 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 77.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Asuncion, M. C. T., Goh, J. C. H., & Toh, S. L. (2016). Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing. Materials Science and Engineering: C, 67, 646-656. | 2016 | 13 | doi.org/10.1016/j.msec.2016.05.087 | 96 | polymer | silk fibroin | water | 100 | 0.0 | 0 | 30.0 | 93.0 | 100 | dissolved | 0.0 | 20 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 77.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Asuncion, M. C. T., Goh, J. C. H., & Toh, S. L. (2016). Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing. Materials Science and Engineering: C, 67, 646-656. | 2016 | 13 | doi.org/10.1016/j.msec.2016.05.087 | 97 | polymer | silk fibroin | water | 100 | 0.0 | 0 | 30.0 | 93.0 | 100 | dissolved | 0.0 | 20 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 77.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Asuncion, M. C. T., Goh, J. C. H., & Toh, S. L. (2016). Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing. Materials Science and Engineering: C, 67, 646-656. | 2016 | 13 | doi.org/10.1016/j.msec.2016.05.087 | 98 | polymer | silk fibroin | water | 100 | 0.0 | 0 | 30.0 | 93.0 | 100 | dissolved | 0.0 | 20 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 77.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Asuncion, M. C. T., Goh, J. C. H., & Toh, S. L. (2016). Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing. Materials Science and Engineering: C, 67, 646-656. | 2016 | 13 | doi.org/10.1016/j.msec.2016.05.087 | 99 | polymer | silk fibroin | water | 100 | 0.0 | 0 | 40.0 | 93.0 | 100 | dissolved | 0.0 | 30 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 43.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Asuncion, M. C. T., Goh, J. C. H., & Toh, S. L. (2016). Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing. Materials Science and Engineering: C, 67, 646-656. | 2016 | 13 | doi.org/10.1016/j.msec.2016.05.087 | 100 | polymer | silk fibroin | water | 100 | 0.0 | 0 | 40.0 | 93.0 | 100 | dissolved | 0.0 | 30 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 43.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Asuncion, M. C. T., Goh, J. C. H., & Toh, S. L. (2016). Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing. Materials Science and Engineering: C, 67, 646-656. | 2016 | 13 | doi.org/10.1016/j.msec.2016.05.087 | 101 | polymer | silk fibroin | water | 100 | 0.0 | 0 | 40.0 | 93.0 | 100 | dissolved | 0.0 | 30 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 43.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Asuncion, M. C. T., Goh, J. C. H., & Toh, S. L. (2016). Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing. Materials Science and Engineering: C, 67, 646-656. | 2016 | 13 | doi.org/10.1016/j.msec.2016.05.087 | 102 | polymer | silk fibroin | water | 100 | 0.0 | 0 | 40.0 | 93.0 | 100 | dissolved | 0.0 | 30 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 43.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Byette, F., Bouchard, F., Pellerin, C., Paquin, J., Marcotte, I., & Mateescu, M. A. (2011). Cell-culture compatible silk fibroin scaffolds concomitantly patterned by freezing conditions and salt concentration. Polymer bulletin, 67(1), 159-175. | 2011 | 32 | 10.1007/s00289-010-0438-z | 4602 | polymer | silk fibroin | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mao, M., He, J., Liu, Y., Li, X., & Li, D. (2012). Ice-template-induced silk fibroin?chitosan scaffolds with predefined microfluidic channels and fully porous structures. Acta biomaterialia, 8(6), 2175-2184. | 2012 | 380 | 10.1016/j.actbio.2011.12.025 | 5540 | polymer | silk fibroin | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mao, M., He, J., Liu, Y., Li, X., & Li, D. (2012). Ice-template-induced silk fibroin?chitosan scaffolds with predefined microfluidic channels and fully porous structures. Acta biomaterialia, 8(6), 2175-2184. | 2012 | 380 | 10.1016/j.actbio.2011.12.025 | 5541 | polymer | silk fibroin | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mao, M., He, J., Liu, Y., Li, X., & Li, D. (2012). Ice-template-induced silk fibroin?chitosan scaffolds with predefined microfluidic channels and fully porous structures. Acta biomaterialia, 8(6), 2175-2184. | 2012 | 380 | 10.1016/j.actbio.2011.12.025 | 5542 | polymer | silk fibroin | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mao, M., He, J., Liu, Y., Li, X., & Li, D. (2012). Ice-template-induced silk fibroin?chitosan scaffolds with predefined microfluidic channels and fully porous structures. Acta biomaterialia, 8(6), 2175-2184. | 2012 | 380 | 10.1016/j.actbio.2011.12.025 | 5543 | polymer | silk fibroin | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mao, M., He, J., Liu, Y., Li, X., & Li, D. (2012). Ice-template-induced silk fibroin?chitosan scaffolds with predefined microfluidic channels and fully porous structures. Acta biomaterialia, 8(6), 2175-2184. | 2012 | 380 | 10.1016/j.actbio.2011.12.025 | 5544 | polymer | silk fibroin | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mao, M., He, J., Liu, Y., Li, X., & Li, D. (2012). Ice-template-induced silk fibroin?chitosan scaffolds with predefined microfluidic channels and fully porous structures. Acta biomaterialia, 8(6), 2175-2184. | 2012 | 380 | 10.1016/j.actbio.2011.12.025 | 5545 | polymer | silk fibroin | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mao, M., He, J., Liu, Y., Li, X., & Li, D. (2012). Ice-template-induced silk fibroin?chitosan scaffolds with predefined microfluidic channels and fully porous structures. Acta biomaterialia, 8(6), 2175-2184. | 2012 | 380 | 10.1016/j.actbio.2011.12.025 | 5546 | polymer | silk fibroin | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mao, M., He, J., Liu, Y., Li, X., & Li, D. (2012). Ice-template-induced silk fibroin?chitosan scaffolds with predefined microfluidic channels and fully porous structures. Acta biomaterialia, 8(6), 2175-2184. | 2012 | 380 | 10.1016/j.actbio.2011.12.025 | 5547 | polymer | silk fibroin | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bai, H., Chen, Y., Delattre, B., Tomsia, A. P., & Ritchie, R. O. (2015). Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Science advances, 1(11), e1500849. | 2015 | 14 | 10.1126/sciadv.1500849 | 103 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 2.42 | 1 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.9 | 0.0 | 59.1 |
Bai, H., Chen, Y., Delattre, B., Tomsia, A. P., & Ritchie, R. O. (2015). Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Science advances, 1(11), e1500849. | 2015 | 14 | 10.1126/sciadv.1500849 | 104 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 2.42 | 1 | 0 | 0 | 0.0 | 1.0 | 0.0 | wedge | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 74.7 | 46.5 | 16.3 | 30.2 | 0.0 | 2.7 | 0.0 | 62.3 |
Bai, H., Chen, Y., Delattre, B., Tomsia, A. P., & Ritchie, R. O. (2015). Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Science advances, 1(11), e1500849. | 2015 | 14 | 10.1126/sciadv.1500849 | 105 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 2.42 | 1 | 0 | 0 | 0.0 | 1.0 | 0.0 | wedge | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 75.1 | 43.1 | 9.4 | 33.7 | 0.0 | 2.4 | 0.0 | 77.0 |
Bai, H., Chen, Y., Delattre, B., Tomsia, A. P., & Ritchie, R. O. (2015). Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Science advances, 1(11), e1500849. | 2015 | 14 | 10.1126/sciadv.1500849 | 106 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 2.42 | 1 | 0 | 0 | 0.0 | 1.0 | 0.0 | wedge | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 73.2 | 47.7 | 15.6 | 32.1 | 0.0 | 2.1 | 0.0 | 72.2 |
Bai, H., Chen, Y., Delattre, B., Tomsia, A. P., & Ritchie, R. O. (2015). Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Science advances, 1(11), e1500849. | 2015 | 14 | 10.1126/sciadv.1500849 | 107 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 2.42 | 1 | 0 | 0 | 0.0 | 1.0 | 0.0 | wedge | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 72.1 | 43.3 | 12.7 | 30.6 | 0.0 | 1.5 | 0.0 | 44.4 |
Bai, H., Chen, Y., Delattre, B., Tomsia, A. P., & Ritchie, R. O. (2015). Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Science advances, 1(11), e1500849. | 2015 | 14 | 10.1126/sciadv.1500849 | 108 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 2.42 | 1 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.7 | 17.8 | 4.6 | 13.2 | 0.0 | 9.5 | 0.0 | 189.2 |
Bai, H., Chen, Y., Delattre, B., Tomsia, A. P., & Ritchie, R. O. (2015). Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Science advances, 1(11), e1500849. | 2015 | 14 | 10.1126/sciadv.1500849 | 109 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 2.42 | 1 | 0 | 0 | 0.0 | 5.0 | 0.0 | wedge | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 69.9 | 17.3 | 6.7 | 10.6 | 0.0 | 8.9 | 0.0 | 234.9 |
Bai, H., Chen, Y., Delattre, B., Tomsia, A. P., & Ritchie, R. O. (2015). Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Science advances, 1(11), e1500849. | 2015 | 14 | 10.1126/sciadv.1500849 | 110 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 2.42 | 1 | 0 | 0 | 0.0 | 5.0 | 0.0 | wedge | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 76.3 | 14.6 | 4.5 | 10.1 | 0.0 | 9.5 | 0.0 | 181.7 |
Bai, H., Chen, Y., Delattre, B., Tomsia, A. P., & Ritchie, R. O. (2015). Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Science advances, 1(11), e1500849. | 2015 | 14 | 10.1126/sciadv.1500849 | 111 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 2.42 | 1 | 0 | 0 | 0.0 | 5.0 | 0.0 | wedge | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 72.7 | 19.8 | 5.9 | 13.9 | 0.0 | 8.7 | 0.0 | 236.7 |
Bai, H., Chen, Y., Delattre, B., Tomsia, A. P., & Ritchie, R. O. (2015). Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Science advances, 1(11), e1500849. | 2015 | 14 | 10.1126/sciadv.1500849 | 112 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 2.42 | 1 | 0 | 0 | 0.0 | 5.0 | 0.0 | wedge | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 72.1 | 17.4 | 3.2 | 14.2 | 0.0 | 4.9 | 0.0 | 134.5 |
Bai, H., Chen, Y., Delattre, B., Tomsia, A. P., & Ritchie, R. O. (2015). Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Science advances, 1(11), e1500849. | 2015 | 14 | 10.1126/sciadv.1500849 | 113 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 2.42 | 1 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13.3 | 0.0 | 207.9 |
Bai, H., Chen, Y., Delattre, B., Tomsia, A. P., & Ritchie, R. O. (2015). Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Science advances, 1(11), e1500849. | 2015 | 14 | 10.1126/sciadv.1500849 | 114 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 2.42 | 1 | 0 | 0 | 0.0 | 10.0 | 0.0 | wedge | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 74.3 | 14.7 | 5.3 | 9.4 | 0.0 | 10.6 | 0.0 | 235.8 |
Bai, H., Chen, Y., Delattre, B., Tomsia, A. P., & Ritchie, R. O. (2015). Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Science advances, 1(11), e1500849. | 2015 | 14 | 10.1126/sciadv.1500849 | 115 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 2.42 | 1 | 0 | 0 | 0.0 | 10.0 | 0.0 | wedge | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 69.7 | 14.5 | 5.7 | 8.8 | 0.0 | 13.2 | 0.0 | 239.5 |
Bai, H., Chen, Y., Delattre, B., Tomsia, A. P., & Ritchie, R. O. (2015). Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Science advances, 1(11), e1500849. | 2015 | 14 | 10.1126/sciadv.1500849 | 116 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 2.42 | 1 | 0 | 0 | 0.0 | 10.0 | 0.0 | wedge | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.4 | 13.8 | 4.7 | 9.1 | 0.0 | 11.2 | 0.0 | 202.7 |
Bai, H., Chen, Y., Delattre, B., Tomsia, A. P., & Ritchie, R. O. (2015). Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Science advances, 1(11), e1500849. | 2015 | 14 | 10.1126/sciadv.1500849 | 117 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 2.42 | 1 | 0 | 0 | 0.0 | 10.0 | 0.0 | wedge | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.0 | 13.9 | 4.7 | 9.2 | 0.0 | 8.3 | 0.0 | 249.0 |
Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., ... & Ritchie, R. O. (2016). Bioinspired Hydroxyapatite/Poly (methyl methacrylate) Composite with a Nacre?Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 28(1), 50-56. | 2016 | 15 | 10.1002/adma.201504313 | 165 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | 0 | 2.42 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.0 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bai, H., Wang, D., Delattre, B., Gao, W., De Coninck, J., Li, S., & Tomsia, A. P. (2015). Biomimetic gradient scaffold from ice-templating for self-seeding of cells with capillary effect. Acta biomaterialia, 20, 113-119. | 2015 | 17 | 10.1016/j.actbio.2015.04.007 | 206 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 3.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | radial-out | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 4.45 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bai, H., Wang, D., Delattre, B., Gao, W., De Coninck, J., Li, S., & Tomsia, A. P. (2015). Biomimetic gradient scaffold from ice-templating for self-seeding of cells with capillary effect. Acta biomaterialia, 20, 113-119. | 2015 | 17 | 10.1016/j.actbio.2015.04.007 | 207 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 3.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | radial-out | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 8.14 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bai, H., Wang, D., Delattre, B., Gao, W., De Coninck, J., Li, S., & Tomsia, A. P. (2015). Biomimetic gradient scaffold from ice-templating for self-seeding of cells with capillary effect. Acta biomaterialia, 20, 113-119. | 2015 | 17 | 10.1016/j.actbio.2015.04.007 | 208 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 3.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | radial-out | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 11.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bai, H., Wang, D., Delattre, B., Gao, W., De Coninck, J., Li, S., & Tomsia, A. P. (2015). Biomimetic gradient scaffold from ice-templating for self-seeding of cells with capillary effect. Acta biomaterialia, 20, 113-119. | 2015 | 17 | 10.1016/j.actbio.2015.04.007 | 209 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 3.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | radial-out | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bai, H., Wang, D., Delattre, B., Gao, W., De Coninck, J., Li, S., & Tomsia, A. P. (2015). Biomimetic gradient scaffold from ice-templating for self-seeding of cells with capillary effect. Acta biomaterialia, 20, 113-119. | 2015 | 17 | 10.1016/j.actbio.2015.04.007 | 210 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 3.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | radial-out | constant | 8000.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bai, H., Wang, D., Delattre, B., Gao, W., De Coninck, J., Li, S., & Tomsia, A. P. (2015). Biomimetic gradient scaffold from ice-templating for self-seeding of cells with capillary effect. Acta biomaterialia, 20, 113-119. | 2015 | 17 | 10.1016/j.actbio.2015.04.007 | 211 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 3.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | radial-out | constant | 7000.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bai, H., Wang, D., Delattre, B., Gao, W., De Coninck, J., Li, S., & Tomsia, A. P. (2015). Biomimetic gradient scaffold from ice-templating for self-seeding of cells with capillary effect. Acta biomaterialia, 20, 113-119. | 2015 | 17 | 10.1016/j.actbio.2015.04.007 | 212 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 3.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | radial-out | constant | 6000.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bai, H., Wang, D., Delattre, B., Gao, W., De Coninck, J., Li, S., & Tomsia, A. P. (2015). Biomimetic gradient scaffold from ice-templating for self-seeding of cells with capillary effect. Acta biomaterialia, 20, 113-119. | 2015 | 17 | 10.1016/j.actbio.2015.04.007 | 213 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 3.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | radial-out | constant | 4000.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 63.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Blindow, S., Pulkin, M., Koch, D., Grathwohl, G., & Rezwan, K. (2009). Hydroxyapatite/SiO2 composites via freeze casting for bone tissue engineering. Advanced Engineering Materials, 11(11), 875-884. | 2009 | 27 | 10.1002/adem.200900208 | 271 | ceramic | HAP | water | 100 | 0.0 | 0 | 26.71 | 18.0 | 100 | powder | 0.15 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 16 | 0 | cellular | sintered | 58.2 | 0.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Blindow, S., Pulkin, M., Koch, D., Grathwohl, G., & Rezwan, K. (2009). Hydroxyapatite/SiO2 composites via freeze casting for bone tissue engineering. Advanced Engineering Materials, 11(11), 875-884. | 2009 | 27 | 10.1002/adem.200900208 | 272 | ceramic | HAP | water | 100 | 0.0 | 0 | 26.74 | 18.0 | 98 | powder | 0.15 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 9 | 0 | cellular | sintered | 65.2 | 0.0 | 9.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Blindow, S., Pulkin, M., Koch, D., Grathwohl, G., & Rezwan, K. (2009). Hydroxyapatite/SiO2 composites via freeze casting for bone tissue engineering. Advanced Engineering Materials, 11(11), 875-884. | 2009 | 27 | 10.1002/adem.200900208 | 273 | ceramic | HAP | water | 100 | 0.0 | 0 | 26.85 | 18.0 | 95 | powder | 0.15 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 7 | 0 | cellular | sintered | 67.3 | 0.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
CHENG, Z., ZHAO, K., & TANG, Y. F. (2014). Preparation of HA Porous Bioceramic by Freezing Casting of H_2O_2/H_2O Suspensions as Template. Bulletin of the Chinese Ceramic Society, 3, 042. | 2014 | 48 | 0 | 370 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | foaming | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 79.0 | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
CHENG, Z., ZHAO, K., & TANG, Y. F. (2014). Preparation of HA Porous Bioceramic by Freezing Casting of H_2O_2/H_2O Suspensions as Template. Bulletin of the Chinese Ceramic Society, 3, 042. | 2014 | 48 | 0 | 371 | ceramic | HAP | water | 100 | 0.0 | 0 | 40.0 | 18.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | foaming | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 54.0 | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Cheng, Z., Zhao, K., & Wu, Z. P. (2015). Structure control of hydroxyapatite ceramics via an electric field assisted freeze casting method. Ceramics International, 41(7), 8599-8604. | 2015 | 50 | 10.1016/j.ceramint.2015.03.069 | 372 | ceramic | HAP | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | electrical field | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Cheng, Z., Zhao, K., & Wu, Z. P. (2015). Structure control of hydroxyapatite ceramics via an electric field assisted freeze casting method. Ceramics International, 41(7), 8599-8604. | 2015 | 50 | 10.1016/j.ceramint.2015.03.069 | 373 | ceramic | HAP | water | 69 | hydrogen peroxide | 30 | 25.0 | 18.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | electrical field | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 71.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Cheng, Z., Zhao, K., & Wu, Z. P. (2015). Structure control of hydroxyapatite ceramics via an electric field assisted freeze casting method. Ceramics International, 41(7), 8599-8604. | 2015 | 50 | 10.1016/j.ceramint.2015.03.069 | 374 | ceramic | HAP | water | 50 | hydrogen peroxide | 50 | 25.0 | 18.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | electrical field | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 73.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Cheng, Z., Zhao, K., & Wu, Z. P. (2015). Structure control of hydroxyapatite ceramics via an electric field assisted freeze casting method. Ceramics International, 41(7), 8599-8604. | 2015 | 50 | 10.1016/j.ceramint.2015.03.069 | 375 | ceramic | HAP | water | 30 | hydrogen peroxide | 69 | 25.0 | 18.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | electrical field | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Cheng, Z., Zhao, K., & Wu, Z. P. (2015). Structure control of hydroxyapatite ceramics via an electric field assisted freeze casting method. Ceramics International, 41(7), 8599-8604. | 2015 | 50 | 10.1016/j.ceramint.2015.03.069 | 376 | ceramic | HAP | water | 10 | hydrogen peroxide | 89 | 25.0 | 18.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | electrical field | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Cheng, Z., Zhao, K., & Wu, Z. P. (2015). Structure control of hydroxyapatite ceramics via an electric field assisted freeze casting method. Ceramics International, 41(7), 8599-8604. | 2015 | 50 | 10.1016/j.ceramint.2015.03.069 | 377 | ceramic | HAP | water | 94 | hydrogen peroxide | 5 | 25.0 | 18.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | electrical field | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 75.0 | 0.0 | 450.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Cheng, Z., Zhao, K., & Wu, Z. P. (2015). Structure control of hydroxyapatite ceramics via an electric field assisted freeze casting method. Ceramics International, 41(7), 8599-8604. | 2015 | 50 | 10.1016/j.ceramint.2015.03.069 | 378 | ceramic | HAP | water | 94 | hydrogen peroxide | 5 | 25.0 | 18.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | electrical field | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 75.0 | 0.0 | 700.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Cheng, Z., Zhao, K., & Wu, Z. P. (2015). Structure control of hydroxyapatite ceramics via an electric field assisted freeze casting method. Ceramics International, 41(7), 8599-8604. | 2015 | 50 | 10.1016/j.ceramint.2015.03.069 | 379 | ceramic | HAP | water | 94 | hydrogen peroxide | 5 | 25.0 | 18.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | electrical field | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 76.0 | 0.0 | 720.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Cheng, Z., Zhao, K., & Wu, Z. P. (2015). Structure control of hydroxyapatite ceramics via an electric field assisted freeze casting method. Ceramics International, 41(7), 8599-8604. | 2015 | 50 | 10.1016/j.ceramint.2015.03.069 | 380 | ceramic | HAP | water | 94 | hydrogen peroxide | 5 | 25.0 | 18.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | electrical field | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 76.5 | 0.0 | 800.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., Nalla, R. K., & Tomsia, A. P. (2005). Using Ice to Mimic Nacre: From Structural Materials to Artificial Bone. Lawrence Berkeley National Laboratory. | 2005 | 76 | 0 | 518 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., Nalla, R. K., & Tomsia, A. P. (2006). Strong biomimetic hydroxyapatite scaffolds. In Advances in Science and Technology (Vol. 49, pp. 148-152). Trans Tech Publications. | 2006 | 77 | 10.4028/www.scientific.net/AST.49.148 | 523 | ceramic | HAP | water | 100 | 0.0 | 0 | 17.1 | 18.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., Nalla, R. K., & Tomsia, A. P. (2006). Strong biomimetic hydroxyapatite scaffolds. In Advances in Science and Technology (Vol. 49, pp. 148-152). Trans Tech Publications. | 2006 | 77 | 10.4028/www.scientific.net/AST.49.148 | 524 | ceramic | HAP | water | 100 | 0.0 | 0 | 17.1 | 18.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 62.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., Nalla, R. K., & Tomsia, A. P. (2006). Strong biomimetic hydroxyapatite scaffolds. In Advances in Science and Technology (Vol. 49, pp. 148-152). Trans Tech Publications. | 2006 | 77 | 10.4028/www.scientific.net/AST.49.148 | 525 | ceramic | HAP | water | 100 | 0.0 | 0 | 17.1 | 18.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 45.0 | 0.0 | 0.0 | 0.0 | 0.0 | 140.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 5480-5489. | 2006 | 84 | 10.1016/j.biomaterials.2006.06.028 | 542 | ceramic | HAP | water | 100 | 0.0 | 0 | 17.0 | 18.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 68.0 | 0.0 | 0.0 | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 5480-5489. | 2006 | 84 | 10.1016/j.biomaterials.2006.06.028 | 543 | ceramic | HAP | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 0.0 | 7.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 56.0 | 0.0 | 15.0 | 0.0 | 10.0 | 62.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 5480-5489. | 2006 | 84 | 10.1016/j.biomaterials.2006.06.028 | 544 | ceramic | HAP | water | 100 | 0.0 | 0 | 32.0 | 18.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 46.0 | 0.0 | 0.0 | 0.0 | 0.0 | 145.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 5480-5489. | 2006 | 84 | 10.1016/j.biomaterials.2006.06.028 | 545 | ceramic | HAP | water | 100 | 0.0 | 0 | 37.0 | 18.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 42.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 5480-5489. | 2006 | 84 | 10.1016/j.biomaterials.2006.06.028 | 546 | ceramic | HAP | water | 100 | 0.0 | 0 | 43.0 | 18.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 29.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 5480-5489. | 2006 | 84 | 10.1016/j.biomaterials.2006.06.028 | 547 | ceramic | HAP | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 56.0 | 0.0 | 15.0 | 0.0 | 10.0 | 58.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 5480-5489. | 2006 | 84 | 10.1016/j.biomaterials.2006.06.028 | 548 | ceramic | HAP | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 56.0 | 0.0 | 0.0 | 0.0 | 0.0 | 50.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 5480-5489. | 2006 | 84 | 10.1016/j.biomaterials.2006.06.028 | 549 | ceramic | HAP | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 0.0 | 3.8 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 56.0 | 0.0 | 22.0 | 0.0 | 10.0 | 45.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 5480-5489. | 2006 | 84 | 10.1016/j.biomaterials.2006.06.028 | 550 | ceramic | HAP | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 56.0 | 0.0 | 0.0 | 0.0 | 0.0 | 25.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 5480-5489. | 2006 | 84 | 10.1016/j.biomaterials.2006.06.028 | 551 | ceramic | HAP | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 56.0 | 0.0 | 38.0 | 0.0 | 14.0 | 18.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 5480-5489. | 2006 | 84 | 10.1016/j.biomaterials.2006.06.028 | 552 | ceramic | HAP | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 0.0 | 0.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 56.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 5480-5489. | 2006 | 84 | 10.1016/j.biomaterials.2006.06.028 | 553 | ceramic | HAP | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 63.0 | 0.0 | 0.0 | 0.0 | 0.0 | 28.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 5480-5489. | 2006 | 84 | 10.1016/j.biomaterials.2006.06.028 | 554 | ceramic | HAP | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 0.0 | 0.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 30.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 5480-5489. | 2006 | 84 | 10.1016/j.biomaterials.2006.06.028 | 555 | ceramic | HAP | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 0.0 | 0.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 56.0 | 0.0 | 0.0 | 0.0 | 0.0 | 52.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 5480-5489. | 2006 | 84 | 10.1016/j.biomaterials.2006.06.028 | 556 | ceramic | HAP | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 0.0 | 0.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 56.0 | 0.0 | 0.0 | 0.0 | 0.0 | 52.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., Nalla, R. K., & Tomsia, A. P. (2006). Freezing as a path to build complex composites. Science, 311(5760), 515-518. | 2006 | 85 | 10.1126/science.1120937 | 557 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 1.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 190.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., Nalla, R. K., & Tomsia, A. P. (2006). Freezing as a path to build complex composites. Science, 311(5760), 515-518. | 2006 | 85 | 10.1126/science.1120937 | 558 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 2.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., Nalla, R. K., & Tomsia, A. P. (2006). Freezing as a path to build complex composites. Science, 311(5760), 515-518. | 2006 | 85 | 10.1126/science.1120937 | 559 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., Nalla, R. K., & Tomsia, A. P. (2006). Freezing as a path to build complex composites. Science, 311(5760), 515-518. | 2006 | 85 | 10.1126/science.1120937 | 560 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 50.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., Nalla, R. K., & Tomsia, A. P. (2006). Freezing as a path to build complex composites. Science, 311(5760), 515-518. | 2006 | 85 | 10.1126/science.1120937 | 561 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 80.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Rabiee, S. M., Zamanian, A., Yasaei, M., Khorami, M., & Hafezi-Ardakani, M. (2013). Evaluating initial content of the slurry and cooling rate on the microstructural and mechanical characteristics of freeze casted hydroxyapatite macroporous scaffolds. In Key Engineering Materials (Vol. 529, pp. 147-152). Trans Tech Publications. | 2013 | 113 | 10.4028/www.scientific.net/KEM.529-530.147 | 611 | ceramic | HAP | water | 100 | 0.0 | 0 | 7.5 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Rabiee, S. M., Zamanian, A., Yasaei, M., Khorami, M., & Hafezi-Ardakani, M. (2013). Evaluating initial content of the slurry and cooling rate on the microstructural and mechanical characteristics of freeze casted hydroxyapatite macroporous scaffolds. In Key Engineering Materials (Vol. 529, pp. 147-152). Trans Tech Publications. | 2013 | 113 | 10.4028/www.scientific.net/KEM.529-530.147 | 612 | ceramic | HAP | water | 100 | 0.0 | 0 | 11.25 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Rabiee, S. M., Zamanian, A., Yasaei, M., Khorami, M., & Hafezi-Ardakani, M. (2013). Evaluating initial content of the slurry and cooling rate on the microstructural and mechanical characteristics of freeze casted hydroxyapatite macroporous scaffolds. In Key Engineering Materials (Vol. 529, pp. 147-152). Trans Tech Publications. | 2013 | 113 | 10.4028/www.scientific.net/KEM.529-530.147 | 613 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 30.0 | 0.0 | 3.67 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Rabiee, S. M., Zamanian, A., Yasaei, M., Khorami, M., & Hafezi-Ardakani, M. (2013). Evaluating initial content of the slurry and cooling rate on the microstructural and mechanical characteristics of freeze casted hydroxyapatite macroporous scaffolds. In Key Engineering Materials (Vol. 529, pp. 147-152). Trans Tech Publications. | 2013 | 113 | 10.4028/www.scientific.net/KEM.529-530.147 | 614 | ceramic | HAP | water | 100 | 0.0 | 0 | 18.75 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 0.0 | 0.0 |
Farhangdoust, S., Rabiee, S. M., Zamanian, A., Yasaei, M., Khorami, M., & Hafezi-Ardakani, M. (2013). Evaluating initial content of the slurry and cooling rate on the microstructural and mechanical characteristics of freeze casted hydroxyapatite macroporous scaffolds. In Key Engineering Materials (Vol. 529, pp. 147-152). Trans Tech Publications. | 2013 | 113 | 10.4028/www.scientific.net/KEM.529-530.147 | 615 | ceramic | HAP | water | 100 | 0.0 | 0 | 22.5 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Rabiee, S. M., Zamanian, A., Yasaei, M., Khorami, M., & Hafezi-Ardakani, M. (2013). Evaluating initial content of the slurry and cooling rate on the microstructural and mechanical characteristics of freeze casted hydroxyapatite macroporous scaffolds. In Key Engineering Materials (Vol. 529, pp. 147-152). Trans Tech Publications. | 2013 | 113 | 10.4028/www.scientific.net/KEM.529-530.147 | 616 | ceramic | HAP | water | 100 | 0.0 | 0 | 7.5 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Rabiee, S. M., Zamanian, A., Yasaei, M., Khorami, M., & Hafezi-Ardakani, M. (2013). Evaluating initial content of the slurry and cooling rate on the microstructural and mechanical characteristics of freeze casted hydroxyapatite macroporous scaffolds. In Key Engineering Materials (Vol. 529, pp. 147-152). Trans Tech Publications. | 2013 | 113 | 10.4028/www.scientific.net/KEM.529-530.147 | 617 | ceramic | HAP | water | 100 | 0.0 | 0 | 11.25 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 |
Farhangdoust, S., Rabiee, S. M., Zamanian, A., Yasaei, M., Khorami, M., & Hafezi-Ardakani, M. (2013). Evaluating initial content of the slurry and cooling rate on the microstructural and mechanical characteristics of freeze casted hydroxyapatite macroporous scaffolds. In Key Engineering Materials (Vol. 529, pp. 147-152). Trans Tech Publications. | 2013 | 113 | 10.4028/www.scientific.net/KEM.529-530.147 | 618 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 76.0 | 0.0 | 22.0 | 0.0 | 4.09 | 5.26 | 0.0 | 0.0 |
Farhangdoust, S., Rabiee, S. M., Zamanian, A., Yasaei, M., Khorami, M., & Hafezi-Ardakani, M. (2013). Evaluating initial content of the slurry and cooling rate on the microstructural and mechanical characteristics of freeze casted hydroxyapatite macroporous scaffolds. In Key Engineering Materials (Vol. 529, pp. 147-152). Trans Tech Publications. | 2013 | 113 | 10.4028/www.scientific.net/KEM.529-530.147 | 619 | ceramic | HAP | water | 100 | 0.0 | 0 | 18.75 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.25 | 0.0 | 0.0 |
Farhangdoust, S., Rabiee, S. M., Zamanian, A., Yasaei, M., Khorami, M., & Hafezi-Ardakani, M. (2013). Evaluating initial content of the slurry and cooling rate on the microstructural and mechanical characteristics of freeze casted hydroxyapatite macroporous scaffolds. In Key Engineering Materials (Vol. 529, pp. 147-152). Trans Tech Publications. | 2013 | 113 | 10.4028/www.scientific.net/KEM.529-530.147 | 620 | ceramic | HAP | water | 100 | 0.0 | 0 | 22.5 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Rabiee, S. M., Zamanian, A., Yasaei, M., Khorami, M., & Hafezi-Ardakani, M. (2013). Evaluating initial content of the slurry and cooling rate on the microstructural and mechanical characteristics of freeze casted hydroxyapatite macroporous scaffolds. In Key Engineering Materials (Vol. 529, pp. 147-152). Trans Tech Publications. | 2013 | 113 | 10.4028/www.scientific.net/KEM.529-530.147 | 621 | ceramic | HAP | water | 100 | 0.0 | 0 | 7.5 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 40.0 | 0.0 | 4.5 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Rabiee, S. M., Zamanian, A., Yasaei, M., Khorami, M., & Hafezi-Ardakani, M. (2013). Evaluating initial content of the slurry and cooling rate on the microstructural and mechanical characteristics of freeze casted hydroxyapatite macroporous scaffolds. In Key Engineering Materials (Vol. 529, pp. 147-152). Trans Tech Publications. | 2013 | 113 | 10.4028/www.scientific.net/KEM.529-530.147 | 622 | ceramic | HAP | water | 100 | 0.0 | 0 | 11.25 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 20.0 | 0.0 | 5.0 | 2.25 | 0.0 | 0.0 |
Farhangdoust, S., Rabiee, S. M., Zamanian, A., Yasaei, M., Khorami, M., & Hafezi-Ardakani, M. (2013). Evaluating initial content of the slurry and cooling rate on the microstructural and mechanical characteristics of freeze casted hydroxyapatite macroporous scaffolds. In Key Engineering Materials (Vol. 529, pp. 147-152). Trans Tech Publications. | 2013 | 113 | 10.4028/www.scientific.net/KEM.529-530.147 | 623 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 15.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Rabiee, S. M., Zamanian, A., Yasaei, M., Khorami, M., & Hafezi-Ardakani, M. (2013). Evaluating initial content of the slurry and cooling rate on the microstructural and mechanical characteristics of freeze casted hydroxyapatite macroporous scaffolds. In Key Engineering Materials (Vol. 529, pp. 147-152). Trans Tech Publications. | 2013 | 113 | 10.4028/www.scientific.net/KEM.529-530.147 | 624 | ceramic | HAP | water | 100 | 0.0 | 0 | 18.75 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 10.0 | 0.0 | 5.0 | 6.5 | 0.0 | 0.0 |
Farhangdoust, S., Rabiee, S. M., Zamanian, A., Yasaei, M., Khorami, M., & Hafezi-Ardakani, M. (2013). Evaluating initial content of the slurry and cooling rate on the microstructural and mechanical characteristics of freeze casted hydroxyapatite macroporous scaffolds. In Key Engineering Materials (Vol. 529, pp. 147-152). Trans Tech Publications. | 2013 | 113 | 10.4028/www.scientific.net/KEM.529-530.147 | 625 | ceramic | HAP | water | 100 | 0.0 | 0 | 22.5 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 5.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Rabiee, S. M., Zamanian, A., Yasaei, M., Khorami, M., & Hafezi-Ardakani, M. (2013). Evaluating initial content of the slurry and cooling rate on the microstructural and mechanical characteristics of freeze casted hydroxyapatite macroporous scaffolds. In Key Engineering Materials (Vol. 529, pp. 147-152). Trans Tech Publications. | 2013 | 113 | 10.4028/www.scientific.net/KEM.529-530.147 | 626 | ceramic | HAP | water | 100 | 0.0 | 0 | 7.5 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 12.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 |
Farhangdoust, S., Rabiee, S. M., Zamanian, A., Yasaei, M., Khorami, M., & Hafezi-Ardakani, M. (2013). Evaluating initial content of the slurry and cooling rate on the microstructural and mechanical characteristics of freeze casted hydroxyapatite macroporous scaffolds. In Key Engineering Materials (Vol. 529, pp. 147-152). Trans Tech Publications. | 2013 | 113 | 10.4028/www.scientific.net/KEM.529-530.147 | 627 | ceramic | HAP | water | 100 | 0.0 | 0 | 11.25 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 12.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 0.0 | 0.0 |
Farhangdoust, S., Rabiee, S. M., Zamanian, A., Yasaei, M., Khorami, M., & Hafezi-Ardakani, M. (2013). Evaluating initial content of the slurry and cooling rate on the microstructural and mechanical characteristics of freeze casted hydroxyapatite macroporous scaffolds. In Key Engineering Materials (Vol. 529, pp. 147-152). Trans Tech Publications. | 2013 | 113 | 10.4028/www.scientific.net/KEM.529-530.147 | 628 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 12.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 22.0 | 0.0 | 2.73 | 5.5 | 0.0 | 0.0 |
Farhangdoust, S., Rabiee, S. M., Zamanian, A., Yasaei, M., Khorami, M., & Hafezi-Ardakani, M. (2013). Evaluating initial content of the slurry and cooling rate on the microstructural and mechanical characteristics of freeze casted hydroxyapatite macroporous scaffolds. In Key Engineering Materials (Vol. 529, pp. 147-152). Trans Tech Publications. | 2013 | 113 | 10.4028/www.scientific.net/KEM.529-530.147 | 629 | ceramic | HAP | water | 100 | 0.0 | 0 | 18.75 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 12.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 |
Farhangdoust, S., Rabiee, S. M., Zamanian, A., Yasaei, M., Khorami, M., & Hafezi-Ardakani, M. (2013). Evaluating initial content of the slurry and cooling rate on the microstructural and mechanical characteristics of freeze casted hydroxyapatite macroporous scaffolds. In Key Engineering Materials (Vol. 529, pp. 147-152). Trans Tech Publications. | 2013 | 113 | 10.4028/www.scientific.net/KEM.529-530.147 | 630 | ceramic | HAP | water | 100 | 0.0 | 0 | 22.5 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 12.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 17.0 | 0.0 | 0.0 |
Farhangdoust, S., Rabiee, S. M., Zamanian, A., Yasaei, M., Khorami, M., & Hafezi-Ardakani, M. (2013). Evaluating initial content of the slurry and cooling rate on the microstructural and mechanical characteristics of freeze casted hydroxyapatite macroporous scaffolds. In Key Engineering Materials (Vol. 529, pp. 147-152). Trans Tech Publications. | 2013 | 113 | 10.4028/www.scientific.net/KEM.529-530.147 | 631 | ceramic | HAP | water | 100 | 0.0 | 0 | 7.5 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 14.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Rabiee, S. M., Zamanian, A., Yasaei, M., Khorami, M., & Hafezi-Ardakani, M. (2013). Evaluating initial content of the slurry and cooling rate on the microstructural and mechanical characteristics of freeze casted hydroxyapatite macroporous scaffolds. In Key Engineering Materials (Vol. 529, pp. 147-152). Trans Tech Publications. | 2013 | 113 | 10.4028/www.scientific.net/KEM.529-530.147 | 632 | ceramic | HAP | water | 100 | 0.0 | 0 | 11.25 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 14.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Rabiee, S. M., Zamanian, A., Yasaei, M., Khorami, M., & Hafezi-Ardakani, M. (2013). Evaluating initial content of the slurry and cooling rate on the microstructural and mechanical characteristics of freeze casted hydroxyapatite macroporous scaffolds. In Key Engineering Materials (Vol. 529, pp. 147-152). Trans Tech Publications. | 2013 | 113 | 10.4028/www.scientific.net/KEM.529-530.147 | 633 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 14.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 18.0 | 0.0 | 2.5 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Rabiee, S. M., Zamanian, A., Yasaei, M., Khorami, M., & Hafezi-Ardakani, M. (2013). Evaluating initial content of the slurry and cooling rate on the microstructural and mechanical characteristics of freeze casted hydroxyapatite macroporous scaffolds. In Key Engineering Materials (Vol. 529, pp. 147-152). Trans Tech Publications. | 2013 | 113 | 10.4028/www.scientific.net/KEM.529-530.147 | 634 | ceramic | HAP | water | 100 | 0.0 | 0 | 18.75 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 14.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9.5 | 0.0 | 0.0 |
Farhangdoust, S., Rabiee, S. M., Zamanian, A., Yasaei, M., Khorami, M., & Hafezi-Ardakani, M. (2013). Evaluating initial content of the slurry and cooling rate on the microstructural and mechanical characteristics of freeze casted hydroxyapatite macroporous scaffolds. In Key Engineering Materials (Vol. 529, pp. 147-152). Trans Tech Publications. | 2013 | 113 | 10.4028/www.scientific.net/KEM.529-530.147 | 635 | ceramic | HAP | water | 100 | 0.0 | 0 | 22.5 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 14.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials science and engineering: c, 33(1), 453-460. | 2013 | 114 | 10.1016/j.msec.2012.09.013 | 636 | ceramic | HAP | water | 100 | 0.0 | 0 | 8.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials science and engineering: c, 33(1), 453-460. | 2013 | 114 | 10.1016/j.msec.2012.09.013 | 637 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 13 | 12 | lamellar | sintered | 82.5 | 0.0 | 0.0 | 0.0 | 0.0 | 7.8 | 0.0 | 0.0 |
Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials science and engineering: c, 33(1), 453-460. | 2013 | 114 | 10.1016/j.msec.2012.09.013 | 638 | ceramic | HAP | water | 100 | 0.0 | 0 | 23.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18.0 | 0.0 | 0.0 |
Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials science and engineering: c, 33(1), 453-460. | 2013 | 114 | 10.1016/j.msec.2012.09.013 | 639 | ceramic | HAP | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 28.0 | 0.0 | 0.0 |
Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials science and engineering: c, 33(1), 453-460. | 2013 | 114 | 10.1016/j.msec.2012.09.013 | 640 | ceramic | HAP | water | 100 | 0.0 | 0 | 35.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 60.0 | 0.0 | 0.0 |
Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials science and engineering: c, 33(1), 453-460. | 2013 | 114 | 10.1016/j.msec.2012.09.013 | 641 | ceramic | HAP | water | 100 | 0.0 | 0 | 8.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials science and engineering: c, 33(1), 453-460. | 2013 | 114 | 10.1016/j.msec.2012.09.013 | 642 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 14 | 12 | lamellar | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials science and engineering: c, 33(1), 453-460. | 2013 | 114 | 10.1016/j.msec.2012.09.013 | 643 | ceramic | HAP | water | 100 | 0.0 | 0 | 23.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials science and engineering: c, 33(1), 453-460. | 2013 | 114 | 10.1016/j.msec.2012.09.013 | 644 | ceramic | HAP | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials science and engineering: c, 33(1), 453-460. | 2013 | 114 | 10.1016/j.msec.2012.09.013 | 645 | ceramic | HAP | water | 100 | 0.0 | 0 | 35.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials science and engineering: c, 33(1), 453-460. | 2013 | 114 | 10.1016/j.msec.2012.09.013 | 646 | ceramic | HAP | water | 100 | 0.0 | 0 | 8.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials science and engineering: c, 33(1), 453-460. | 2013 | 114 | 10.1016/j.msec.2012.09.013 | 647 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 14 | 12 | lamellar | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials science and engineering: c, 33(1), 453-460. | 2013 | 114 | 10.1016/j.msec.2012.09.013 | 648 | ceramic | HAP | water | 100 | 0.0 | 0 | 23.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials science and engineering: c, 33(1), 453-460. | 2013 | 114 | 10.1016/j.msec.2012.09.013 | 649 | ceramic | HAP | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials science and engineering: c, 33(1), 453-460. | 2013 | 114 | 10.1016/j.msec.2012.09.013 | 650 | ceramic | HAP | water | 100 | 0.0 | 0 | 35.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials science and engineering: c, 33(1), 453-460. | 2013 | 114 | 10.1016/j.msec.2012.09.013 | 651 | ceramic | HAP | water | 100 | 0.0 | 0 | 8.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 12.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials science and engineering: c, 33(1), 453-460. | 2013 | 114 | 10.1016/j.msec.2012.09.013 | 652 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 12.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 18 | 15 | lamellar | sintered | 77.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials science and engineering: c, 33(1), 453-460. | 2013 | 114 | 10.1016/j.msec.2012.09.013 | 653 | ceramic | HAP | water | 100 | 0.0 | 0 | 23.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 12.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials science and engineering: c, 33(1), 453-460. | 2013 | 114 | 10.1016/j.msec.2012.09.013 | 654 | ceramic | HAP | water | 100 | 0.0 | 0 | 27.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 12.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials science and engineering: c, 33(1), 453-460. | 2013 | 114 | 10.1016/j.msec.2012.09.013 | 655 | ceramic | HAP | water | 100 | 0.0 | 0 | 36.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 12.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials science and engineering: c, 33(1), 453-460. | 2013 | 114 | 10.1016/j.msec.2012.09.013 | 656 | ceramic | HAP | water | 100 | 0.0 | 0 | 8.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 14.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 88.0 | 0.0 | 49.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials science and engineering: c, 33(1), 453-460. | 2013 | 114 | 10.1016/j.msec.2012.09.013 | 657 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 14.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 21 | 20 | lamellar | sintered | 76.0 | 0.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials science and engineering: c, 33(1), 453-460. | 2013 | 114 | 10.1016/j.msec.2012.09.013 | 658 | ceramic | HAP | water | 100 | 0.0 | 0 | 23.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 14.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 69.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials science and engineering: c, 33(1), 453-460. | 2013 | 114 | 10.1016/j.msec.2012.09.013 | 659 | ceramic | HAP | water | 100 | 0.0 | 0 | 27.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 14.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 58.0 | 0.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials science and engineering: c, 33(1), 453-460. | 2013 | 114 | 10.1016/j.msec.2012.09.013 | 660 | ceramic | HAP | water | 100 | 0.0 | 0 | 36.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 14.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 45.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 125-135. | 2008 | 126 | 10.1002/jbm.b.30997 | 693 | ceramic | HAP | water | 100 | 0.0 | 0 | 5.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 85.0 | 58.0 | 50.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 125-135. | 2008 | 126 | 10.1002/jbm.b.30997 | 694 | ceramic | HAP | water | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.0 | 40.0 | 25.0 | 15.0 | 4.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 125-135. | 2008 | 126 | 10.1002/jbm.b.30997 | 695 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 125-135. | 2008 | 126 | 10.1002/jbm.b.30997 | 696 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 52.0 | 40.0 | 15.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 125-135. | 2008 | 126 | 10.1002/jbm.b.30997 | 697 | ceramic | HAP | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 125-135. | 2008 | 126 | 10.1002/jbm.b.30997 | 698 | ceramic | HAP | water | 100 | 0.0 | 0 | 30.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 125-135. | 2008 | 126 | 10.1002/jbm.b.30997 | 699 | ceramic | HAP | water | 100 | 0.0 | 0 | 35.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 125-135. | 2008 | 126 | 10.1002/jbm.b.30997 | 700 | ceramic | HAP | water | 100 | 0.0 | 0 | 40.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 125-135. | 2008 | 126 | 10.1002/jbm.b.30997 | 701 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 125-135. | 2008 | 126 | 10.1002/jbm.b.30997 | 702 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 125-135. | 2008 | 126 | 10.1002/jbm.b.30997 | 703 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 125-135. | 2008 | 126 | 10.1002/jbm.b.30997 | 704 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.5 | 1 | 1 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 125-135. | 2008 | 126 | 10.1002/jbm.b.30997 | 705 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.5 | 1 | 1 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 125-135. | 2008 | 126 | 10.1002/jbm.b.30997 | 706 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 125-135. | 2008 | 126 | 10.1002/jbm.b.30997 | 707 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 125-135. | 2008 | 126 | 10.1002/jbm.b.30997 | 708 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 125-135. | 2008 | 126 | 10.1002/jbm.b.30997 | 709 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.5 | 1 | 1 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 125-135. | 2008 | 126 | 10.1002/jbm.b.30997 | 710 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.5 | 1 | 1 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 125-135. | 2008 | 126 | 10.1002/jbm.b.30997 | 711 | ceramic | HAP | water | 80 | glycerol | 20 | 10.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 67.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 125-135. | 2008 | 126 | 10.1002/jbm.b.30997 | 712 | ceramic | HAP | water | 80 | glycerol | 20 | 20.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 46.0 | 0.0 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 125-135. | 2008 | 126 | 10.1002/jbm.b.30997 | 713 | ceramic | HAP | water | 40 | dioxane | 60 | 10.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 65.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 125-135. | 2008 | 126 | 10.1002/jbm.b.30997 | 714 | ceramic | HAP | water | 40 | dioxane | 60 | 20.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 37.0 | 0.0 | 90.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(2), 514-522. | 2008 | 127 | 10.1002/jbm.b.31051 | 715 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 51.5 | 0.0 | 0.0 | 0.0 | 0.0 | 11.8 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(2), 514-522. | 2008 | 127 | 10.1002/jbm.b.31051 | 716 | ceramic | HAP | water | 94 | glycerol | 5 | 20.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 51.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(2), 514-522. | 2008 | 127 | 10.1002/jbm.b.31051 | 717 | ceramic | HAP | water | 89 | glycerol | 10 | 20.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 49.0 | 0.0 | 0.0 | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(2), 514-522. | 2008 | 127 | 10.1002/jbm.b.31051 | 718 | ceramic | HAP | water | 85 | glycerol | 15 | 20.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 48.0 | 0.0 | 0.0 | 0.0 | 0.0 | 17.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(2), 514-522. | 2008 | 127 | 10.1002/jbm.b.31051 | 719 | ceramic | HAP | water | 80 | glycerol | 20 | 20.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 46.0 | 0.0 | 0.0 | 0.0 | 0.0 | 19.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(2), 514-522. | 2008 | 127 | 10.1002/jbm.b.31051 | 720 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 51.0 | 0.0 | 0.0 | 0.0 | 0.0 | 11.5 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(2), 514-522. | 2008 | 127 | 10.1002/jbm.b.31051 | 721 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 51.0 | 0.0 | 0.0 | 0.0 | 0.0 | 11.8 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(2), 514-522. | 2008 | 127 | 10.1002/jbm.b.31051 | 722 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 53.8 | 0.0 | 0.0 | 0.0 | 0.0 | 9.5 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(2), 514-522. | 2008 | 127 | 10.1002/jbm.b.31051 | 723 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 52.8 | 0.0 | 0.0 | 0.0 | 0.0 | 8.2 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(2), 514-522. | 2008 | 127 | 10.1002/jbm.b.31051 | 724 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 51.8 | 0.0 | 0.0 | 0.0 | 0.0 | 7.5 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(2), 514-522. | 2008 | 127 | 10.1002/jbm.b.31051 | 725 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(2), 514-522. | 2008 | 127 | 10.1002/jbm.b.31051 | 726 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(2), 514-522. | 2008 | 127 | 10.1002/jbm.b.31051 | 727 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(2), 514-522. | 2008 | 127 | 10.1002/jbm.b.31051 | 728 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(2), 514-522. | 2008 | 127 | 10.1002/jbm.b.31051 | 729 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.5 | 0 | 1 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(2), 514-522. | 2008 | 127 | 10.1002/jbm.b.31051 | 730 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.5 | 0 | 1 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(2), 514-522. | 2008 | 127 | 10.1002/jbm.b.31051 | 731 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(2), 514-522. | 2008 | 127 | 10.1002/jbm.b.31051 | 732 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(2), 514-522. | 2008 | 127 | 10.1002/jbm.b.31051 | 733 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(2), 514-522. | 2008 | 127 | 10.1002/jbm.b.31051 | 734 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(2), 514-522. | 2008 | 127 | 10.1002/jbm.b.31051 | 735 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.5 | 0 | 1 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(2), 514-522. | 2008 | 127 | 10.1002/jbm.b.31051 | 736 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.5 | 0 | 1 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze-cast hydroxyapatite scaffolds for bone tissue engineering applications. Biomedical Materials, 3(2), 025005. | 2008 | 128 | 10.1088/1748-6041/3/2/025005 | 737 | ceramic | HAP | water | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | powder | 1.0 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.0 | 0.0 | 25.0 | 0.0 | 7.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze-cast hydroxyapatite scaffolds for bone tissue engineering applications. Biomedical Materials, 3(2), 025005. | 2008 | 128 | 10.1088/1748-6041/3/2/025005 | 738 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 1.0 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 55.0 | 0.0 | 15.0 | 0.0 | 0.0 | 12.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze-cast hydroxyapatite scaffolds for bone tissue engineering applications. Biomedical Materials, 3(2), 025005. | 2008 | 128 | 10.1088/1748-6041/3/2/025005 | 739 | ceramic | HAP | water | 80 | glycerol | 20 | 10.0 | 18.0 | 100 | powder | 1.0 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 67.0 | 0.0 | 10.0 | 0.0 | 0.0 | 18.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze-cast hydroxyapatite scaffolds for bone tissue engineering applications. Biomedical Materials, 3(2), 025005. | 2008 | 128 | 10.1088/1748-6041/3/2/025005 | 740 | ceramic | HAP | water | 40 | dioxane | 60 | 10.0 | 18.0 | 100 | powder | 1.0 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 65.0 | 0.0 | 100.0 | 0.0 | 0.0 | 7.5 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Bal, B. S., & Brown, R. F. (2009). In vitro cellular response to hydroxyapatite scaffolds with oriented pore architectures. Materials Science and Engineering: C, 29(7), 2147-2153. | 2009 | 129 | 10.1016/j.msec.2009.04.016 | 741 | ceramic | HAP | water | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | powder | 1.0 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.0 | 0.0 | 25.0 | 0.0 | 8.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Bal, B. S., & Brown, R. F. (2009). In vitro cellular response to hydroxyapatite scaffolds with oriented pore architectures. Materials Science and Engineering: C, 29(7), 2147-2153. | 2009 | 129 | 10.1016/j.msec.2009.04.016 | 742 | ceramic | HAP | water | 60 | dioxane | 40 | 10.0 | 18.0 | 100 | powder | 1.0 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | columnar | sintered | 65.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Bal, B. S., & Brown, R. F. (2009). Proliferation and function of MC3T3-E1 cells on freeze-cast hydroxyapatite scaffolds with oriented pore architectures. Journal of Materials Science: Materials in Medicine, 20(5), 1159-1165. | 2009 | 130 | 10.1007/s10856-008-3668-y | 743 | ceramic | HAP | water | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | powder | 1.0 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.0 | 0.0 | 25.0 | 0.0 | 8.0 | 0.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Bal, B. S., & Brown, R. F. (2009). Proliferation and function of MC3T3-E1 cells on freeze-cast hydroxyapatite scaffolds with oriented pore architectures. Journal of Materials Science: Materials in Medicine, 20(5), 1159-1165. | 2009 | 130 | 10.1007/s10856-008-3668-y | 744 | ceramic | HAP | water | 60 | dioxane | 40 | 10.0 | 18.0 | 100 | powder | 1.0 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | columnar | sintered | 65.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Govindan, R., Kumar, G. S., & Girija, E. K. (2015). Polymer coated phosphate glass/hydroxyapatite composite scaffolds for bone tissue engineering applications. RSC Advances, 5(74), 60188-60198. | 2015 | 168 | 10.1039/c5ra09258b | 5789 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 90.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Govindan, R., Kumar, G. S., & Girija, E. K. (2015). Polymer coated phosphate glass/hydroxyapatite composite scaffolds for bone tissue engineering applications. RSC Advances, 5(74), 60188-60198. | 2015 | 168 | 10.1039/c5ra09258b | 5790 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 77.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Govindan, R., Kumar, G. S., & Girija, E. K. (2015). Polymer coated phosphate glass/hydroxyapatite composite scaffolds for bone tissue engineering applications. RSC Advances, 5(74), 60188-60198. | 2015 | 168 | 10.1039/c5ra09258b | 5791 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Govindan, R., Kumar, G. S., & Girija, E. K. (2015). Polymer coated phosphate glass/hydroxyapatite composite scaffolds for bone tissue engineering applications. RSC Advances, 5(74), 60188-60198. | 2015 | 168 | 10.1039/c5ra09258b | 5792 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hess, U., Mikolajczyk, G., Treccani, L., Streckbein, P., Heiss, C., Odenbach, S., & Rezwan, K. (2016). Multi-loaded ceramic beads/matrix scaffolds obtained by combining ionotropic and freeze gelation for sustained and tuneable vancomycin release. Materials Science and Engineering: C, 67, 542-553. | 2016 | 203 | 10.1016/j.msec.2016.05.042 | 4950 | ceramic | HAP | water | 100 | 0.0 | 0 | 33.0 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hess, U., Mikolajczyk, G., Treccani, L., Streckbein, P., Heiss, C., Odenbach, S., & Rezwan, K. (2016). Multi-loaded ceramic beads/matrix scaffolds obtained by combining ionotropic and freeze gelation for sustained and tuneable vancomycin release. Materials Science and Engineering: C, 67, 542-553. | 2016 | 203 | 10.1016/j.msec.2016.05.042 | 4951 | ceramic | HAP | water | 100 | 0.0 | 0 | 33.0 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hess, U., Mikolajczyk, G., Treccani, L., Streckbein, P., Heiss, C., Odenbach, S., & Rezwan, K. (2016). Multi-loaded ceramic beads/matrix scaffolds obtained by combining ionotropic and freeze gelation for sustained and tuneable vancomycin release. Materials Science and Engineering: C, 67, 542-553. | 2016 | 203 | 10.1016/j.msec.2016.05.042 | 4952 | ceramic | HAP | water | 100 | 0.0 | 0 | 33.0 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Huang, Z., Zhou, K., & Zhang, D. (2014). Porous hydroxyapatite scaffolds with unidirectional macrochannels prepared via ice/fiber-templated method. Materials and Manufacturing Processes, 29(1), 27-31. | 2013 | 230 | 10.1080/10426914.2013.840909 | 1960 | ceramic | HAP | water | 100 | 0.0 | 0 | 16.0 | 18.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.3 | 0.0 | 0.0 |
Huang, Z., Zhou, K., & Zhang, D. (2014). Porous hydroxyapatite scaffolds with unidirectional macrochannels prepared via ice/fiber-templated method. Materials and Manufacturing Processes, 29(1), 27-31. | 2013 | 230 | 10.1080/10426914.2013.840909 | 1961 | ceramic | HAP | water | 100 | 0.0 | 0 | 30.0 | 18.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 56.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.1 | 0.0 | 0.0 |
Jun, S. H., Lee, E. J., Jang, T. S., Kim, H. E., Jang, J. H., & Koh, Y. H. (2013). Bone morphogenic protein-2 (BMP-2) loaded hybrid coating on porous hydroxyapatite scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 24(3), 773-782. | 2013 | 246 | 10.1007/s10856-012-4822-0 | 5798 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 70.0 | 0.0 | 125.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kaviani, Z., & Zamanian, A. (2015). Effect of Nanohydroxyapatite Addition on the Pore Morphology and Mechanical Properties of Freeze Cast Hydroxyapatite Scaffolds. Procedia Materials Science, 11, 190-195. | 2015 | 255 | 10.1016/j.mspro.2015.11.102 | 3112 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | 0 | 5.0 | 3 | 3 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 57 | lamellar | sintered | 73.47 | 0.0 | 0.0 | 0.0 | 0.0 | 2.57 | 0.0 | 0.0 |
Kaviani, Z., & Zamanian, A. (2015). Effect of Nanohydroxyapatite Addition on the Pore Morphology and Mechanical Properties of Freeze Cast Hydroxyapatite Scaffolds. Procedia Materials Science, 11, 190-195. | 2015 | 255 | 10.1016/j.mspro.2015.11.102 | 3113 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 50 | 0 | 5.0 | 3 | 3 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 65 | lamellar | sintered | 67.25 | 0.0 | 0.0 | 0.0 | 0.0 | 4.72 | 0.0 | 0.0 |
Kaviani, Z., & Zamanian, A. (2015). Effect of Nanohydroxyapatite Addition on the Pore Morphology and Mechanical Properties of Freeze Cast Hydroxyapatite Scaffolds. Procedia Materials Science, 11, 190-195. | 2015 | 255 | 10.1016/j.mspro.2015.11.102 | 3114 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | 0 | 0.03 | 3 | 3 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 76 | lamellar | sintered | 53.31 | 0.0 | 0.0 | 0.0 | 0.0 | 17.15 | 0.0 | 0.0 |
Kim, J. H., Lee, J. H., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). TBA-based freeze/gel casting of porous hydroxyapatite scaffolds. Ceramics International, 37(7), 2317-2322. | 2011 | 260 | 10.1016/j.ceramint.2011.03.023 | 3130 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 7.34 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 24 | honeycomb | sintered | 79.3 | 0.0 | 0.0 | 0.0 | 0.0 | 2.7 | 0.0 | 0.0 |
Kim, J. H., Lee, J. H., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). TBA-based freeze/gel casting of porous hydroxyapatite scaffolds. Ceramics International, 37(7), 2317-2322. | 2011 | 260 | 10.1016/j.ceramint.2011.03.023 | 3131 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 11.96 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 25 | honeycomb | sintered | 68.1 | 0.0 | 12.2 | 0.0 | 0.0 | 7.2 | 0.0 | 0.0 |
Kim, J. H., Lee, J. H., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). TBA-based freeze/gel casting of porous hydroxyapatite scaffolds. Ceramics International, 37(7), 2317-2322. | 2011 | 260 | 10.1016/j.ceramint.2011.03.023 | 3132 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 17.44 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 26 | honeycomb | sintered | 57.0 | 0.0 | 0.0 | 0.0 | 0.0 | 22.3 | 0.0 | 0.0 |
Kim, J. H., Lee, J. H., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). TBA-based freeze/gel casting of porous hydroxyapatite scaffolds. Ceramics International, 37(7), 2317-2322. | 2011 | 260 | 10.1016/j.ceramint.2011.03.023 | 3133 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 7.34 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 28 | honeycomb | sintered | 76.5 | 0.0 | 12.4 | 0.0 | 0.0 | 5.7 | 0.0 | 0.0 |
Kim, J. H., Lee, J. H., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). TBA-based freeze/gel casting of porous hydroxyapatite scaffolds. Ceramics International, 37(7), 2317-2322. | 2011 | 260 | 10.1016/j.ceramint.2011.03.023 | 3134 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 11.96 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 29 | honeycomb | sintered | 64.6 | 0.0 | 10.1 | 0.0 | 0.0 | 15.2 | 0.0 | 0.0 |
Kim, J. H., Lee, J. H., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). TBA-based freeze/gel casting of porous hydroxyapatite scaffolds. Ceramics International, 37(7), 2317-2322. | 2011 | 260 | 10.1016/j.ceramint.2011.03.023 | 3135 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 17.44 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 30 | honeycomb | sintered | 49.9 | 0.0 | 5.3 | 0.0 | 0.0 | 27.8 | 0.0 | 0.0 |
Kim, J. H., Lee, J. H., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). TBA-based freeze/gel casting of porous hydroxyapatite scaffolds. Ceramics International, 37(7), 2317-2322. | 2011 | 260 | 10.1016/j.ceramint.2011.03.023 | 3136 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 7.34 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 32 | honeycomb | sintered | 67.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.8 | 0.0 | 0.0 |
Kim, J. H., Lee, J. H., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). TBA-based freeze/gel casting of porous hydroxyapatite scaffolds. Ceramics International, 37(7), 2317-2322. | 2011 | 260 | 10.1016/j.ceramint.2011.03.023 | 3137 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 11.96 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 33 | honeycomb | sintered | 59.5 | 0.0 | 0.0 | 0.0 | 0.0 | 17.3 | 0.0 | 0.0 |
Kim, J. H., Lee, J. H., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). TBA-based freeze/gel casting of porous hydroxyapatite scaffolds. Ceramics International, 37(7), 2317-2322. | 2011 | 260 | 10.1016/j.ceramint.2011.03.023 | 3138 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 17.44 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 34 | honeycomb | sintered | 41.9 | 0.0 | 0.0 | 0.0 | 0.0 | 35.1 | 0.0 | 0.0 |
Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135. | 2014 | 266 | 10.1007/s12540-014-1007-z | 3163 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 5.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135. | 2014 | 266 | 10.1007/s12540-014-1007-z | 3164 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 5.0 | 18.0 | 94 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135. | 2014 | 266 | 10.1007/s12540-014-1007-z | 3165 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 5.0 | 18.0 | 89 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135. | 2014 | 266 | 10.1007/s12540-014-1007-z | 3166 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135. | 2014 | 266 | 10.1007/s12540-014-1007-z | 3167 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 94 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135. | 2014 | 266 | 10.1007/s12540-014-1007-z | 3168 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 89 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135. | 2014 | 266 | 10.1007/s12540-014-1007-z | 3169 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135. | 2014 | 266 | 10.1007/s12540-014-1007-z | 3170 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 15.0 | 18.0 | 94 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135. | 2014 | 266 | 10.1007/s12540-014-1007-z | 3171 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 15.0 | 18.0 | 89 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135. | 2014 | 266 | 10.1007/s12540-014-1007-z | 3172 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 5.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135. | 2014 | 266 | 10.1007/s12540-014-1007-z | 3173 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 5.0 | 18.0 | 94 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135. | 2014 | 266 | 10.1007/s12540-014-1007-z | 3174 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 5.0 | 18.0 | 89 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135. | 2014 | 266 | 10.1007/s12540-014-1007-z | 3175 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135. | 2014 | 266 | 10.1007/s12540-014-1007-z | 3176 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 94 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135. | 2014 | 266 | 10.1007/s12540-014-1007-z | 3177 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 89 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135. | 2014 | 266 | 10.1007/s12540-014-1007-z | 3178 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135. | 2014 | 266 | 10.1007/s12540-014-1007-z | 3179 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 15.0 | 18.0 | 94 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135. | 2014 | 266 | 10.1007/s12540-014-1007-z | 3180 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 15.0 | 18.0 | 89 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135. | 2014 | 266 | 10.1007/s12540-014-1007-z | 3181 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 5.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135. | 2014 | 266 | 10.1007/s12540-014-1007-z | 3182 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 5.0 | 18.0 | 94 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135. | 2014 | 266 | 10.1007/s12540-014-1007-z | 3183 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 5.0 | 18.0 | 89 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135. | 2014 | 266 | 10.1007/s12540-014-1007-z | 3184 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135. | 2014 | 266 | 10.1007/s12540-014-1007-z | 3185 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 94 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135. | 2014 | 266 | 10.1007/s12540-014-1007-z | 3186 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 89 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135. | 2014 | 266 | 10.1007/s12540-014-1007-z | 3187 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135. | 2014 | 266 | 10.1007/s12540-014-1007-z | 3188 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 15.0 | 18.0 | 94 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135. | 2014 | 266 | 10.1007/s12540-014-1007-z | 3189 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 15.0 | 18.0 | 89 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kumar, A., Negi, Y. S., Choudhary, V., & Bhardwaj, N. K. (2014). Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals. Cellulose, 21(5), 3409-3426. | 2014 | 281 | 10.1007/s10570-014-0339-7 | 3211 | ceramic | HAP | water | 100 | 0.0 | 0 | 4.0 | 68.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 91.0 | 0.0 | 440.0 | 0.0 | 0.0 | 0.4 | 0.0 | 0.32 |
Kumar, A., Negi, Y. S., Choudhary, V., & Bhardwaj, N. K. (2014). Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals. Cellulose, 21(5), 3409-3426. | 2014 | 281 | 10.1007/s10570-014-0339-7 | 3212 | ceramic | HAP | water | 100 | 0.0 | 0 | 7.0 | 68.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 90.0 | 0.0 | 415.0 | 0.0 | 0.0 | 0.85 | 0.0 | 4.68 |
Kumar, A., Negi, Y. S., Choudhary, V., & Bhardwaj, N. K. (2014). Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals. Cellulose, 21(5), 3409-3426. | 2014 | 281 | 10.1007/s10570-014-0339-7 | 3213 | ceramic | HAP | water | 100 | 0.0 | 0 | 7.0 | 68.0 | 98 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 90.0 | 0.0 | 270.0 | 0.0 | 0.0 | 1.39 | 0.0 | 10.67 |
Kumar, A., Negi, Y. S., Choudhary, V., & Bhardwaj, N. K. (2014). Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals. Cellulose, 21(5), 3409-3426. | 2014 | 281 | 10.1007/s10570-014-0339-7 | 3214 | ceramic | HAP | water | 100 | 0.0 | 0 | 7.0 | 68.0 | 95 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 89.0 | 0.0 | 220.0 | 0.0 | 0.0 | 1.4 | 0.0 | 10.1 |
Kumar, A., Negi, Y. S., Choudhary, V., & Bhardwaj, N. K. (2014). Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals. Cellulose, 21(5), 3409-3426. | 2014 | 281 | 10.1007/s10570-014-0339-7 | 3215 | ceramic | HAP | water | 100 | 0.0 | 0 | 7.0 | 68.0 | 93 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 87.0 | 0.0 | 198.0 | 0.0 | 0.0 | 1.48 | 0.0 | 13.41 |
Kumar, A., Negi, Y. S., Choudhary, V., & Bhardwaj, N. K. (2014). Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals. Cellulose, 21(5), 3409-3426. | 2014 | 281 | 10.1007/s10570-014-0339-7 | 3216 | ceramic | HAP | water | 100 | 0.0 | 0 | 7.0 | 68.0 | 92 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 89.0 | 0.0 | 280.0 | 0.0 | 0.0 | 1.6 | 0.0 | 14.5 |
Kumar, A., Negi, Y. S., Choudhary, V., & Bhardwaj, N. K. (2014). Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals. Cellulose, 21(5), 3409-3426. | 2014 | 281 | 10.1007/s10570-014-0339-7 | 3217 | ceramic | HAP | water | 100 | 0.0 | 0 | 7.0 | 68.0 | 89 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 87.0 | 0.0 | 180.0 | 0.0 | 0.0 | 2.09 | 0.0 | 16.01 |
Landi, E., Valentini, F., & Tampieri, A. (2008). Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications. Acta Biomaterialia, 4(6), 1620-1626. | 2008 | 283 | 10.1016/j.actbio.2008.05.023 | 3222 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | 0 | 150.0 | 0 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 |
Landi, E., Valentini, F., & Tampieri, A. (2008). Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications. Acta Biomaterialia, 4(6), 1620-1626. | 2008 | 283 | 10.1016/j.actbio.2008.05.023 | 3223 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | 0 | 150.0 | 0 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 56.0 | 0.0 | 150.0 | 0.0 | 0.0 | 4.3 | 0.0 | 0.0 |
Landi, E., Valentini, F., & Tampieri, A. (2008). Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications. Acta Biomaterialia, 4(6), 1620-1626. | 2008 | 283 | 10.1016/j.actbio.2008.05.023 | 3224 | ceramic | HAP | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 100 | 0 | 150.0 | 0 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 48.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.5 | 0.0 | 0.0 |
Landi, E., Valentini, F., & Tampieri, A. (2008). Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications. Acta Biomaterialia, 4(6), 1620-1626. | 2008 | 283 | 10.1016/j.actbio.2008.05.023 | 3225 | ceramic | HAP | water | 100 | 0.0 | 0 | 30.0 | 18.0 | 100 | 0 | 150.0 | 0 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 43.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.9 | 0.0 | 0.0 |
Landi, E., Valentini, F., & Tampieri, A. (2008). Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications. Acta Biomaterialia, 4(6), 1620-1626. | 2008 | 283 | 10.1016/j.actbio.2008.05.023 | 3226 | ceramic | HAP | water | 100 | 0.0 | 0 | 35.0 | 18.0 | 100 | 0 | 150.0 | 0 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 31.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 0.0 | 0.0 |
Landi, E., Valentini, F., & Tampieri, A. (2008). Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications. Acta Biomaterialia, 4(6), 1620-1626. | 2008 | 283 | 10.1016/j.actbio.2008.05.023 | 3227 | ceramic | HAP | water | 100 | 0.0 | 0 | 38.0 | 18.0 | 100 | 0 | 150.0 | 0 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 18.0 | 0.0 | 0.0 | 0.0 | 0.0 | 55.0 | 0.0 | 0.0 |
Landi, E., Valentini, F., & Tampieri, A. (2008). Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications. Acta Biomaterialia, 4(6), 1620-1626. | 2008 | 283 | 10.1016/j.actbio.2008.05.023 | 3228 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | 0 | 150.0 | 0 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 56.0 | 0.0 | 0.0 | 0.0 | 0.0 | 11.38 | 0.0 | 0.0 |
Landi, E., Valentini, F., & Tampieri, A. (2008). Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications. Acta Biomaterialia, 4(6), 1620-1626. | 2008 | 283 | 10.1016/j.actbio.2008.05.023 | 3229 | ceramic | HAP | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 100 | 0 | 150.0 | 0 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 48.0 | 0.0 | 0.0 | 0.0 | 0.0 | 11.5 | 0.0 | 0.0 |
Lee, E. J., Koh, Y. H., Yoon, B. H., Kim, H. E., & Kim, H. W. (2007). Highly porous hydroxyapatite bioceramics with interconnected pore channels using camphene-based freeze casting. Materials letters, 61(11), 2270-2273. | 2007 | 293 | 10.1016/j.matlet.2006.08.065 | 3317 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | 0 | 0.0 | 10 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
Lee, E. J., Koh, Y. H., Yoon, B. H., Kim, H. E., & Kim, H. W. (2007). Highly porous hydroxyapatite bioceramics with interconnected pore channels using camphene-based freeze casting. Materials letters, 61(11), 2270-2273. | 2007 | 293 | 10.1016/j.matlet.2006.08.065 | 3318 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | 0 | 0.0 | 10 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.5 | 0.0 | 0.0 |
Lee, E. J., Koh, Y. H., Yoon, B. H., Kim, H. E., & Kim, H. W. (2007). Highly porous hydroxyapatite bioceramics with interconnected pore channels using camphene-based freeze casting. Materials letters, 61(11), 2270-2273. | 2007 | 293 | 10.1016/j.matlet.2006.08.065 | 3319 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | 0 | 0.0 | 10 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 57.0 | 0.0 | 0.0 | 0.0 | 0.0 | 17.0 | 0.0 | 0.0 |
Lee, S., Porter, M., Wasko, S., Lau, G., Chen, P. Y., Novitskaya, E. E., ... & McKittrick, J. (2012). Potential bone replacement materials prepared by two methods. MRS Online Proceedings Library Archive, 1418. | 2012 | 303 | http://dx.doi.org/10.1557/opl.2012.671 | 3372 | ceramic | HAP | water | 100 | 0.0 | 0 | 30.0 | 18.0 | 100 | 0 | 2.4 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.0 | 175.0 | 150.0 | 25.0 | 0.0 | 25.0 | 0.0 | 4000.0 |
Liu, B., Chen, L., Shao, C., Zhang, F., Zhou, K., Cao, J., & Zhang, D. (2016). Improved osteoblasts growth on osteomimetic hydroxyapatite/BaTiO 3 composites with aligned lamellar porous structure. Materials Science and Engineering: C, 61, 8-14. | 2016 | 328 | 10.1016/j.msec.2015.12.009 | 3494 | ceramic | HAP | water | 100 | 0.0 | 0 | 40.0 | 18.0 | 10 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 42.6 | 0.0 | 0.0 |
Liu, B., Chen, L., Shao, C., Zhang, F., Zhou, K., Cao, J., & Zhang, D. (2016). Improved osteoblasts growth on osteomimetic hydroxyapatite/BaTiO 3 composites with aligned lamellar porous structure. Materials Science and Engineering: C, 61, 8-14. | 2016 | 328 | 10.1016/j.msec.2015.12.009 | 3495 | ceramic | HAP | water | 100 | 0.0 | 0 | 30.0 | 18.0 | 10 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 34.7 | 0.0 | 0.0 |
Liu, B., Chen, L., Shao, C., Zhang, F., Zhou, K., Cao, J., & Zhang, D. (2016). Improved osteoblasts growth on osteomimetic hydroxyapatite/BaTiO 3 composites with aligned lamellar porous structure. Materials Science and Engineering: C, 61, 8-14. | 2016 | 328 | 10.1016/j.msec.2015.12.009 | 3496 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 10 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 17.5 | 0.0 | 0.0 |
Macchetta, A., Turner, I. G., & Bowen, C. R. (2009). Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta biomaterialia, 5(4), 1319-1327. | 2009 | 372 | 10.1016/j.actbio.2008.11.009 | 3710 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | 0 | 6.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | radial-out | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.5 | 0.0 | 0.0 |
Macchetta, A., Turner, I. G., & Bowen, C. R. (2009). Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta biomaterialia, 5(4), 1319-1327. | 2009 | 372 | 10.1016/j.actbio.2008.11.009 | 3711 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | 0 | 6.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | radial-out | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 45.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14.0 | 0.0 | 0.0 |
Macchetta, A., Turner, I. G., & Bowen, C. R. (2009). Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta biomaterialia, 5(4), 1319-1327. | 2009 | 372 | 10.1016/j.actbio.2008.11.009 | 3712 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 30.0 | 18.0 | 100 | 0 | 6.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | radial-out | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 31.0 | 0.0 | 0.0 | 0.0 | 0.0 | 36.0 | 0.0 | 0.0 |
Macchetta, A., Turner, I. G., & Bowen, C. R. (2009). Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta biomaterialia, 5(4), 1319-1327. | 2009 | 372 | 10.1016/j.actbio.2008.11.009 | 3713 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | 0 | 6.0 | 0 | 5 | 0 | 277.0 | 0.0 | 0.0 | radial-out | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 71.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 |
Macchetta, A., Turner, I. G., & Bowen, C. R. (2009). Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta biomaterialia, 5(4), 1319-1327. | 2009 | 372 | 10.1016/j.actbio.2008.11.009 | 3714 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | 0 | 6.0 | 0 | 5 | 0 | 296.0 | 0.0 | 0.0 | radial-out | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 72.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.1 | 0.0 | 0.0 |
Macchetta, A., Turner, I. G., & Bowen, C. R. (2009). Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta biomaterialia, 5(4), 1319-1327. | 2009 | 372 | 10.1016/j.actbio.2008.11.009 | 3715 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | 0 | 6.0 | 0 | 5 | 0 | 303.0 | 0.0 | 0.0 | radial-out | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 73.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 |
Mallick, K. K. (2009). Freeze casting of porous bioactive glass and bioceramics. Journal of the American Ceramic Society, 92(s1). | 2009 | 377 | 10.1111/j.1551-2916.2008.02784.x | 3726 | ceramic | HAP | water | 100 | 0.0 | 0 | 17.44 | 18.0 | 100 | 0 | 0.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 55.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K. (2009). Freeze casting of porous bioactive glass and bioceramics. Journal of the American Ceramic Society, 92(s1). | 2009 | 377 | 10.1111/j.1551-2916.2008.02784.x | 3727 | ceramic | HAP | water | 100 | 0.0 | 0 | 17.44 | 18.0 | 100 | 0 | 0.0 | 0 | 5 | 10 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 40.0 | 0.0 | 18.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K. (2009). Freeze casting of porous bioactive glass and bioceramics. Journal of the American Ceramic Society, 92(s1). | 2009 | 377 | 10.1111/j.1551-2916.2008.02784.x | 3728 | ceramic | HAP | water | 100 | 0.0 | 0 | 17.44 | 18.0 | 100 | 0 | 0.0 | 0 | 5 | 20 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 20.0 | 0.0 | 45.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K. (2009). Freeze casting of porous bioactive glass and bioceramics. Journal of the American Ceramic Society, 92(s1). | 2009 | 377 | 10.1111/j.1551-2916.2008.02784.x | 3729 | ceramic | HAP | water | 100 | 0.0 | 0 | 17.44 | 18.0 | 100 | 0 | 0.0 | 0 | 5 | 30 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 15.0 | 0.0 | 46.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K. (2009). Freeze casting of porous bioactive glass and bioceramics. Journal of the American Ceramic Society, 92(s1). | 2009 | 377 | 10.1111/j.1551-2916.2008.02784.x | 3730 | ceramic | HAP | water | 100 | 0.0 | 0 | 17.44 | 18.0 | 100 | 0 | 0.0 | 0 | 5 | 40 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K. (2009). Freeze casting of porous bioactive glass and bioceramics. Journal of the American Ceramic Society, 92(s1). | 2009 | 377 | 10.1111/j.1551-2916.2008.02784.x | 3731 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 7.0 | 18.0 | 0 | 0 | 0.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 64.0 | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K. (2009). Freeze casting of porous bioactive glass and bioceramics. Journal of the American Ceramic Society, 92(s1). | 2009 | 377 | 10.1111/j.1551-2916.2008.02784.x | 3732 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 11.0 | 18.0 | 0 | 0 | 0.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 50.0 | 0.0 | 45.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K. (2009). Freeze casting of porous bioactive glass and bioceramics. Journal of the American Ceramic Society, 92(s1). | 2009 | 377 | 10.1111/j.1551-2916.2008.02784.x | 3733 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 16.0 | 18.0 | 0 | 0 | 0.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 35.0 | 0.0 | 35.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K. (2009). Freeze casting of porous bioactive glass and bioceramics. Journal of the American Ceramic Society, 92(s1). | 2009 | 377 | 10.1111/j.1551-2916.2008.02784.x | 3734 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 22.0 | 18.0 | 0 | 0 | 0.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 25.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K. (2009). Freeze casting of porous bioactive glass and bioceramics. Journal of the American Ceramic Society, 92(s1). | 2009 | 377 | 10.1111/j.1551-2916.2008.02784.x | 3735 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 30.0 | 18.0 | 0 | 0 | 0.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 14.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K. (2009). Freeze casting of porous bioactive glass and bioceramics. Journal of the American Ceramic Society, 92(s1). | 2009 | 377 | 10.1111/j.1551-2916.2008.02784.x | 3736 | ceramic | HAP | water | 100 | 0.0 | 0 | 7.34 | 18.0 | 0 | 0 | 0.0 | 0 | 5 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K. (2009). Freeze casting of porous bioactive glass and bioceramics. Journal of the American Ceramic Society, 92(s1). | 2009 | 377 | 10.1111/j.1551-2916.2008.02784.x | 3737 | ceramic | HAP | water | 100 | 0.0 | 0 | 11.96 | 18.0 | 0 | 0 | 0.0 | 0 | 5 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K. (2009). Freeze casting of porous bioactive glass and bioceramics. Journal of the American Ceramic Society, 92(s1). | 2009 | 377 | 10.1111/j.1551-2916.2008.02784.x | 3738 | ceramic | HAP | water | 100 | 0.0 | 0 | 17.44 | 18.0 | 0 | 0 | 0.0 | 0 | 5 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K. (2009). Freeze casting of porous bioactive glass and bioceramics. Journal of the American Ceramic Society, 92(s1). | 2009 | 377 | 10.1111/j.1551-2916.2008.02784.x | 3739 | ceramic | HAP | water | 100 | 0.0 | 0 | 24.06 | 18.0 | 0 | 0 | 0.0 | 0 | 5 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K. (2009). Freeze casting of porous bioactive glass and bioceramics. Journal of the American Ceramic Society, 92(s1). | 2009 | 377 | 10.1111/j.1551-2916.2008.02784.x | 3740 | ceramic | HAP | water | 100 | 0.0 | 0 | 67.78 | 18.0 | 0 | 0 | 0.0 | 0 | 5 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K., Winnett, J., van Grunsven, W., Lapworth, J., & Reilly, G. C. (2012). Three?dimensional porous bioscaffolds for bone tissue regeneration: Fabrication via adaptive foam reticulation and freeze casting techniques, characterization, and cell study. Journal of Biomedical Materials Research Part A, 100(11), 2948-2959. | 2012 | 379 | 10.1002/jbm.a.34238 | 4440 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 30.0 | 18.0 | 100 | powder | 3.0 | 0 | 5 | 0 | 195.0 | 0.0 | 0.0 | sponge | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 92.0 | 235.0 | 210.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K., Winnett, J., van Grunsven, W., Lapworth, J., & Reilly, G. C. (2012). Three?dimensional porous bioscaffolds for bone tissue regeneration: Fabrication via adaptive foam reticulation and freeze casting techniques, characterization, and cell study. Journal of Biomedical Materials Research Part A, 100(11), 2948-2959. | 2012 | 379 | 10.1002/jbm.a.34238 | 4441 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 30.0 | 18.0 | 100 | powder | 3.0 | 0 | 5 | 0 | 195.0 | 0.0 | 0.0 | sponge | constant | 0.0 | 0.0 | 21 | 0 | 0 | cellular | sintered | 91.0 | 287.0 | 260.0 | 27.0 | 0.0 | 0.38 | 0.0 | 0.0 |
Mallick, K. K., Winnett, J., van Grunsven, W., Lapworth, J., & Reilly, G. C. (2012). Three?dimensional porous bioscaffolds for bone tissue regeneration: Fabrication via adaptive foam reticulation and freeze casting techniques, characterization, and cell study. Journal of Biomedical Materials Research Part A, 100(11), 2948-2959. | 2012 | 379 | 10.1002/jbm.a.34238 | 4442 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 30.0 | 18.0 | 100 | powder | 3.0 | 0 | 5 | 0 | 195.0 | 0.0 | 0.0 | sponge | constant | 0.0 | 0.0 | 34 | 0 | 0 | cellular | sintered | 87.5 | 535.0 | 510.0 | 25.0 | 0.0 | 0.46 | 0.0 | 0.0 |
Mallick, K. K., Winnett, J., van Grunsven, W., Lapworth, J., & Reilly, G. C. (2012). Three?dimensional porous bioscaffolds for bone tissue regeneration: Fabrication via adaptive foam reticulation and freeze casting techniques, characterization, and cell study. Journal of Biomedical Materials Research Part A, 100(11), 2948-2959. | 2012 | 379 | 10.1002/jbm.a.34238 | 4443 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 30.0 | 18.0 | 100 | powder | 3.0 | 0 | 5 | 0 | 195.0 | 0.0 | 0.0 | sponge | constant | 0.0 | 0.0 | 25 | 0 | 0 | cellular | sintered | 82.5 | 880.0 | 450.0 | 40.0 | 0.0 | 0.7 | 0.0 | 0.0 |
Mallick, K. K., Winnett, J., van Grunsven, W., Lapworth, J., & Reilly, G. C. (2012). Three?dimensional porous bioscaffolds for bone tissue regeneration: Fabrication via adaptive foam reticulation and freeze casting techniques, characterization, and cell study. Journal of Biomedical Materials Research Part A, 100(11), 2948-2959. | 2012 | 379 | 10.1002/jbm.a.34238 | 4444 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 30.0 | 18.0 | 100 | powder | 3.0 | 0 | 5 | 0 | 195.0 | 0.0 | 0.0 | sponge | constant | 0.0 | 0.0 | 34 | 0 | 0 | cellular | sintered | 80.0 | 630.0 | 580.0 | 50.0 | 0.0 | 0.84 | 0.0 | 0.0 |
Monmaturapoj, N., Soodsawang, W., & Thepsuwan, W. (2012). Porous hydroxyapatite scaffolds produced by the combination of the gel-casting and freeze drying techniques. Journal of Porous Materials, 19(4), 441-447. | 2012 | 389 | 10.1007/s10934-011-9492-7 | 3780 | ceramic | HAP | water | 100 | 0.0 | 0 | 24.59 | 18.0 | 100 | 0 | 0.0 | 2 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 |
Monmaturapoj, N., Soodsawang, W., & Thepsuwan, W. (2012). Porous hydroxyapatite scaffolds produced by the combination of the gel-casting and freeze drying techniques. Journal of Porous Materials, 19(4), 441-447. | 2012 | 389 | 10.1007/s10934-011-9492-7 | 3781 | ceramic | HAP | water | 100 | 0.0 | 0 | 24.59 | 18.0 | 100 | 0 | 0.0 | 2 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 46.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 0.0 | 0.0 |
Monmaturapoj, N., Soodsawang, W., & Thepsuwan, W. (2012). Porous hydroxyapatite scaffolds produced by the combination of the gel-casting and freeze drying techniques. Journal of Porous Materials, 19(4), 441-447. | 2012 | 389 | 10.1007/s10934-011-9492-7 | 3782 | ceramic | HAP | water | 100 | 0.0 | 0 | 24.59 | 18.0 | 100 | 0 | 0.0 | 2 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 |
Monmaturapoj, N., Soodsawang, W., & Thepsuwan, W. (2012). Porous hydroxyapatite scaffolds produced by the combination of the gel-casting and freeze drying techniques. Journal of Porous Materials, 19(4), 441-447. | 2012 | 389 | 10.1007/s10934-011-9492-7 | 3783 | ceramic | HAP | water | 100 | 0.0 | 0 | 24.59 | 18.0 | 100 | 0 | 0.0 | 2 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 |
Monmaturapoj, N., Soodsawang, W., & Thepsuwan, W. (2012). Porous hydroxyapatite scaffolds produced by the combination of the gel-casting and freeze drying techniques. Journal of Porous Materials, 19(4), 441-447. | 2012 | 389 | 10.1007/s10934-011-9492-7 | 3784 | ceramic | HAP | water | 100 | 0.0 | 0 | 24.59 | 18.0 | 100 | 0 | 0.0 | 2 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 17.0 | 0.0 | 0.0 |
Monmaturapoj, N., Soodsawang, W., & Thepsuwan, W. (2012). Porous hydroxyapatite scaffolds produced by the combination of the gel-casting and freeze drying techniques. Journal of Porous Materials, 19(4), 441-447. | 2012 | 389 | 10.1007/s10934-011-9492-7 | 3785 | ceramic | HAP | water | 100 | 0.0 | 0 | 24.59 | 18.0 | 100 | 0 | 0.0 | 2 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3801 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3802 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3803 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3804 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3805 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3806 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3807 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3808 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3809 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3810 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3811 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3812 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3813 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3814 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3815 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3816 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3817 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3818 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3819 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3820 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3821 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3822 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3823 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3824 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3825 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3826 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3827 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3828 | ceramic | HAP | water | 100 | 0.0 | 0 | 21.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3829 | ceramic | HAP | water | 100 | 0.0 | 0 | 29.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3830 | ceramic | HAP | water | 100 | 0.0 | 0 | 31.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3831 | ceramic | HAP | water | 100 | 0.0 | 0 | 40.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3832 | ceramic | HAP | water | 100 | 0.0 | 0 | 21.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 254.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3833 | ceramic | HAP | water | 100 | 0.0 | 0 | 29.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 254.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3834 | ceramic | HAP | water | 100 | 0.0 | 0 | 31.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 254.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moritz, T., & Richter, H. J. (2007). Ice-mould freeze casting of porous ceramic components. Journal of the European Ceramic Society, 27(16), 4595-4601. | 2007 | 399 | 10.1016/j.jeurceramsoc.2007.04.010 | 3835 | ceramic | HAP | water | 100 | 0.0 | 0 | 40.0 | 18.0 | 0 | powder | 2.4 | 0 | 0 | 0 | 254.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 13.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mueller, B., Koch, D., Lutz, R., Schlegel, K. A., Treccani, L., & Rezwan, K. (2014). A novel one-pot process for near-net-shape fabrication of open-porous resorbable hydroxyapatite/protein composites and in vivo assessment. Materials Science and Engineering: C, 42, 137-145. | 2014 | 402 | 10.1016/j.msec.2014.05.017 | 5513 | ceramic | HAP | water | 100 | 0.0 | 0 | 28.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 56.16 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mueller, B., Koch, D., Lutz, R., Schlegel, K. A., Treccani, L., & Rezwan, K. (2014). A novel one-pot process for near-net-shape fabrication of open-porous resorbable hydroxyapatite/protein composites and in vivo assessment. Materials Science and Engineering: C, 42, 137-145. | 2014 | 402 | 10.1016/j.msec.2014.05.017 | 5514 | ceramic | HAP | water | 100 | 0.0 | 0 | 28.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 65.69 | 0.0 | 73.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mueller, B., Koch, D., Lutz, R., Schlegel, K. A., Treccani, L., & Rezwan, K. (2014). A novel one-pot process for near-net-shape fabrication of open-porous resorbable hydroxyapatite/protein composites and in vivo assessment. Materials Science and Engineering: C, 42, 137-145. | 2014 | 402 | 10.1016/j.msec.2014.05.017 | 5515 | ceramic | HAP | water | 100 | 0.0 | 0 | 28.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 66.74 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mueller, B., Koch, D., Lutz, R., Schlegel, K. A., Treccani, L., & Rezwan, K. (2014). A novel one-pot process for near-net-shape fabrication of open-porous resorbable hydroxyapatite/protein composites and in vivo assessment. Materials Science and Engineering: C, 42, 137-145. | 2014 | 402 | 10.1016/j.msec.2014.05.017 | 5516 | ceramic | HAP | water | 100 | 0.0 | 0 | 28.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 56.02 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mueller, B., Koch, D., Lutz, R., Schlegel, K. A., Treccani, L., & Rezwan, K. (2014). A novel one-pot process for near-net-shape fabrication of open-porous resorbable hydroxyapatite/protein composites and in vivo assessment. Materials Science and Engineering: C, 42, 137-145. | 2014 | 402 | 10.1016/j.msec.2014.05.017 | 5517 | ceramic | HAP | water | 100 | 0.0 | 0 | 28.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 50.39 | 0.0 | 2.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mueller, B., Koch, D., Lutz, R., Schlegel, K. A., Treccani, L., & Rezwan, K. (2014). A novel one-pot process for near-net-shape fabrication of open-porous resorbable hydroxyapatite/protein composites and in vivo assessment. Materials Science and Engineering: C, 42, 137-145. | 2014 | 402 | 10.1016/j.msec.2014.05.017 | 5518 | ceramic | HAP | water | 100 | 0.0 | 0 | 28.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Noguchi, H., Sakane, M., Watanabe, A., Tsukanishi, T., Wadano, Y., & Yamazaki, M. (2014). A novel unidirectional porous hydroxyapatite in canines. Bioinspired, Biomimetic and Nanobiomaterials, 3(4), 228-234. | 2014 | 436 | 10.1680/bbn.14.00005 | 4034 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pulkin, M., Koch, D., & Grathwohl, G. (2011). Silica effect on porous calcium phosphate ceramics from the freeze gelation route. International Journal of Applied Ceramic Technology, 8(6), 1414-1424. | 2011 | 501 | 10.1111/j.1744-7402.2010.02603.x | 4669 | ceramic | HAP | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 123.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 76.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pulkin, M., Koch, D., & Grathwohl, G. (2011). Silica effect on porous calcium phosphate ceramics from the freeze gelation route. International Journal of Applied Ceramic Technology, 8(6), 1414-1424. | 2011 | 501 | 10.1111/j.1744-7402.2010.02603.x | 4670 | ceramic | HAP | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 123.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pulkin, M., Koch, D., & Grathwohl, G. (2011). Silica effect on porous calcium phosphate ceramics from the freeze gelation route. International Journal of Applied Ceramic Technology, 8(6), 1414-1424. | 2011 | 501 | 10.1111/j.1744-7402.2010.02603.x | 4671 | ceramic | HAP | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 123.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 72.0 | 0.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pulkin, M., Koch, D., & Grathwohl, G. (2011). Silica effect on porous calcium phosphate ceramics from the freeze gelation route. International Journal of Applied Ceramic Technology, 8(6), 1414-1424. | 2011 | 501 | 10.1111/j.1744-7402.2010.02603.x | 4672 | ceramic | HAP | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 123.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 0.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pulkin, M., Koch, D., & Grathwohl, G. (2011). Silica effect on porous calcium phosphate ceramics from the freeze gelation route. International Journal of Applied Ceramic Technology, 8(6), 1414-1424. | 2011 | 501 | 10.1111/j.1744-7402.2010.02603.x | 4673 | ceramic | HAP | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 123.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 0.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pulkin, M., Koch, D., & Grathwohl, G. (2011). Silica effect on porous calcium phosphate ceramics from the freeze gelation route. International Journal of Applied Ceramic Technology, 8(6), 1414-1424. | 2011 | 501 | 10.1111/j.1744-7402.2010.02603.x | 4674 | ceramic | HAP | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 123.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 32.0 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Rahaman, M. N., & Fu, Q. (2008). Manipulation of porous bioceramic microstructures by freezing of suspensions containing binary mixtures of solvents. Journal of the American Ceramic Society, 91(12), 4137-4140. | 2008 | 514 | 10.1111/j.1551-2916.2008.02795.x | 4209 | ceramic | HAP | water | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Rahaman, M. N., & Fu, Q. (2008). Manipulation of porous bioceramic microstructures by freezing of suspensions containing binary mixtures of solvents. Journal of the American Ceramic Society, 91(12), 4137-4140. | 2008 | 514 | 10.1111/j.1551-2916.2008.02795.x | 4210 | ceramic | HAP | water | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 45.0 | 0.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Rahaman, M. N., & Fu, Q. (2008). Manipulation of porous bioceramic microstructures by freezing of suspensions containing binary mixtures of solvents. Journal of the American Ceramic Society, 91(12), 4137-4140. | 2008 | 514 | 10.1111/j.1551-2916.2008.02795.x | 4211 | ceramic | HAP | water | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 68.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Rahaman, M. N., & Fu, Q. (2008). Manipulation of porous bioceramic microstructures by freezing of suspensions containing binary mixtures of solvents. Journal of the American Ceramic Society, 91(12), 4137-4140. | 2008 | 514 | 10.1111/j.1551-2916.2008.02795.x | 4212 | ceramic | HAP | water | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 65.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Rahaman, M. N., & Fu, Q. (2008). Manipulation of porous bioceramic microstructures by freezing of suspensions containing binary mixtures of solvents. Journal of the American Ceramic Society, 91(12), 4137-4140. | 2008 | 514 | 10.1111/j.1551-2916.2008.02795.x | 4213 | ceramic | HAP | water | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 63.0 | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Rahaman, M. N., & Fu, Q. (2008). Manipulation of porous bioceramic microstructures by freezing of suspensions containing binary mixtures of solvents. Journal of the American Ceramic Society, 91(12), 4137-4140. | 2008 | 514 | 10.1111/j.1551-2916.2008.02795.x | 4214 | ceramic | HAP | water | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Rahaman, M. N., & Fu, Q. (2008). Manipulation of porous bioceramic microstructures by freezing of suspensions containing binary mixtures of solvents. Journal of the American Ceramic Society, 91(12), 4137-4140. | 2008 | 514 | 10.1111/j.1551-2916.2008.02795.x | 4215 | ceramic | HAP | water | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | columnar | sintered | 68.0 | 0.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Rahaman, M. N., & Fu, Q. (2008). Manipulation of porous bioceramic microstructures by freezing of suspensions containing binary mixtures of solvents. Journal of the American Ceramic Society, 91(12), 4137-4140. | 2008 | 514 | 10.1111/j.1551-2916.2008.02795.x | 4216 | ceramic | HAP | water | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | powder | 0.5 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | columnar | sintered | 67.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Soon, Y. M., Shin, K. H., Koh, Y. H., Lee, J. H., Choi, W. Y., & Kim, H. E. (2011). Fabrication and compressive strength of porous hydroxyapatite scaffolds with a functionally graded core/shell structure. Journal of the European Ceramic Society, 31(1), 13-18. | 2011 | 589 | 10.1016/j.jeurceramsoc.2010.09.008 | 2869 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | 0 | 0.0 | 0 | 2 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 11.0 | 0.0 | 0.0 |
Soon, Y. M., Shin, K. H., Koh, Y. H., Lee, J. H., Choi, W. Y., & Kim, H. E. (2011). Fabrication and compressive strength of porous hydroxyapatite scaffolds with a functionally graded core/shell structure. Journal of the European Ceramic Society, 31(1), 13-18. | 2011 | 589 | 10.1016/j.jeurceramsoc.2010.09.008 | 2870 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 25.0 | 18.0 | 100 | 0 | 0.0 | 0 | 2 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 17.0 | 0.0 | 0.0 |
Soon, Y. M., Shin, K. H., Koh, Y. H., Lee, J. H., Choi, W. Y., & Kim, H. E. (2011). Fabrication and compressive strength of porous hydroxyapatite scaffolds with a functionally graded core/shell structure. Journal of the European Ceramic Society, 31(1), 13-18. | 2011 | 589 | 10.1016/j.jeurceramsoc.2010.09.008 | 2871 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 30.0 | 18.0 | 100 | 0 | 0.0 | 0 | 2 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 48.0 | 0.0 | 0.0 | 0.0 | 0.0 | 24.0 | 0.0 | 0.0 |
Soon, Y. M., Shin, K. H., Koh, Y. H., Lee, J. H., Choi, W. Y., & Kim, H. E. (2011). Fabrication and compressive strength of porous hydroxyapatite scaffolds with a functionally graded core/shell structure. Journal of the European Ceramic Society, 31(1), 13-18. | 2011 | 589 | 10.1016/j.jeurceramsoc.2010.09.008 | 2872 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 36.0 | 18.0 | 100 | 0 | 0.0 | 0 | 2 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 38.0 | 0.0 | 0.0 | 0.0 | 0.0 | 31.0 | 0.0 | 0.0 |
Suetsugu, Y., Hotta, Y., Iwasashi, M., Sakane, M., Kikuchi, M., Ikoma, T., ... & Tanaka, M. (2007). Structural and tissue reaction properties of novel hydroxyapatite ceramics with unidirectional pores. In Key Engineering Materials (Vol. 330, pp. 1003-1006). Trans Tech Publications. | 2007 | 598 | 10.4028/www.scientific.net/KEM.330-332.1003 | 2882 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 100 | 0 | 0.1 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 7.5 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 50.0 | 0.0 | 0.0 | 10.9 | 0.0 | 0.0 |
Suetsugu, Y., Hotta, Y., Iwasashi, M., Sakane, M., Kikuchi, M., Ikoma, T., ... & Tanaka, M. (2007). Structural and tissue reaction properties of novel hydroxyapatite ceramics with unidirectional pores. In Key Engineering Materials (Vol. 330, pp. 1003-1006). Trans Tech Publications. | 2007 | 598 | 10.4028/www.scientific.net/KEM.330-332.1003 | 2883 | ceramic | HAP | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 100 | 0 | 0.1 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 50.0 | 0.0 | 0.0 | 7.9 | 0.0 | 0.0 |
Swain, S. K., & Sarkar, D. (2014). Fabrication, bioactivity, in vitro cytotoxicity and cell viability of cryo-treated nanohydroxyapatite?gelatin?polyvinyl alcohol macroporous scaffold. Journal of Asian Ceramic Societies, 2(3), 241-247. | 2014 | 601 | 10.1016/j.jascer.2014.05.003 | 2884 | ceramic | HAP | water | 100 | 0.0 | 0 | 11.0 | 18.0 | 100 | spherical | 0.0 | 15 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 84.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | 0.0 | 0.0 |
Swain, S. K., & Sarkar, D. (2014). Fabrication, bioactivity, in vitro cytotoxicity and cell viability of cryo-treated nanohydroxyapatite?gelatin?polyvinyl alcohol macroporous scaffold. Journal of Asian Ceramic Societies, 2(3), 241-247. | 2014 | 601 | 10.1016/j.jascer.2014.05.003 | 2885 | ceramic | HAP | water | 100 | 0.0 | 0 | 16.0 | 18.0 | 100 | spherical | 0.0 | 15 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 80.0 | 0.0 | 100.0 | 0.0 | 0.0 | 2.1 | 0.0 | 0.0 |
Swain, S. K., & Sarkar, D. (2014). Fabrication, bioactivity, in vitro cytotoxicity and cell viability of cryo-treated nanohydroxyapatite?gelatin?polyvinyl alcohol macroporous scaffold. Journal of Asian Ceramic Societies, 2(3), 241-247. | 2014 | 601 | 10.1016/j.jascer.2014.05.003 | 2886 | ceramic | HAP | water | 100 | 0.0 | 0 | 22.0 | 18.0 | 100 | spherical | 0.0 | 15 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.3 | 0.0 | 0.0 |
Swain, S. K., & Sarkar, D. (2014). Fabrication, bioactivity, in vitro cytotoxicity and cell viability of cryo-treated nanohydroxyapatite?gelatin?polyvinyl alcohol macroporous scaffold. Journal of Asian Ceramic Societies, 2(3), 241-247. | 2014 | 601 | 10.1016/j.jascer.2014.05.003 | 2887 | ceramic | HAP | water | 100 | 0.0 | 0 | 11.0 | 18.0 | 100 | rod | 0.0 | 15 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 83.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.3 | 0.0 | 0.0 |
Swain, S. K., & Sarkar, D. (2014). Fabrication, bioactivity, in vitro cytotoxicity and cell viability of cryo-treated nanohydroxyapatite?gelatin?polyvinyl alcohol macroporous scaffold. Journal of Asian Ceramic Societies, 2(3), 241-247. | 2014 | 601 | 10.1016/j.jascer.2014.05.003 | 2888 | ceramic | HAP | water | 100 | 0.0 | 0 | 16.0 | 18.0 | 100 | rod | 0.0 | 15 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 79.0 | 0.0 | 98.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 |
Swain, S. K., & Sarkar, D. (2014). Fabrication, bioactivity, in vitro cytotoxicity and cell viability of cryo-treated nanohydroxyapatite?gelatin?polyvinyl alcohol macroporous scaffold. Journal of Asian Ceramic Societies, 2(3), 241-247. | 2014 | 601 | 10.1016/j.jascer.2014.05.003 | 2889 | ceramic | HAP | water | 100 | 0.0 | 0 | 22.0 | 18.0 | 100 | rod | 0.0 | 15 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 68.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.65 | 0.0 | 0.0 |
Swain, S. K., & Sarkar, D. (2014). Fabrication, bioactivity, in vitro cytotoxicity and cell viability of cryo-treated nanohydroxyapatite?gelatin?polyvinyl alcohol macroporous scaffold. Journal of Asian Ceramic Societies, 2(3), 241-247. | 2014 | 601 | 10.1016/j.jascer.2014.05.003 | 2890 | ceramic | HAP | water | 100 | 0.0 | 0 | 11.0 | 18.0 | 100 | fiber | 0.0 | 15 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 86.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.35 | 0.0 | 0.0 |
Swain, S. K., & Sarkar, D. (2014). Fabrication, bioactivity, in vitro cytotoxicity and cell viability of cryo-treated nanohydroxyapatite?gelatin?polyvinyl alcohol macroporous scaffold. Journal of Asian Ceramic Societies, 2(3), 241-247. | 2014 | 601 | 10.1016/j.jascer.2014.05.003 | 2891 | ceramic | HAP | water | 100 | 0.0 | 0 | 16.0 | 18.0 | 100 | fiber | 0.0 | 15 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 80.0 | 0.0 | 98.0 | 0.0 | 0.0 | 1.8 | 0.0 | 0.0 |
Swain, S. K., & Sarkar, D. (2014). Fabrication, bioactivity, in vitro cytotoxicity and cell viability of cryo-treated nanohydroxyapatite?gelatin?polyvinyl alcohol macroporous scaffold. Journal of Asian Ceramic Societies, 2(3), 241-247. | 2014 | 601 | 10.1016/j.jascer.2014.05.003 | 2892 | ceramic | HAP | water | 100 | 0.0 | 0 | 22.0 | 18.0 | 100 | fiber | 0.0 | 15 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 68.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.05 | 0.0 | 0.0 |
TANG, Y., ZHAO, K., QIN, Y., & WEI, J. (2011). Solvent Sublimation Behavior in Freeze Drying Method for Lamellar Porous Hydroxyapatite Scaffold. Journal of the Chinese Ceramic Society, 39(5), 825-828. | 2011 | 616 | 0 | 2951 | ceramic | HAP | water | 100 | 0.0 | 0 | 40.0 | 18.0 | 100 | 0 | 0.75 | 0 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 596.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
TANG, Y., ZHAO, K., QIN, Y., & WEI, J. (2011). Solvent Sublimation Behavior in Freeze Drying Method for Lamellar Porous Hydroxyapatite Scaffold. Journal of the Chinese Ceramic Society, 39(5), 825-828. | 2011 | 616 | 0 | 2952 | ceramic | HAP | water | 100 | 0.0 | 0 | 40.0 | 18.0 | 100 | 0 | 0.75 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 528.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
TANG, Y., ZHAO, K., QIN, Y., & WEI, J. (2011). Solvent Sublimation Behavior in Freeze Drying Method for Lamellar Porous Hydroxyapatite Scaffold. Journal of the Chinese Ceramic Society, 39(5), 825-828. | 2011 | 616 | 0 | 2953 | ceramic | HAP | water | 100 | 0.0 | 0 | 40.0 | 18.0 | 100 | 0 | 0.75 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 413.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
TANG, Y., ZHAO, K., QIN, Y., & WEI, J. (2011). Solvent Sublimation Behavior in Freeze Drying Method for Lamellar Porous Hydroxyapatite Scaffold. Journal of the Chinese Ceramic Society, 39(5), 825-828. | 2011 | 616 | 0 | 2954 | ceramic | HAP | water | 100 | 0.0 | 0 | 40.0 | 18.0 | 100 | 0 | 0.75 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 366.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
TANG, Y., ZHAO, K., QIN, Y., & WEI, J. (2011). Solvent Sublimation Behavior in Freeze Drying Method for Lamellar Porous Hydroxyapatite Scaffold. Journal of the Chinese Ceramic Society, 39(5), 825-828. | 2011 | 616 | 0 | 2955 | ceramic | HAP | water | 100 | 0.0 | 0 | 40.0 | 18.0 | 100 | 0 | 0.75 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 302.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, Y., Zhao, K., Hu, L., & Wu, Z. (2013). Two-step freeze casting fabrication of hydroxyapatite porous scaffolds with bionic bone graded structure. Ceramics International, 39(8), 9703-9707. | 2013 | 620 | 10.1016/j.ceramint.2013.04.038 | 2972 | ceramic | HAP | water | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | 0 | 0.75 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 |
Tang, Y., Zhao, K., Hu, L., & Wu, Z. (2013). Two-step freeze casting fabrication of hydroxyapatite porous scaffolds with bionic bone graded structure. Ceramics International, 39(8), 9703-9707. | 2013 | 620 | 10.1016/j.ceramint.2013.04.038 | 2973 | ceramic | HAP | water | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | 0 | 0.75 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 52.5 | 0.0 | 0.0 | 0.0 | 0.0 | 17.5 | 0.0 | 0.0 |
Tang, Y., Zhao, K., Hu, L., & Wu, Z. (2013). Two-step freeze casting fabrication of hydroxyapatite porous scaffolds with bionic bone graded structure. Ceramics International, 39(8), 9703-9707. | 2013 | 620 | 10.1016/j.ceramint.2013.04.038 | 2974 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | 0 | 0.75 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 |
Tang, Y., Zhao, K., Hu, L., & Wu, Z. (2013). Two-step freeze casting fabrication of hydroxyapatite porous scaffolds with bionic bone graded structure. Ceramics International, 39(8), 9703-9707. | 2013 | 620 | 10.1016/j.ceramint.2013.04.038 | 2975 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | 0 | 0.75 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 45.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 |
Tang, Y., Zhao, K., Hu, L., & Wu, Z. (2013). Two-step freeze casting fabrication of hydroxyapatite porous scaffolds with bionic bone graded structure. Ceramics International, 39(8), 9703-9707. | 2013 | 620 | 10.1016/j.ceramint.2013.04.038 | 2976 | ceramic | HAP | water | 100 | 0.0 | 0 | 30.0 | 18.0 | 100 | 0 | 0.75 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 47.5 | 0.0 | 0.0 | 0.0 | 0.0 | 16.0 | 0.0 | 0.0 |
Tang, Y., Zhao, K., Hu, L., & Wu, Z. (2013). Two-step freeze casting fabrication of hydroxyapatite porous scaffolds with bionic bone graded structure. Ceramics International, 39(8), 9703-9707. | 2013 | 620 | 10.1016/j.ceramint.2013.04.038 | 2977 | ceramic | HAP | water | 100 | 0.0 | 0 | 30.0 | 18.0 | 100 | 0 | 0.75 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 42.5 | 0.0 | 0.0 | 0.0 | 0.0 | 22.5 | 0.0 | 0.0 |
Tang, Y., Zhao, K., Hu, L., & Wu, Z. (2013). Two-step freeze casting fabrication of hydroxyapatite porous scaffolds with bionic bone graded structure. Ceramics International, 39(8), 9703-9707. | 2013 | 620 | 10.1016/j.ceramint.2013.04.038 | 2978 | ceramic | HAP | water | 100 | 0.0 | 0 | 45.0 | 18.0 | 100 | 0 | 0.75 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 37.5 | 0.0 | 0.0 | 0.0 | 0.0 | 28.0 | 0.0 | 0.0 |
Yang, J. H., Kim, K. H., You, C. K., Rautray, T. R., & Kwon, T. Y. (2011). Synthesis of spherical hydroxyapatite granules with interconnected pore channels using camphene emulsion. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 99(1), 150-157. | 2011 | 705 | 10.1002/jbm.b.31882 | 2611 | ceramic | HAP | water | 100 | 0.0 | 0 | 23.0 | 18.0 | 100 | 0 | 0.3 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 18.47 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, J. H., Kim, K. H., You, C. K., Rautray, T. R., & Kwon, T. Y. (2011). Synthesis of spherical hydroxyapatite granules with interconnected pore channels using camphene emulsion. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 99(1), 150-157. | 2011 | 705 | 10.1002/jbm.b.31882 | 2612 | ceramic | HAP | water | 94 | camphene | 5 | 21.0 | 18.0 | 100 | 0 | 0.3 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 23.44 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, J. H., Kim, K. H., You, C. K., Rautray, T. R., & Kwon, T. Y. (2011). Synthesis of spherical hydroxyapatite granules with interconnected pore channels using camphene emulsion. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 99(1), 150-157. | 2011 | 705 | 10.1002/jbm.b.31882 | 2613 | ceramic | HAP | water | 85 | camphene | 15 | 18.0 | 18.0 | 100 | 0 | 0.3 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 38.29 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, J. H., Kim, K. H., You, C. K., Rautray, T. R., & Kwon, T. Y. (2011). Synthesis of spherical hydroxyapatite granules with interconnected pore channels using camphene emulsion. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 99(1), 150-157. | 2011 | 705 | 10.1002/jbm.b.31882 | 2614 | ceramic | HAP | water | 75 | camphene | 25 | 16.0 | 18.0 | 100 | 0 | 0.3 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 43.66 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, J. H., Kim, K. H., You, C. K., Rautray, T. R., & Kwon, T. Y. (2011). Synthesis of spherical hydroxyapatite granules with interconnected pore channels using camphene emulsion. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 99(1), 150-157. | 2011 | 705 | 10.1002/jbm.b.31882 | 2615 | ceramic | HAP | water | 64 | camphene | 34 | 13.0 | 18.0 | 100 | 0 | 0.3 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 50.06 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, J. H., Kim, K. H., You, C. K., Rautray, T. R., & Kwon, T. Y. (2011). Synthesis of spherical hydroxyapatite granules with interconnected pore channels using camphene emulsion. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 99(1), 150-157. | 2011 | 705 | 10.1002/jbm.b.31882 | 2616 | ceramic | HAP | water | 55 | camphene | 44 | 13.0 | 18.0 | 100 | 0 | 0.3 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 58.49 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2651 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 5.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2652 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 7.5 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2653 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2654 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2655 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 5.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 370.0 | 320.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2656 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 7.5 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 375.0 | 310.0 | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2657 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 340.0 | 240.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2658 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 315.0 | 210.0 | 105.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2659 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 5.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2660 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 7.5 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2661 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2662 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2663 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 5.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 91.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2664 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 5.0 | 18.0 | 99 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 90.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2665 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 5.0 | 18.0 | 97 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 86.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2666 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 5.0 | 18.0 | 94 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 85.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2667 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 7.5 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 86.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2668 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 7.5 | 18.0 | 99 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 85.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2669 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 7.5 | 18.0 | 97 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 84.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.65 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2670 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 7.5 | 18.0 | 94 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 79.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2671 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2672 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 99 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.5 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2673 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 97 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 72.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.5 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2674 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 94 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 68.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.5 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2675 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.8 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2676 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 15.0 | 18.0 | 99 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2677 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 15.0 | 18.0 | 97 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2678 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 15.0 | 18.0 | 94 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 58.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.5 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2679 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 5.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 90.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2680 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 5.0 | 18.0 | 99 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 89.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2681 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 5.0 | 18.0 | 97 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 88.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2682 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 5.0 | 18.0 | 94 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 84.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2683 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 7.5 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 85.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2684 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 7.5 | 18.0 | 99 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 85.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2685 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 7.5 | 18.0 | 97 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 83.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2686 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 7.5 | 18.0 | 94 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2687 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.5 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2688 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 99 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 74.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2689 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 97 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2690 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 94 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 68.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.5 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2691 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 64.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.5 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2692 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 15.0 | 18.0 | 99 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 63.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2693 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 15.0 | 18.0 | 97 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.5 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2694 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 15.0 | 18.0 | 94 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 54.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.75 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2695 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 5.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 90.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2696 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 5.0 | 18.0 | 99 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 88.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.35 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2697 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 5.0 | 18.0 | 97 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 85.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2698 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 5.0 | 18.0 | 94 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 84.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2699 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 7.5 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 85.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2700 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 7.5 | 18.0 | 99 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 84.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2701 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 7.5 | 18.0 | 97 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2702 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 7.5 | 18.0 | 94 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 77.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2703 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 74.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2704 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 99 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 73.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2705 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 97 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.2 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2706 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 94 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 64.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.8 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2707 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 62.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.5 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2708 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 15.0 | 18.0 | 99 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 61.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2709 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 15.0 | 18.0 | 97 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.0 | 0.0 | 0.0 |
Yang, T. Y., Lee, J. M., Yoon, S. Y., & Park, H. C. (2010). Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique. Journal of Materials Science: Materials in Medicine, 21(5), 1495-1502. | 2010 | 714 | 10.1007/s10856-010-4000-1 | 2710 | ceramic | HAP | TBA | 100 | 0.0 | 0 | 15.0 | 18.0 | 94 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.5 | 0.0 | 0.0 |
Yook, S. W., Jung, H. D., Park, C. H., Shin, K. H., Koh, Y. H., Estrin, Y., & Kim, H. E. (2012). Reverse freeze casting: a new method for fabricating highly porous titanium scaffolds with aligned large pores. Acta biomaterialia, 8(6), 2401-2410. | 2012 | 721 | 10.1016/j.actbio.2012.03.020 | 1236 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | 0 | 0.5 | 0 | 0 | 0 | 276.0 | 0.0 | 0.0 | reverse | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 350.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yook, S. W., Kim, H. E., Yoon, B. H., Soon, Y. M., & Koh, Y. H. (2009). Improvement of compressive strength of porous hydroxyapatite scaffolds by adding polystyrene to camphene-based slurries. Materials letters, 63(11), 955-958. | 2009 | 723 | 10.1016/j.matlet.2009.01.080 | 1242 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | 0 | 0.0 | 0 | 5 | 0 | 307.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 275.0 | 0.0 | 0.0 | 1.2 | 0.0 | 0.0 |
Yook, S. W., Kim, H. E., Yoon, B. H., Soon, Y. M., & Koh, Y. H. (2009). Improvement of compressive strength of porous hydroxyapatite scaffolds by adding polystyrene to camphene-based slurries. Materials letters, 63(11), 955-958. | 2009 | 723 | 10.1016/j.matlet.2009.01.080 | 1243 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | 0 | 0.0 | 10 | 5 | 0 | 307.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 225.0 | 0.0 | 0.0 | 1.5 | 0.0 | 0.0 |
Yook, S. W., Kim, H. E., Yoon, B. H., Soon, Y. M., & Koh, Y. H. (2009). Improvement of compressive strength of porous hydroxyapatite scaffolds by adding polystyrene to camphene-based slurries. Materials letters, 63(11), 955-958. | 2009 | 723 | 10.1016/j.matlet.2009.01.080 | 1244 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | 0 | 0.0 | 20 | 5 | 0 | 307.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 175.0 | 0.0 | 0.0 | 2.3 | 0.0 | 0.0 |
Yook, S. W., Kim, H. E., Yoon, B. H., Soon, Y. M., & Koh, Y. H. (2009). Improvement of compressive strength of porous hydroxyapatite scaffolds by adding polystyrene to camphene-based slurries. Materials letters, 63(11), 955-958. | 2009 | 723 | 10.1016/j.matlet.2009.01.080 | 1245 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | 0 | 0.0 | 30 | 5 | 0 | 307.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 150.0 | 0.0 | 0.0 | 1.6 | 0.0 | 0.0 |
Yoon, B. H., Koh, Y. H., Park, C. S., & Kim, H. E. (2007). Generation of Large Pore Channels for Bone Tissue Engineering Using Camphene?Based Freeze Casting. Journal of the American Ceramic Society, 90(6), 1744-1752. | 2007 | 725 | 10.1111/j.1551-2916.2007.01670.x | 1249 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | 0 | 0.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 76.0 | 0.0 | 125.0 | 0.0 | 0.0 | 2.5 | 0.0 | 0.0 |
Yoon, B. H., Koh, Y. H., Park, C. S., & Kim, H. E. (2007). Generation of Large Pore Channels for Bone Tissue Engineering Using Camphene?Based Freeze Casting. Journal of the American Ceramic Society, 90(6), 1744-1752. | 2007 | 725 | 10.1111/j.1551-2916.2007.01670.x | 1250 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | 0 | 0.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 75.0 | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 |
Yoon, B. H., Koh, Y. H., Park, C. S., & Kim, H. E. (2007). Generation of Large Pore Channels for Bone Tissue Engineering Using Camphene?Based Freeze Casting. Journal of the American Ceramic Society, 90(6), 1744-1752. | 2007 | 725 | 10.1111/j.1551-2916.2007.01670.x | 1251 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | 0 | 0.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 55.0 | 0.0 | 59.0 | 0.0 | 0.0 | 16.7 | 0.0 | 0.0 |
Yoon, B. H., Park, C. S., Kim, H. E., & Koh, Y. H. (2008). In-situ fabrication of porous hydroxyapatite (HA) scaffolds with dense shells by freezing HA/camphene slurry. Materials Letters, 62(10), 1700-1703. | 2008 | 729 | 10.1016/j.matlet.2007.09.063 | 2085 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.0 | 0 | 5 | 0 | 308.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 20 | dendritic | sintered | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.9 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Abbasabadi, M. (2013). The effect of sintering temperature on the microstructural and mechanical characteristics of hydroxyapatite macroporous scaffolds prepared via freeze-casting. In Key Engineering Materials (Vol. 529, pp. 133-137). Trans Tech Publications. | 2013 | 749 | 10.4028/www.scientific.net/KEM.529-530.133 | 2131 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 0.0 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 13 | 12 | lamellar | sintered | 82.5 | 0.0 | 0.0 | 0.0 | 0.0 | 1.8 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Abbasabadi, M. (2013). The effect of sintering temperature on the microstructural and mechanical characteristics of hydroxyapatite macroporous scaffolds prepared via freeze-casting. In Key Engineering Materials (Vol. 529, pp. 133-137). Trans Tech Publications. | 2013 | 749 | 10.4028/www.scientific.net/KEM.529-530.133 | 2132 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 0.0 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 14 | 12 | lamellar | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Abbasabadi, M. (2013). The effect of sintering temperature on the microstructural and mechanical characteristics of hydroxyapatite macroporous scaffolds prepared via freeze-casting. In Key Engineering Materials (Vol. 529, pp. 133-137). Trans Tech Publications. | 2013 | 749 | 10.4028/www.scientific.net/KEM.529-530.133 | 2133 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 0.0 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 14 | 13 | lamellar | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.7 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Abbasabadi, M. (2013). The effect of sintering temperature on the microstructural and mechanical characteristics of hydroxyapatite macroporous scaffolds prepared via freeze-casting. In Key Engineering Materials (Vol. 529, pp. 133-137). Trans Tech Publications. | 2013 | 749 | 10.4028/www.scientific.net/KEM.529-530.133 | 2134 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 0.0 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 18 | 17 | lamellar | sintered | 77.5 | 0.0 | 0.0 | 0.0 | 0.0 | 4.7 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Abbasabadi, M. (2013). The effect of sintering temperature on the microstructural and mechanical characteristics of hydroxyapatite macroporous scaffolds prepared via freeze-casting. In Key Engineering Materials (Vol. 529, pp. 133-137). Trans Tech Publications. | 2013 | 749 | 10.4028/www.scientific.net/KEM.529-530.133 | 2135 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 0.0 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 21 | 20 | lamellar | sintered | 75.5 | 0.0 | 0.0 | 0.0 | 0.0 | 7.8 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2136 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 3.9 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 30 | 31 | lamellar | sintered | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.5 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2137 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 31 | 36 | lamellar | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.0 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2138 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 3.9 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 31 | 37 | lamellar | sintered | 62.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.75 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2139 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 31 | 38 | lamellar | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2140 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 3.9 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 34 | 40 | lamellar | sintered | 56.0 | 0.0 | 0.0 | 0.0 | 0.0 | 11.0 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2141 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 11 | 12 | lamellar | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2142 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 3.9 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 12 | 14 | lamellar | sintered | 81.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.25 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2143 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 14 | 15 | lamellar | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.5 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2144 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 3.9 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 18 | 18 | lamellar | sintered | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.25 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2145 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 20 | 21 | lamellar | sintered | 77.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2146 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 3.9 | 3 | 3 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 34 | lamellar | sintered | 61.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9.0 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2147 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 23 | lamellar | sintered | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.2 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2148 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 3.9 | 3 | 3 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 34 | lamellar | sintered | 61.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9.25 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2149 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 23 | lamellar | sintered | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2150 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 3.9 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 34 | lamellar | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9.25 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2151 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 23 | lamellar | sintered | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.75 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2152 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 3.9 | 3 | 3 | 0 | 0.0 | 11.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 34 | lamellar | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2153 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 11.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 23 | lamellar | sintered | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2154 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 3.9 | 3 | 3 | 0 | 0.0 | 14.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 34 | lamellar | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 16.0 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2155 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 14.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 23 | lamellar | sintered | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.75 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2156 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 3.9 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2157 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2158 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 3.9 | 3 | 3 | 0 | 0.0 | 14.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2159 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 14.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2160 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 3.9 | 3 | 3 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2161 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2162 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 3.9 | 3 | 3 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2163 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2164 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 3.9 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2165 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 8.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2166 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 3.9 | 3 | 3 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2167 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 11.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2168 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 3.9 | 3 | 3 | 0 | 0.0 | 14.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Hafezi, M. (2014). The Effect of Particle Size on the Mechanical and Microstructural Properties of Freeze?Casted Macroporous Hydroxyapatite Scaffolds. International Journal of Applied Ceramic Technology, 11(1), 12-21. | 2014 | 750 | 10.1111/ijac.12031 | 2169 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 14.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
??. (2009). Effects of gelatin addition on the microstructure of freeze-cast porous hydroxyapatite cerarmics. | 2009 | 778 | 10.1016/j.ceramint.2008.11.022 | 2325 | ceramic | HAP | water | 100 | 0.0 | 0 | 23.0 | 18.0 | 100 | 0 | 0.6 | 0 | 1 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 21 | lamellar | sintered | 46.19 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
??. (2009). Effects of gelatin addition on the microstructure of freeze-cast porous hydroxyapatite cerarmics. | 2009 | 778 | 10.1016/j.ceramint.2008.11.022 | 2326 | ceramic | HAP | water | 100 | 0.0 | 0 | 23.0 | 18.0 | 100 | 0 | 0.6 | 1 | 1 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 25 | lamellar | sintered | 42.23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
??. (2009). Effects of gelatin addition on the microstructure of freeze-cast porous hydroxyapatite cerarmics. | 2009 | 778 | 10.1016/j.ceramint.2008.11.022 | 2327 | ceramic | HAP | water | 100 | 0.0 | 0 | 23.0 | 18.0 | 100 | 0 | 0.6 | 5 | 1 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 27 | lamellar | sintered | 46.65 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zhou, K., Bao, Y., & Zhang, D. (2013). Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Materials Science and Engineering: C, 33(1), 340-346. | 2013 | 780 | 10.1016/j.msec.2012.08.048 | 2331 | ceramic | HAP | water | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zhou, K., Bao, Y., & Zhang, D. (2013). Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Materials Science and Engineering: C, 33(1), 340-346. | 2013 | 780 | 10.1016/j.msec.2012.08.048 | 2332 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zhou, K., Bao, Y., & Zhang, D. (2013). Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Materials Science and Engineering: C, 33(1), 340-346. | 2013 | 780 | 10.1016/j.msec.2012.08.048 | 2333 | ceramic | HAP | water | 100 | 0.0 | 0 | 30.0 | 18.0 | 100 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zhou, K., Bao, Y., & Zhang, D. (2013). Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Materials Science and Engineering: C, 33(1), 340-346. | 2013 | 780 | 10.1016/j.msec.2012.08.048 | 2334 | ceramic | HAP | water | 100 | 0.0 | 0 | 40.0 | 18.0 | 100 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zhou, K., Bao, Y., & Zhang, D. (2013). Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Materials Science and Engineering: C, 33(1), 340-346. | 2013 | 780 | 10.1016/j.msec.2012.08.048 | 2335 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zhou, K., Bao, Y., & Zhang, D. (2013). Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Materials Science and Engineering: C, 33(1), 340-346. | 2013 | 780 | 10.1016/j.msec.2012.08.048 | 2336 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zhou, K., Bao, Y., & Zhang, D. (2013). Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Materials Science and Engineering: C, 33(1), 340-346. | 2013 | 780 | 10.1016/j.msec.2012.08.048 | 2337 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zhou, K., Bao, Y., & Zhang, D. (2013). Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Materials Science and Engineering: C, 33(1), 340-346. | 2013 | 780 | 10.1016/j.msec.2012.08.048 | 2338 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zhou, K., Bao, Y., & Zhang, D. (2013). Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Materials Science and Engineering: C, 33(1), 340-346. | 2013 | 780 | 10.1016/j.msec.2012.08.048 | 2339 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | 0 | 1.0 | 0 | 2 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zhou, K., Bao, Y., & Zhang, D. (2013). Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Materials Science and Engineering: C, 33(1), 340-346. | 2013 | 780 | 10.1016/j.msec.2012.08.048 | 2340 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | 0 | 1.0 | 0 | 3 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zhou, K., Bao, Y., & Zhang, D. (2013). Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Materials Science and Engineering: C, 33(1), 340-346. | 2013 | 780 | 10.1016/j.msec.2012.08.048 | 2341 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | 0 | 1.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zhou, K., Bao, Y., & Zhang, D. (2013). Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Materials Science and Engineering: C, 33(1), 340-346. | 2013 | 780 | 10.1016/j.msec.2012.08.048 | 2342 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | 0 | 1.0 | 0 | 7 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zhou, K., Bao, Y., & Zhang, D. (2013). Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Materials Science and Engineering: C, 33(1), 340-346. | 2013 | 780 | 10.1016/j.msec.2012.08.048 | 2343 | ceramic | HAP | water | 100 | 0.0 | 0 | 1.0 | 18.0 | 100 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zhou, K., Bao, Y., & Zhang, D. (2013). Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Materials Science and Engineering: C, 33(1), 340-346. | 2013 | 780 | 10.1016/j.msec.2012.08.048 | 2344 | ceramic | HAP | water | 100 | 0.0 | 0 | 1.0 | 18.0 | 100 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zhou, K., Bao, Y., & Zhang, D. (2013). Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Materials Science and Engineering: C, 33(1), 340-346. | 2013 | 780 | 10.1016/j.msec.2012.08.048 | 2345 | ceramic | HAP | water | 100 | 0.0 | 0 | 1.0 | 18.0 | 100 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zhou, K., Bao, Y., & Zhang, D. (2013). Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Materials Science and Engineering: C, 33(1), 340-346. | 2013 | 780 | 10.1016/j.msec.2012.08.048 | 2346 | ceramic | HAP | water | 100 | 0.0 | 0 | 1.0 | 18.0 | 100 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zhou, K., Bao, Y., & Zhang, D. (2013). Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Materials Science and Engineering: C, 33(1), 340-346. | 2013 | 780 | 10.1016/j.msec.2012.08.048 | 2347 | ceramic | HAP | water | 100 | 0.0 | 0 | 1.0 | 18.0 | 100 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zhou, K., Bao, Y., & Zhang, D. (2013). Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Materials Science and Engineering: C, 33(1), 340-346. | 2013 | 780 | 10.1016/j.msec.2012.08.048 | 2348 | ceramic | HAP | water | 100 | 0.0 | 0 | 1.0 | 18.0 | 100 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zhou, K., Bao, Y., & Zhang, D. (2013). Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Materials Science and Engineering: C, 33(1), 340-346. | 2013 | 780 | 10.1016/j.msec.2012.08.048 | 2349 | ceramic | HAP | water | 100 | 0.0 | 0 | 1.0 | 18.0 | 100 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zhou, K., Bao, Y., & Zhang, D. (2013). Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Materials Science and Engineering: C, 33(1), 340-346. | 2013 | 780 | 10.1016/j.msec.2012.08.048 | 2350 | ceramic | HAP | water | 100 | 0.0 | 0 | 1.0 | 18.0 | 100 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zhou, K., Bao, Y., & Zhang, D. (2013). Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Materials Science and Engineering: C, 33(1), 340-346. | 2013 | 780 | 10.1016/j.msec.2012.08.048 | 2351 | ceramic | HAP | water | 100 | 0.0 | 0 | 1.0 | 18.0 | 100 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zhou, K., Bao, Y., & Zhang, D. (2013). Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Materials Science and Engineering: C, 33(1), 340-346. | 2013 | 780 | 10.1016/j.msec.2012.08.048 | 2352 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 81.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 | 0.0 | 0.0 |
Zhang, Y., Zhou, K., Bao, Y., & Zhang, D. (2013). Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Materials Science and Engineering: C, 33(1), 340-346. | 2013 | 780 | 10.1016/j.msec.2012.08.048 | 2353 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 68.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.3 | 0.0 | 0.0 |
Zhang, Y., Zhou, K., Bao, Y., & Zhang, D. (2013). Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Materials Science and Engineering: C, 33(1), 340-346. | 2013 | 780 | 10.1016/j.msec.2012.08.048 | 2354 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | 0 | 1.0 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 71.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 |
Zhang, Y., Zhou, K., Bao, Y., & Zhang, D. (2013). Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Materials Science and Engineering: C, 33(1), 340-346. | 2013 | 780 | 10.1016/j.msec.2012.08.048 | 2355 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | 0 | 1.0 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 73.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.5 | 0.0 | 0.0 |
Xiaoyong, Z. Y. Z. K. Z., & Dou, Z. H. A. N. G. (2011). Porous hydroxyapatite ceramics fabricated by an ice templating process. Chinese Journal of Materials Research, 25(3), 289-294. | 2011 | 781 | 10.1016/j.scriptamat.2010.11.001 | 2356 | ceramic | HAP | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 100 | 0 | 3.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 76.3 | 0.0 | 20.0 | 0.0 | 0.0 | 1.6 | 0.0 | 0.0 |
Xiaoyong, Z. Y. Z. K. Z., & Dou, Z. H. A. N. G. (2011). Porous hydroxyapatite ceramics fabricated by an ice templating process. Chinese Journal of Materials Research, 25(3), 289-294. | 2011 | 781 | 10.1016/j.scriptamat.2010.11.001 | 2357 | ceramic | HAP | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 100 | 0 | 3.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 66.8 | 0.0 | 20.0 | 0.0 | 0.0 | 2.3 | 0.0 | 0.0 |
Xiaoyong, Z. Y. Z. K. Z., & Dou, Z. H. A. N. G. (2011). Porous hydroxyapatite ceramics fabricated by an ice templating process. Chinese Journal of Materials Research, 25(3), 289-294. | 2011 | 781 | 10.1016/j.scriptamat.2010.11.001 | 2358 | ceramic | HAP | water | 100 | 0.0 | 0 | 35.0 | 18.0 | 100 | 0 | 3.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 58.1 | 0.0 | 20.0 | 0.0 | 0.0 | 3.2 | 0.0 | 0.0 |
Xiaoyong, Z. Y. Z. K. Z., & Dou, Z. H. A. N. G. (2011). Porous hydroxyapatite ceramics fabricated by an ice templating process. Chinese Journal of Materials Research, 25(3), 289-294. | 2011 | 781 | 10.1016/j.scriptamat.2010.11.001 | 2359 | ceramic | HAP | water | 100 | 0.0 | 0 | 45.0 | 18.0 | 100 | 0 | 3.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 43.0 | 0.0 | 20.0 | 0.0 | 0.0 | 5.7 | 0.0 | 0.0 |
Zhao, K., Tang, Y. F., Qin, Y. S., & Wei, J. Q. (2011). Porous hydroxyapatite ceramics by ice templating: freezing characteristics and mechanical properties. Ceramics International, 37(2), 635-639. | 2011 | 787 | 10.1016/j.ceramint.2010.10.003 | 2370 | ceramic | HAP | water | 100 | 0.0 | 0 | 17.44 | 18.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 1.3 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 785.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhao, K., Tang, Y. F., Qin, Y. S., & Wei, J. Q. (2011). Porous hydroxyapatite ceramics by ice templating: freezing characteristics and mechanical properties. Ceramics International, 37(2), 635-639. | 2011 | 787 | 10.1016/j.ceramint.2010.10.003 | 2371 | ceramic | HAP | water | 100 | 0.0 | 0 | 17.44 | 18.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 1.7 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 645.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhao, K., Tang, Y. F., Qin, Y. S., & Wei, J. Q. (2011). Porous hydroxyapatite ceramics by ice templating: freezing characteristics and mechanical properties. Ceramics International, 37(2), 635-639. | 2011 | 787 | 10.1016/j.ceramint.2010.10.003 | 2372 | ceramic | HAP | water | 100 | 0.0 | 0 | 17.44 | 18.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 425.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhao, K., Tang, Y. F., Qin, Y. S., & Wei, J. Q. (2011). Porous hydroxyapatite ceramics by ice templating: freezing characteristics and mechanical properties. Ceramics International, 37(2), 635-639. | 2011 | 787 | 10.1016/j.ceramint.2010.10.003 | 2373 | ceramic | HAP | water | 100 | 0.0 | 0 | 17.44 | 18.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 2.4 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 355.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhao, K., Tang, Y. F., Qin, Y. S., & Wei, J. Q. (2011). Porous hydroxyapatite ceramics by ice templating: freezing characteristics and mechanical properties. Ceramics International, 37(2), 635-639. | 2011 | 787 | 10.1016/j.ceramint.2010.10.003 | 2374 | ceramic | HAP | water | 100 | 0.0 | 0 | 17.44 | 18.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 3.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 266.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhao, K., Tang, Y. F., Qin, Y. S., & Wei, J. Q. (2011). Porous hydroxyapatite ceramics by ice templating: freezing characteristics and mechanical properties. Ceramics International, 37(2), 635-639. | 2011 | 787 | 10.1016/j.ceramint.2010.10.003 | 2375 | ceramic | HAP | water | 100 | 0.0 | 0 | 17.44 | 18.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 7.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 93.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhao, K., Tang, Y. F., Qin, Y. S., & Wei, J. Q. (2011). Porous hydroxyapatite ceramics by ice templating: freezing characteristics and mechanical properties. Ceramics International, 37(2), 635-639. | 2011 | 787 | 10.1016/j.ceramint.2010.10.003 | 2376 | ceramic | HAP | water | 100 | 0.0 | 0 | 17.44 | 18.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 79.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhao, K., Tang, Y. F., Qin, Y. S., & Wei, J. Q. (2011). Porous hydroxyapatite ceramics by ice templating: freezing characteristics and mechanical properties. Ceramics International, 37(2), 635-639. | 2011 | 787 | 10.1016/j.ceramint.2010.10.003 | 2377 | ceramic | HAP | water | 100 | 0.0 | 0 | 17.44 | 18.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhao, K., Tang, Y. F., Qin, Y. S., & Wei, J. Q. (2011). Porous hydroxyapatite ceramics by ice templating: freezing characteristics and mechanical properties. Ceramics International, 37(2), 635-639. | 2011 | 787 | 10.1016/j.ceramint.2010.10.003 | 2378 | ceramic | HAP | water | 100 | 0.0 | 0 | 17.44 | 18.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhou, K., Zhang, Y., Zhang, D., Zhang, X., Li, Z., Liu, G., & Button, T. W. (2011). Porous hydroxyapatite ceramics fabricated by an ice-templating method. Scripta Materialia, 64(5), 426-429. | 2011 | 790 | 10.1016/j.scriptamat.2010.11.001 | 2383 | ceramic | HAP | water | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | amorphous | 0.25 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 86.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9 | 0.0 | 0.0 |
Zhou, K., Zhang, Y., Zhang, D., Zhang, X., Li, Z., Liu, G., & Button, T. W. (2011). Porous hydroxyapatite ceramics fabricated by an ice-templating method. Scripta Materialia, 64(5), 426-429. | 2011 | 790 | 10.1016/j.scriptamat.2010.11.001 | 2384 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | amorphous | 0.25 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.0 | 0.0 | 0.0 | 1.2 | 0.0 | 1.3 | 0.0 | 0.0 |
Zhou, K., Zhang, Y., Zhang, D., Zhang, X., Li, Z., Liu, G., & Button, T. W. (2011). Porous hydroxyapatite ceramics fabricated by an ice-templating method. Scripta Materialia, 64(5), 426-429. | 2011 | 790 | 10.1016/j.scriptamat.2010.11.001 | 2385 | ceramic | HAP | water | 100 | 0.0 | 0 | 30.0 | 18.0 | 100 | amorphous | 0.25 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 |
Zhou, K., Zhang, Y., Zhang, D., Zhang, X., Li, Z., Liu, G., & Button, T. W. (2011). Porous hydroxyapatite ceramics fabricated by an ice-templating method. Scripta Materialia, 64(5), 426-429. | 2011 | 790 | 10.1016/j.scriptamat.2010.11.001 | 2386 | ceramic | HAP | water | 100 | 0.0 | 0 | 40.0 | 18.0 | 100 | amorphous | 0.25 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 49.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.3 | 0.0 | 0.0 |
Zhou, K., Zhang, Y., Zhang, D., Zhang, X., Li, Z., Liu, G., & Button, T. W. (2011). Porous hydroxyapatite ceramics fabricated by an ice-templating method. Scripta Materialia, 64(5), 426-429. | 2011 | 790 | 10.1016/j.scriptamat.2010.11.001 | 2387 | ceramic | HAP | water | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | powder | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.8 | 0.0 | 0.0 |
Zhou, K., Zhang, Y., Zhang, D., Zhang, X., Li, Z., Liu, G., & Button, T. W. (2011). Porous hydroxyapatite ceramics fabricated by an ice-templating method. Scripta Materialia, 64(5), 426-429. | 2011 | 790 | 10.1016/j.scriptamat.2010.11.001 | 2388 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 68.0 | 0.0 | 0.0 | 3.5 | 0.0 | 2.8 | 0.0 | 0.0 |
Zhou, K., Zhang, Y., Zhang, D., Zhang, X., Li, Z., Liu, G., & Button, T. W. (2011). Porous hydroxyapatite ceramics fabricated by an ice-templating method. Scripta Materialia, 64(5), 426-429. | 2011 | 790 | 10.1016/j.scriptamat.2010.11.001 | 2389 | ceramic | HAP | water | 100 | 0.0 | 0 | 30.0 | 18.0 | 100 | powder | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 57.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.3 | 0.0 | 0.0 |
Zhou, K., Zhang, Y., Zhang, D., Zhang, X., Li, Z., Liu, G., & Button, T. W. (2011). Porous hydroxyapatite ceramics fabricated by an ice-templating method. Scripta Materialia, 64(5), 426-429. | 2011 | 790 | 10.1016/j.scriptamat.2010.11.001 | 2390 | ceramic | HAP | water | 100 | 0.0 | 0 | 40.0 | 18.0 | 100 | powder | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 42.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.6 | 0.0 | 0.0 |
Zuo, K. H., Jiang, D., & Zeng, Y. P. (2011). Gradient porous hydroxyapatite ceramics fabricated by freeze casting method. In IOP Conference Series: Materials Science and Engineering (Vol. 18, No. 18, p. 182011). IOP Publishing. | 2011 | 803 | 10.1088/1757-899X/18/18/182011 | 1793 | ceramic | HAP | water | 100 | 0.0 | 0 | 24.06 | 18.0 | 100 | powder | 0.4 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.66 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zuo, K. H., Jiang, D., & Zeng, Y. P. (2011). Gradient porous hydroxyapatite ceramics fabricated by freeze casting method. In IOP Conference Series: Materials Science and Engineering (Vol. 18, No. 18, p. 182011). IOP Publishing. | 2011 | 803 | 10.1088/1757-899X/18/18/182011 | 1794 | ceramic | HAP | water | 100 | 0.0 | 0 | 24.06 | 18.0 | 0 | powder | 0.4 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 62.13 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zuo, K. H., Jiang, D., & Zeng, Y. P. (2011). Gradient porous hydroxyapatite ceramics fabricated by freeze casting method. In IOP Conference Series: Materials Science and Engineering (Vol. 18, No. 18, p. 182011). IOP Publishing. | 2011 | 803 | 10.1088/1757-899X/18/18/182011 | 1795 | ceramic | HAP | water | 100 | 0.0 | 0 | 24.06 | 18.0 | 0 | powder | 0.4 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zuo, K. H., Jiang, D., & Zeng, Y. P. (2011). Gradient porous hydroxyapatite ceramics fabricated by freeze casting method. In IOP Conference Series: Materials Science and Engineering (Vol. 18, No. 18, p. 182011). IOP Publishing. | 2011 | 803 | 10.1088/1757-899X/18/18/182011 | 1796 | ceramic | HAP | water | 100 | 0.0 | 0 | 24.06 | 18.0 | 0 | powder | 0.4 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 63.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zuo, K. H., Zeng, Y., & Jiang, D. (2010). Effect of cooling rate and polyvinyl alcohol on the morphology of porous hydroxyapatite ceramics. Materials & Design, 31(6), 3090-3094. | 2010 | 806 | 10.1016/j.matdes.2009.12.044 | 1813 | ceramic | HAP | water | 100 | 0.0 | 0 | 24.06 | 18.0 | 100 | powder | 0.4 | 1 | 0 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 19.8 | 0.0 | 18.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zuo, K. H., Zeng, Y., & Jiang, D. (2010). Effect of cooling rate and polyvinyl alcohol on the morphology of porous hydroxyapatite ceramics. Materials & Design, 31(6), 3090-3094. | 2010 | 806 | 10.1016/j.matdes.2009.12.044 | 1814 | ceramic | HAP | water | 100 | 0.0 | 0 | 24.06 | 18.0 | 100 | powder | 0.4 | 5 | 0 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 41.48 | 0.0 | 19.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zuo, K. H., Zeng, Y., & Jiang, D. (2010). Effect of cooling rate and polyvinyl alcohol on the morphology of porous hydroxyapatite ceramics. Materials & Design, 31(6), 3090-3094. | 2010 | 806 | 10.1016/j.matdes.2009.12.044 | 1815 | ceramic | HAP | water | 100 | 0.0 | 0 | 24.06 | 18.0 | 100 | powder | 0.4 | 1 | 0 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zuo, K. H., Zeng, Y., & Jiang, D. (2010). Effect of cooling rate and polyvinyl alcohol on the morphology of porous hydroxyapatite ceramics. Materials & Design, 31(6), 3090-3094. | 2010 | 806 | 10.1016/j.matdes.2009.12.044 | 1816 | ceramic | HAP | water | 100 | 0.0 | 0 | 24.06 | 18.0 | 100 | powder | 0.4 | 5 | 0 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 49.19 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zuo, K. H., Zeng, Y. P., & Jiang, D. (2010). Effect of polyvinyl alcohol additive on the pore structure and morphology of the freeze-cast hydroxyapatite ceramics. Materials Science and Engineering: C, 30(2), 283-287. | 2010 | 807 | 10.1016/j.msec.2009.11.003 | 1817 | ceramic | HAP | water | 100 | 0.0 | 0 | 42.51 | 18.0 | 100 | powder | 0.4 | 0 | 0 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 20.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zuo, K. H., Zeng, Y. P., & Jiang, D. (2010). Effect of polyvinyl alcohol additive on the pore structure and morphology of the freeze-cast hydroxyapatite ceramics. Materials Science and Engineering: C, 30(2), 283-287. | 2010 | 807 | 10.1016/j.msec.2009.11.003 | 1818 | ceramic | HAP | water | 100 | 0.0 | 0 | 24.06 | 18.0 | 100 | powder | 0.4 | 0 | 0 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 23.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zuo, K. H., Zeng, Y. P., & Jiang, D. (2010). Effect of polyvinyl alcohol additive on the pore structure and morphology of the freeze-cast hydroxyapatite ceramics. Materials Science and Engineering: C, 30(2), 283-287. | 2010 | 807 | 10.1016/j.msec.2009.11.003 | 1819 | ceramic | HAP | water | 100 | 0.0 | 0 | 24.06 | 18.0 | 100 | powder | 0.4 | 1 | 0 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zuo, K. H., Zeng, Y. P., & Jiang, D. (2010). Effect of polyvinyl alcohol additive on the pore structure and morphology of the freeze-cast hydroxyapatite ceramics. Materials Science and Engineering: C, 30(2), 283-287. | 2010 | 807 | 10.1016/j.msec.2009.11.003 | 1820 | ceramic | HAP | water | 100 | 0.0 | 0 | 24.06 | 18.0 | 100 | powder | 0.4 | 5 | 0 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 62.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zuo, K. H., Zeng, Y. P., & Jiang, D. (2010). Effect of polyvinyl alcohol additive on the pore structure and morphology of the freeze-cast hydroxyapatite ceramics. Materials Science and Engineering: C, 30(2), 283-287. | 2010 | 807 | 10.1016/j.msec.2009.11.003 | 1821 | ceramic | HAP | water | 100 | 0.0 | 0 | 24.06 | 18.0 | 100 | powder | 0.4 | 11 | 0 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 56.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zuo, K. H., Zhang, Y., Zeng, Y. P., & Jiang, D. (2011). Pore-forming agent induced microstructure evolution of freeze casted hydroxyapatite. Ceramics International, 37(1), 407-410. | 2011 | 808 | 10.1016/j.ceramint.2010.08.015 | 1822 | ceramic | HAP | water | 100 | 0.0 | 0 | 24.06 | 18.0 | 97 | powder | 0.4 | 1 | 0 | 0 | 255.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 65.19 | 0.0 | 350.0 | 0.0 | 0.0 | 4.43 | 0.0 | 0.0 |
Zuo, K. H., Zhang, Y., Zeng, Y. P., & Jiang, D. (2011). Pore-forming agent induced microstructure evolution of freeze casted hydroxyapatite. Ceramics International, 37(1), 407-410. | 2011 | 808 | 10.1016/j.ceramint.2010.08.015 | 1823 | ceramic | HAP | water | 100 | 0.0 | 0 | 24.06 | 18.0 | 97 | powder | 0.4 | 1 | 0 | 0 | 255.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 62.64 | 0.0 | 200.0 | 0.0 | 0.0 | 7.01 | 0.0 | 0.0 |
Zuo, K. H., Zhang, Y., Zeng, Y. P., & Jiang, D. (2011). Pore-forming agent induced microstructure evolution of freeze casted hydroxyapatite. Ceramics International, 37(1), 407-410. | 2011 | 808 | 10.1016/j.ceramint.2010.08.015 | 1824 | ceramic | HAP | water | 100 | 0.0 | 0 | 24.06 | 18.0 | 97 | powder | 0.4 | 1 | 0 | 0 | 255.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 65.69 | 0.0 | 110.0 | 0.0 | 0.0 | 7.37 | 0.0 | 0.0 |
Zuo, K. H., Zhang, Y., Zeng, Y. P., & Jiang, D. (2011). Pore-forming agent induced microstructure evolution of freeze casted hydroxyapatite. Ceramics International, 37(1), 407-410. | 2011 | 808 | 10.1016/j.ceramint.2010.08.015 | 1825 | ceramic | HAP | water | 100 | 0.0 | 0 | 24.06 | 18.0 | 99 | powder | 0.4 | 1 | 0 | 0 | 255.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 56.28 | 0.0 | 200.0 | 0.0 | 0.0 | 6.67 | 0.0 | 0.0 |
Zuo, K. H., Zhang, Y., Zeng, Y. P., & Jiang, D. (2011). Pore-forming agent induced microstructure evolution of freeze casted hydroxyapatite. Ceramics International, 37(1), 407-410. | 2011 | 808 | 10.1016/j.ceramint.2010.08.015 | 1826 | ceramic | HAP | water | 100 | 0.0 | 0 | 24.06 | 18.0 | 99 | powder | 0.4 | 1 | 0 | 0 | 255.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 73.74 | 0.0 | 0.0 | 0.0 | 0.0 | 0.51 | 0.0 | 0.0 |
Liu, W. K., Liaw, B. S., Chang, H. K., Wang, Y. F., & Chen, P. Y. (2017). From Waste to Health: Synthesis of Hydroxyapatite Scaffolds From Fish Scales for Lead Ion Removal. JOM, 69(4), 713-718. | 2017 | 939 | 10.1007/s11837-017-2270-5 | 5682 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.0 | 0 | 5 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 70.0 | 0.0 | 29.0 | 0.0 | 0.0 | 2.0 | 0.0 | 84.0 |
Liu, W. K., Liaw, B. S., Chang, H. K., Wang, Y. F., & Chen, P. Y. (2017). From Waste to Health: Synthesis of Hydroxyapatite Scaffolds From Fish Scales for Lead Ion Removal. JOM, 69(4), 713-718. | 2017 | 939 | 10.1007/s11837-017-2270-5 | 5683 | ceramic | HAP | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | powder | 0.0 | 0 | 5 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 70.0 | 0.0 | 8.3 | 0.0 | 0.0 | 4.3 | 0.0 | 149.0 |
Lee, H., Jang, T. S., Song, J., Kim, H. E., & Jung, H. D. (2017). The Production of Porous Hydroxyapatite Scaffolds with Graded Porosity by Sequential Freeze-Casting. Materials, 10(4), 367. | 2017 | 955 | 10.3390/ma10040367 | 5963 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 315.0 | 0.0 | 0.0 | sequential | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lee, H., Jang, T. S., Song, J., Kim, H. E., & Jung, H. D. (2017). The Production of Porous Hydroxyapatite Scaffolds with Graded Porosity by Sequential Freeze-Casting. Materials, 10(4), 367. | 2017 | 955 | 10.3390/ma10040367 | 5964 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 15.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 315.0 | 0.0 | 0.0 | sequential | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 68.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lee, H., Jang, T. S., Song, J., Kim, H. E., & Jung, H. D. (2017). The Production of Porous Hydroxyapatite Scaffolds with Graded Porosity by Sequential Freeze-Casting. Materials, 10(4), 367. | 2017 | 955 | 10.3390/ma10040367 | 5965 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 315.0 | 0.0 | 0.0 | sequential | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.0 | 0.0 |
Lee, H., Jang, T. S., Song, J., Kim, H. E., & Jung, H. D. (2017). The Production of Porous Hydroxyapatite Scaffolds with Graded Porosity by Sequential Freeze-Casting. Materials, 10(4), 367. | 2017 | 955 | 10.3390/ma10040367 | 5966 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 25.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 315.0 | 0.0 | 0.0 | sequential | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 24.0 | 0.0 | 0.0 |
Lee, H., Jang, T. S., Song, J., Kim, H. E., & Jung, H. D. (2017). The Production of Porous Hydroxyapatite Scaffolds with Graded Porosity by Sequential Freeze-Casting. Materials, 10(4), 367. | 2017 | 955 | 10.3390/ma10040367 | 5967 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 40.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 315.0 | 0.0 | 0.0 | sequential | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 26.0 | 0.0 | 0.0 | 0.0 | 0.0 | 35.0 | 0.0 | 0.0 |
Lee, H., Jang, T. S., Song, J., Kim, H. E., & Jung, H. D. (2017). The Production of Porous Hydroxyapatite Scaffolds with Graded Porosity by Sequential Freeze-Casting. Materials, 10(4), 367. | 2017 | 955 | 10.3390/ma10040367 | 5968 | ceramic | HAP | camphene | 100 | 0.0 | 0 | 50.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 315.0 | 0.0 | 0.0 | sequential | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 13.0 | 0.0 | 0.0 | 0.0 | 0.0 | 44.0 | 0.0 | 0.0 |
Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., ... & Ritchie, R. O. (2016). Bioinspired Hydroxyapatite/Poly (methyl methacrylate) Composite with a Nacre?Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 28(1), 50-56. | 2016 | 15 | 10.1002/adma.201504313 | 166 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | 0 | 2.42 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 28.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 68.6 | 0.0 |
Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., ... & Ritchie, R. O. (2016). Bioinspired Hydroxyapatite/Poly (methyl methacrylate) Composite with a Nacre?Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 28(1), 50-56. | 2016 | 15 | 10.1002/adma.201504313 | 167 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | 0 | 2.42 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 16.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 119.7 | 0.0 |
Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., ... & Ritchie, R. O. (2016). Bioinspired Hydroxyapatite/Poly (methyl methacrylate) Composite with a Nacre?Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 28(1), 50-56. | 2016 | 15 | 10.1002/adma.201504313 | 168 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 78.0 | 18.0 | 100 | 0 | 2.42 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 71.0 | 0.0 |
Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., ... & Ritchie, R. O. (2016). Bioinspired Hydroxyapatite/Poly (methyl methacrylate) Composite with a Nacre?Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 28(1), 50-56. | 2016 | 15 | 10.1002/adma.201504313 | 169 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 77.0 | 18.0 | 100 | 0 | 2.42 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 82.0 | 0.0 |
Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., ... & Ritchie, R. O. (2016). Bioinspired Hydroxyapatite/Poly (methyl methacrylate) Composite with a Nacre?Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 28(1), 50-56. | 2016 | 15 | 10.1002/adma.201504313 | 170 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 77.0 | 18.0 | 100 | 0 | 2.42 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 96.0 | 0.0 |
Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., ... & Ritchie, R. O. (2016). Bioinspired Hydroxyapatite/Poly (methyl methacrylate) Composite with a Nacre?Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 28(1), 50-56. | 2016 | 15 | 10.1002/adma.201504313 | 171 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 78.0 | 18.0 | 100 | 0 | 2.42 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 83.0 | 0.0 |
Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., ... & Ritchie, R. O. (2016). Bioinspired Hydroxyapatite/Poly (methyl methacrylate) Composite with a Nacre?Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 28(1), 50-56. | 2016 | 15 | 10.1002/adma.201504313 | 172 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 78.0 | 18.0 | 100 | 0 | 2.42 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 82.0 | 0.0 |
Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., ... & Ritchie, R. O. (2016). Bioinspired Hydroxyapatite/Poly (methyl methacrylate) Composite with a Nacre?Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 28(1), 50-56. | 2016 | 15 | 10.1002/adma.201504313 | 173 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 77.0 | 18.0 | 100 | 0 | 2.42 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 74.0 | 0.0 |
Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., ... & Ritchie, R. O. (2016). Bioinspired Hydroxyapatite/Poly (methyl methacrylate) Composite with a Nacre?Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 28(1), 50-56. | 2016 | 15 | 10.1002/adma.201504313 | 174 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 79.0 | 18.0 | 100 | 0 | 2.42 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 75.0 | 0.0 |
Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., ... & Ritchie, R. O. (2016). Bioinspired Hydroxyapatite/Poly (methyl methacrylate) Composite with a Nacre?Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 28(1), 50-56. | 2016 | 15 | 10.1002/adma.201504313 | 175 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 79.0 | 18.0 | 100 | 0 | 2.42 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 81.0 | 0.0 |
Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., ... & Ritchie, R. O. (2016). Bioinspired Hydroxyapatite/Poly (methyl methacrylate) Composite with a Nacre?Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 28(1), 50-56. | 2016 | 15 | 10.1002/adma.201504313 | 176 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 79.0 | 18.0 | 100 | 0 | 2.42 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 80.0 | 0.0 |
Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., ... & Ritchie, R. O. (2016). Bioinspired Hydroxyapatite/Poly (methyl methacrylate) Composite with a Nacre?Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 28(1), 50-56. | 2016 | 15 | 10.1002/adma.201504313 | 177 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 80.0 | 18.0 | 100 | 0 | 2.42 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 67.0 | 0.0 |
Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., ... & Ritchie, R. O. (2016). Bioinspired Hydroxyapatite/Poly (methyl methacrylate) Composite with a Nacre?Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 28(1), 50-56. | 2016 | 15 | 10.1002/adma.201504313 | 178 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 80.0 | 18.0 | 100 | 0 | 2.42 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 86.0 | 0.0 |
Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., ... & Ritchie, R. O. (2016). Bioinspired Hydroxyapatite/Poly (methyl methacrylate) Composite with a Nacre?Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 28(1), 50-56. | 2016 | 15 | 10.1002/adma.201504313 | 179 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 80.0 | 18.0 | 100 | 0 | 2.42 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 86.0 | 0.0 |
Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., ... & Ritchie, R. O. (2016). Bioinspired Hydroxyapatite/Poly (methyl methacrylate) Composite with a Nacre?Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 28(1), 50-56. | 2016 | 15 | 10.1002/adma.201504313 | 180 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 80.0 | 18.0 | 100 | 0 | 2.42 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 98.0 | 0.0 |
Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., ... & Ritchie, R. O. (2016). Bioinspired Hydroxyapatite/Poly (methyl methacrylate) Composite with a Nacre?Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 28(1), 50-56. | 2016 | 15 | 10.1002/adma.201504313 | 181 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 80.0 | 18.0 | 100 | 0 | 2.42 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 97.0 | 0.0 |
Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., ... & Ritchie, R. O. (2016). Bioinspired Hydroxyapatite/Poly (methyl methacrylate) Composite with a Nacre?Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 28(1), 50-56. | 2016 | 15 | 10.1002/adma.201504313 | 182 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 80.0 | 18.0 | 100 | 0 | 2.42 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 95.0 | 0.0 |
Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., ... & Ritchie, R. O. (2016). Bioinspired Hydroxyapatite/Poly (methyl methacrylate) Composite with a Nacre?Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 28(1), 50-56. | 2016 | 15 | 10.1002/adma.201504313 | 183 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 79.0 | 18.0 | 100 | 0 | 2.42 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 94.0 | 0.0 |
Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., ... & Ritchie, R. O. (2016). Bioinspired Hydroxyapatite/Poly (methyl methacrylate) Composite with a Nacre?Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 28(1), 50-56. | 2016 | 15 | 10.1002/adma.201504313 | 184 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 79.0 | 18.0 | 100 | 0 | 2.42 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 85.0 | 0.0 |
Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., ... & Ritchie, R. O. (2016). Bioinspired Hydroxyapatite/Poly (methyl methacrylate) Composite with a Nacre?Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 28(1), 50-56. | 2016 | 15 | 10.1002/adma.201504313 | 185 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 80.0 | 18.0 | 100 | 0 | 2.42 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 84.0 | 0.0 |
Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., ... & Ritchie, R. O. (2016). Bioinspired Hydroxyapatite/Poly (methyl methacrylate) Composite with a Nacre?Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 28(1), 50-56. | 2016 | 15 | 10.1002/adma.201504313 | 186 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 80.0 | 18.0 | 100 | 0 | 2.42 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 88.0 | 0.0 |
Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., ... & Ritchie, R. O. (2016). Bioinspired Hydroxyapatite/Poly (methyl methacrylate) Composite with a Nacre?Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 28(1), 50-56. | 2016 | 15 | 10.1002/adma.201504313 | 187 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 81.0 | 18.0 | 100 | 0 | 2.42 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 92.0 | 0.0 |
Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., ... & Ritchie, R. O. (2016). Bioinspired Hydroxyapatite/Poly (methyl methacrylate) Composite with a Nacre?Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 28(1), 50-56. | 2016 | 15 | 10.1002/adma.201504313 | 188 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 83.0 | 18.0 | 100 | 0 | 2.42 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 107.0 | 0.0 |
Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., ... & Ritchie, R. O. (2016). Bioinspired Hydroxyapatite/Poly (methyl methacrylate) Composite with a Nacre?Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 28(1), 50-56. | 2016 | 15 | 10.1002/adma.201504313 | 189 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 83.0 | 18.0 | 100 | 0 | 2.42 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 111.0 | 0.0 |
Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., ... & Ritchie, R. O. (2016). Bioinspired Hydroxyapatite/Poly (methyl methacrylate) Composite with a Nacre?Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 28(1), 50-56. | 2016 | 15 | 10.1002/adma.201504313 | 190 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 82.0 | 18.0 | 100 | 0 | 2.42 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 102.0 | 0.0 |
Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., ... & Ritchie, R. O. (2016). Bioinspired Hydroxyapatite/Poly (methyl methacrylate) Composite with a Nacre?Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 28(1), 50-56. | 2016 | 15 | 10.1002/adma.201504313 | 191 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 82.0 | 18.0 | 100 | 0 | 2.42 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 96.0 | 0.0 |
Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., ... & Ritchie, R. O. (2016). Bioinspired Hydroxyapatite/Poly (methyl methacrylate) Composite with a Nacre?Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 28(1), 50-56. | 2016 | 15 | 10.1002/adma.201504313 | 192 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 85.0 | 18.0 | 100 | 0 | 2.42 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 117.0 | 0.0 |
Bai, H., Walsh, F., Gludovatz, B., Delattre, B., Huang, C., Chen, Y., ... & Ritchie, R. O. (2016). Bioinspired Hydroxyapatite/Poly (methyl methacrylate) Composite with a Nacre?Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 28(1), 50-56. | 2016 | 15 | 10.1002/adma.201504313 | 193 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 85.0 | 18.0 | 100 | 0 | 2.42 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 121.0 | 0.0 |
Bai, H., Polini, A., Delattre, B., & Tomsia, A. P. (2013). Thermoresponsive composite hydrogels with aligned macroporous structure by ice-templated assembly. Chemistry of Materials, 25(22), 4551-4556. | 2013 | 16 | 10.1021/cm4025827 | 194 | ceramic | laponite | water | 100 | 0.0 | 0 | 1.32 | 58.0 | 100 | platelet | 0.1 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 107.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bai, H., Polini, A., Delattre, B., & Tomsia, A. P. (2013). Thermoresponsive composite hydrogels with aligned macroporous structure by ice-templated assembly. Chemistry of Materials, 25(22), 4551-4556. | 2013 | 16 | 10.1021/cm4025827 | 195 | ceramic | laponite | water | 100 | 0.0 | 0 | 2.63 | 58.0 | 100 | platelet | 0.1 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bai, H., Polini, A., Delattre, B., & Tomsia, A. P. (2013). Thermoresponsive composite hydrogels with aligned macroporous structure by ice-templated assembly. Chemistry of Materials, 25(22), 4551-4556. | 2013 | 16 | 10.1021/cm4025827 | 196 | ceramic | laponite | water | 100 | 0.0 | 0 | 3.89 | 58.0 | 100 | platelet | 0.1 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.08 | 0.0 |
Bai, H., Polini, A., Delattre, B., & Tomsia, A. P. (2013). Thermoresponsive composite hydrogels with aligned macroporous structure by ice-templated assembly. Chemistry of Materials, 25(22), 4551-4556. | 2013 | 16 | 10.1021/cm4025827 | 197 | ceramic | laponite | water | 100 | 0.0 | 0 | 1.32 | 58.0 | 100 | platelet | 0.1 | 0 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 42.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bai, H., Polini, A., Delattre, B., & Tomsia, A. P. (2013). Thermoresponsive composite hydrogels with aligned macroporous structure by ice-templated assembly. Chemistry of Materials, 25(22), 4551-4556. | 2013 | 16 | 10.1021/cm4025827 | 198 | ceramic | laponite | water | 100 | 0.0 | 0 | 2.63 | 58.0 | 100 | platelet | 0.1 | 0 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bai, H., Polini, A., Delattre, B., & Tomsia, A. P. (2013). Thermoresponsive composite hydrogels with aligned macroporous structure by ice-templated assembly. Chemistry of Materials, 25(22), 4551-4556. | 2013 | 16 | 10.1021/cm4025827 | 199 | ceramic | laponite | water | 100 | 0.0 | 0 | 3.89 | 58.0 | 100 | platelet | 0.1 | 0 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.11 | 0.0 |
Bai, H., Polini, A., Delattre, B., & Tomsia, A. P. (2013). Thermoresponsive composite hydrogels with aligned macroporous structure by ice-templated assembly. Chemistry of Materials, 25(22), 4551-4556. | 2013 | 16 | 10.1021/cm4025827 | 200 | ceramic | laponite | water | 100 | 0.0 | 0 | 1.32 | 58.0 | 100 | platelet | 0.1 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 48.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bai, H., Polini, A., Delattre, B., & Tomsia, A. P. (2013). Thermoresponsive composite hydrogels with aligned macroporous structure by ice-templated assembly. Chemistry of Materials, 25(22), 4551-4556. | 2013 | 16 | 10.1021/cm4025827 | 201 | ceramic | laponite | water | 100 | 0.0 | 0 | 2.63 | 58.0 | 100 | platelet | 0.1 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bai, H., Polini, A., Delattre, B., & Tomsia, A. P. (2013). Thermoresponsive composite hydrogels with aligned macroporous structure by ice-templated assembly. Chemistry of Materials, 25(22), 4551-4556. | 2013 | 16 | 10.1021/cm4025827 | 202 | ceramic | laponite | water | 100 | 0.0 | 0 | 3.89 | 58.0 | 100 | platelet | 0.1 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.11 | 0.0 |
Bai, H., Polini, A., Delattre, B., & Tomsia, A. P. (2013). Thermoresponsive composite hydrogels with aligned macroporous structure by ice-templated assembly. Chemistry of Materials, 25(22), 4551-4556. | 2013 | 16 | 10.1021/cm4025827 | 203 | ceramic | laponite | water | 100 | 0.0 | 0 | 1.32 | 58.0 | 100 | platelet | 0.1 | 0 | 0 | 0 | 248.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 79.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bai, H., Polini, A., Delattre, B., & Tomsia, A. P. (2013). Thermoresponsive composite hydrogels with aligned macroporous structure by ice-templated assembly. Chemistry of Materials, 25(22), 4551-4556. | 2013 | 16 | 10.1021/cm4025827 | 204 | ceramic | laponite | water | 100 | 0.0 | 0 | 2.63 | 58.0 | 100 | platelet | 0.1 | 0 | 0 | 0 | 248.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 79.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bai, H., Polini, A., Delattre, B., & Tomsia, A. P. (2013). Thermoresponsive composite hydrogels with aligned macroporous structure by ice-templated assembly. Chemistry of Materials, 25(22), 4551-4556. | 2013 | 16 | 10.1021/cm4025827 | 205 | ceramic | laponite | water | 100 | 0.0 | 0 | 3.89 | 58.0 | 100 | platelet | 0.1 | 0 | 0 | 0 | 248.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 79.0 | 0.0 | 0.0 | 0.0 | 0.01 | 0.0 |
Colard, C. A., Cave, R. A., Grossiord, N., Covington, J. A., & Bon, S. A. (2009). Conducting Nanocomposite Polymer Foams from Ice?Crystal?Templated Assembly of Mixtures of Colloids. Advanced Materials, 21(28), 2894-2898. | 2009 | 61 | 10.1002/adma.200803007 | 456 | ceramic | laponite | water | 100 | 0.0 | 0 | 4.0 | 58.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 88.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bang, S. H., Kim, T. H., Lee, H. Y., Shin, U. S., & Kim, H. W. (2011). Nanofibrous-structured biopolymer scaffolds obtained by a phase separation with camphene and initial cellular events. Journal of Materials Chemistry, 21(12), 4523-4530. | 2011 | 18 | 10.1039/C0JM03108A | 214 | polymer | PHBV | chloroform | 100 | 0.0 | 0 | 5.0 | 66.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dense | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bang, S. H., Kim, T. H., Lee, H. Y., Shin, U. S., & Kim, H. W. (2011). Nanofibrous-structured biopolymer scaffolds obtained by a phase separation with camphene and initial cellular events. Journal of Materials Chemistry, 21(12), 4523-4530. | 2011 | 18 | 10.1039/C0JM03108A | 215 | polymer | PHBV | camphene | 50 | chloroform | 50 | 2.5 | 66.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dense | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bang, S. H., Kim, T. H., Lee, H. Y., Shin, U. S., & Kim, H. W. (2011). Nanofibrous-structured biopolymer scaffolds obtained by a phase separation with camphene and initial cellular events. Journal of Materials Chemistry, 21(12), 4523-4530. | 2011 | 18 | 10.1039/C0JM03108A | 216 | polymer | PHBV | camphene | 75 | chloroform | 25 | 1.25 | 66.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dense | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bang, S. H., Kim, T. H., Lee, H. Y., Shin, U. S., & Kim, H. W. (2011). Nanofibrous-structured biopolymer scaffolds obtained by a phase separation with camphene and initial cellular events. Journal of Materials Chemistry, 21(12), 4523-4530. | 2011 | 18 | 10.1039/C0JM03108A | 217 | polymer | PHBV | camphene | 80 | chloroform | 20 | 1.0 | 66.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dense | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bang, S. H., Kim, T. H., Lee, H. Y., Shin, U. S., & Kim, H. W. (2011). Nanofibrous-structured biopolymer scaffolds obtained by a phase separation with camphene and initial cellular events. Journal of Materials Chemistry, 21(12), 4523-4530. | 2011 | 18 | 10.1039/C0JM03108A | 218 | polymer | PHBV | camphene | 82 | chloroform | 17 | 0.85 | 66.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bang, S. H., Kim, T. H., Lee, H. Y., Shin, U. S., & Kim, H. W. (2011). Nanofibrous-structured biopolymer scaffolds obtained by a phase separation with camphene and initial cellular events. Journal of Materials Chemistry, 21(12), 4523-4530. | 2011 | 18 | 10.1039/C0JM03108A | 219 | polymer | PHBV | camphene | 86 | chloroform | 14 | 0.7 | 66.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bang, S. H., Kim, T. H., Lee, H. Y., Shin, U. S., & Kim, H. W. (2011). Nanofibrous-structured biopolymer scaffolds obtained by a phase separation with camphene and initial cellular events. Journal of Materials Chemistry, 21(12), 4523-4530. | 2011 | 18 | 10.1039/C0JM03108A | 220 | polymer | PHBV | camphene | 87 | chloroform | 12 | 0.63 | 66.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bang, S. H., Kim, T. H., Lee, H. Y., Shin, U. S., & Kim, H. W. (2011). Nanofibrous-structured biopolymer scaffolds obtained by a phase separation with camphene and initial cellular events. Journal of Materials Chemistry, 21(12), 4523-4530. | 2011 | 18 | 10.1039/C0JM03108A | 221 | polymer | PHBV | camphene | 87 | chloroform | 11 | 0.6 | 66.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bang, S. H., Kim, T. H., Lee, H. Y., Shin, U. S., & Kim, H. W. (2011). Nanofibrous-structured biopolymer scaffolds obtained by a phase separation with camphene and initial cellular events. Journal of Materials Chemistry, 21(12), 4523-4530. | 2011 | 18 | 10.1039/C0JM03108A | 222 | polymer | PHBV | camphene | 89 | chloroform | 10 | 0.5 | 66.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bang, S. H., Kim, T. H., Lee, H. Y., Shin, U. S., & Kim, H. W. (2011). Nanofibrous-structured biopolymer scaffolds obtained by a phase separation with camphene and initial cellular events. Journal of Materials Chemistry, 21(12), 4523-4530. | 2011 | 18 | 10.1039/C0JM03108A | 223 | polymer | PHBV | camphene | 90 | chloroform | 9 | 0.47 | 66.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 300.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bang, S. H., Kim, T. H., Lee, H. Y., Shin, U. S., & Kim, H. W. (2011). Nanofibrous-structured biopolymer scaffolds obtained by a phase separation with camphene and initial cellular events. Journal of Materials Chemistry, 21(12), 4523-4530. | 2011 | 18 | 10.1039/C0JM03108A | 224 | polymer | PHBV | camphene | 91 | chloroform | 9 | 0.45 | 66.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bang, S. H., Kim, T. H., Lee, H. Y., Shin, U. S., & Kim, H. W. (2011). Nanofibrous-structured biopolymer scaffolds obtained by a phase separation with camphene and initial cellular events. Journal of Materials Chemistry, 21(12), 4523-4530. | 2011 | 18 | 10.1039/C0JM03108A | 225 | polymer | PHBV | camphene | 92 | chloroform | 7 | 0.4 | 66.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sultana, N., & Wang, M. (2012). PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. Biofabrication, 4(1), 015003. | 2012 | 599 | 10.1088/1758-5082/4/1/015003 | 5341 | polymer | PHBV | water | 100 | 0.0 | 0 | 12.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sultana, N., & Wang, M. (2012). PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. Biofabrication, 4(1), 015003. | 2012 | 599 | 10.1088/1758-5082/4/1/015003 | 5342 | polymer | PHBV | water | 100 | 0.0 | 0 | 13.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 85.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sultana, N., & Wang, M. (2012). PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. Biofabrication, 4(1), 015003. | 2012 | 599 | 10.1088/1758-5082/4/1/015003 | 5343 | polymer | PHBV | water | 100 | 0.0 | 0 | 15.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 83.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sultana, N., & Wang, M. (2012). PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. Biofabrication, 4(1), 015003. | 2012 | 599 | 10.1088/1758-5082/4/1/015003 | 5344 | polymer | PHBV | water | 100 | 0.0 | 0 | 17.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sultana, N., & Wang, M. (2012). PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. Biofabrication, 4(1), 015003. | 2012 | 599 | 10.1088/1758-5082/4/1/015003 | 5345 | polymer | PHBV | water | 100 | 0.0 | 0 | 19.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 75.0 | 0.0 | 150.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sultana, N., & Wang, M. (2012). PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. Biofabrication, 4(1), 015003. | 2012 | 599 | 10.1088/1758-5082/4/1/015003 | 5347 | polymer | PHBV | water | 100 | 0.0 | 0 | 27.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 72.0 | 0.0 | 350.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Barrow, M., Eltmimi, A., Ahmed, A., Myers, P., & Zhang, H. (2012). Frozen polymerization for aligned porous structures with enhanced mechanical stability, conductivity, and as stationary phase for HPLC. Journal of Materials Chemistry, 22(23), 11615-11620. | 2012 | 23 | 10.1039/c2jm31425h | 227 | polymer | TEGDMA | dioxane | 100 | 0.0 | 0 | 20.0 | 94.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 1250.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 | 25.0 | 0.0 | 9.0 |
Barrow, M., Eltmimi, A., Ahmed, A., Myers, P., & Zhang, H. (2012). Frozen polymerization for aligned porous structures with enhanced mechanical stability, conductivity, and as stationary phase for HPLC. Journal of Materials Chemistry, 22(23), 11615-11620. | 2012 | 23 | 10.1039/c2jm31425h | 228 | polymer | TEGDMA | dioxane | 100 | 0.0 | 0 | 10.0 | 94.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 1250.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 30.0 | 0.0 | 0.0 | 3.5 | 0.0 | 0.75 |
Barrow, M., Eltmimi, A., Ahmed, A., Myers, P., & Zhang, H. (2012). Frozen polymerization for aligned porous structures with enhanced mechanical stability, conductivity, and as stationary phase for HPLC. Journal of Materials Chemistry, 22(23), 11615-11620. | 2012 | 23 | 10.1039/c2jm31425h | 229 | polymer | TEGDMA | dioxane | 100 | 0.0 | 0 | 5.0 | 94.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 1250.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 30.0 | 0.0 | 0.0 | 1.5 | 0.0 | 0.25 |
Barrow, M., Eltmimi, A., Ahmed, A., Myers, P., & Zhang, H. (2012). Frozen polymerization for aligned porous structures with enhanced mechanical stability, conductivity, and as stationary phase for HPLC. Journal of Materials Chemistry, 22(23), 11615-11620. | 2012 | 23 | 10.1039/c2jm31425h | 230 | polymer | TEGDMA | cyclohexane | 100 | 0.0 | 0 | 20.0 | 94.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 1250.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Barrow, M., Eltmimi, A., Ahmed, A., Myers, P., & Zhang, H. (2012). Frozen polymerization for aligned porous structures with enhanced mechanical stability, conductivity, and as stationary phase for HPLC. Journal of Materials Chemistry, 22(23), 11615-11620. | 2012 | 23 | 10.1039/c2jm31425h | 231 | polymer | TEGDMA | camphene | 100 | 0.0 | 0 | 20.0 | 94.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 1250.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Behr, S., Amin, R., Chiang, Y. M., & Tomsia, A. P. (2015). Highly structured, additive free lithium-ion cathodes by freeze-casting technology. In Ceram. Forum Int. (Vol. 92, pp. E39-E43). | 2015 | 24 | 0 | 232 | ceramic | Li(NiCoAl)O2 | water | 100 | 0.0 | 0 | 30.0 | 95.0 | 100 | powder | 1.0 | 0 | 0 | 0 | 193.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Behr, S., Amin, R., Chiang, Y. M., & Tomsia, A. P. (2015). Highly structured, additive free lithium-ion cathodes by freeze-casting technology. In Ceram. Forum Int. (Vol. 92, pp. E39-E43). | 2015 | 24 | 0 | 233 | ceramic | Li(NiCoAl)O2 | water | 100 | 0.0 | 0 | 30.0 | 95.0 | 100 | powder | 1.0 | 0 | 0 | 0 | 193.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Behr, S., Amin, R., Chiang, Y. M., & Tomsia, A. P. (2015). Highly structured, additive free lithium-ion cathodes by freeze-casting technology. In Ceram. Forum Int. (Vol. 92, pp. E39-E43). | 2015 | 24 | 0 | 234 | ceramic | Li(NiCoAl)O2 | water | 100 | 0.0 | 0 | 30.0 | 95.0 | 100 | powder | 1.0 | 0 | 0 | 0 | 193.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Behr, S., Amin, R., Chiang, Y. M., & Tomsia, A. P. (2015). Highly structured, additive free lithium-ion cathodes by freeze-casting technology. In Ceram. Forum Int. (Vol. 92, pp. E39-E43). | 2015 | 24 | 0 | 235 | ceramic | Li(NiCoAl)O2 | water | 100 | 0.0 | 0 | 30.0 | 95.0 | 100 | powder | 1.0 | 0 | 0 | 0 | 193.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Behr, S., Amin, R., Chiang, Y. M., & Tomsia, A. P. (2015). Highly structured, additive free lithium-ion cathodes by freeze-casting technology. In Ceram. Forum Int. (Vol. 92, pp. E39-E43). | 2015 | 24 | 0 | 236 | ceramic | Li(NiCoAl)O2 | water | 100 | 0.0 | 0 | 30.0 | 95.0 | 100 | powder | 1.0 | 0 | 0 | 0 | 193.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Behr, S., Amin, R., Chiang, Y. M., & Tomsia, A. P. (2015). Highly structured, additive free lithium-ion cathodes by freeze-casting technology. In Ceram. Forum Int. (Vol. 92, pp. E39-E43). | 2015 | 24 | 0 | 237 | ceramic | Li(NiCoAl)O2 | water | 100 | 0.0 | 0 | 30.0 | 95.0 | 100 | powder | 1.0 | 0 | 0 | 0 | 193.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Behr, S., Amin, R., Chiang, Y. M., & Tomsia, A. P. (2015). Highly structured, additive free lithium-ion cathodes by freeze-casting technology. In Ceram. Forum Int. (Vol. 92, pp. E39-E43). | 2015 | 24 | 0 | 238 | ceramic | Li(NiCoAl)O2 | water | 100 | 0.0 | 0 | 40.0 | 95.0 | 100 | powder | 1.0 | 0 | 0 | 0 | 193.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 32.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Behr, S., Amin, R., Chiang, Y. M., & Tomsia, A. P. (2015). Highly structured, additive free lithium-ion cathodes by freeze-casting technology. In Ceram. Forum Int. (Vol. 92, pp. E39-E43). | 2015 | 24 | 0 | 239 | ceramic | Li(NiCoAl)O2 | water | 100 | 0.0 | 0 | 40.0 | 95.0 | 100 | powder | 1.0 | 0 | 0 | 0 | 193.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 32.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Behr, S., Amin, R., Chiang, Y. M., & Tomsia, A. P. (2015). Highly structured, additive free lithium-ion cathodes by freeze-casting technology. In Ceram. Forum Int. (Vol. 92, pp. E39-E43). | 2015 | 24 | 0 | 240 | ceramic | Li(NiCoAl)O2 | water | 100 | 0.0 | 0 | 40.0 | 95.0 | 100 | powder | 1.0 | 0 | 0 | 0 | 193.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 32.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Behr, S., Amin, R., Chiang, Y. M., & Tomsia, A. P. (2015). Highly structured, additive free lithium-ion cathodes by freeze-casting technology. In Ceram. Forum Int. (Vol. 92, pp. E39-E43). | 2015 | 24 | 0 | 241 | ceramic | Li(NiCoAl)O2 | water | 100 | 0.0 | 0 | 40.0 | 95.0 | 100 | powder | 1.0 | 0 | 0 | 0 | 193.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 32.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Behr, S., Amin, R., Chiang, Y. M., & Tomsia, A. P. (2015). Highly structured, additive free lithium-ion cathodes by freeze-casting technology. In Ceram. Forum Int. (Vol. 92, pp. E39-E43). | 2015 | 24 | 0 | 242 | ceramic | Li(NiCoAl)O2 | water | 100 | 0.0 | 0 | 40.0 | 95.0 | 100 | powder | 1.0 | 0 | 0 | 0 | 193.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 32.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Behr, S., Amin, R., Chiang, Y. M., & Tomsia, A. P. (2015). Highly structured, additive free lithium-ion cathodes by freeze-casting technology. In Ceram. Forum Int. (Vol. 92, pp. E39-E43). | 2015 | 24 | 0 | 243 | ceramic | Li(NiCoAl)O2 | water | 100 | 0.0 | 0 | 40.0 | 95.0 | 100 | powder | 1.0 | 0 | 0 | 0 | 193.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 32.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Besser, B., Tajiri, H. A., Mikolajczyk, G., Mo?llmer, J., Schumacher, T. C., Odenbach, S., ... & Rezwan, K. (2016). Hierarchical porous zeolite structures for pressure swing adsorption applications. ACS applied materials & interfaces, 8(5), 3277-3286. | 2016 | 25 | 10.1021/acsami.5b11120 | 244 | ceramic | Zeo | water | 100 | 0.0 | 0 | 15.67 | 52.0 | 100 | powder | 2.0 | 10 | 10 | 0 | 123.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 75.66 | 0.0 | 0.0 | 0.0 | 0.0 | 0.04 | 0.0 | 0.0 |
Besser, B., Tajiri, H. A., Mikolajczyk, G., Mo?llmer, J., Schumacher, T. C., Odenbach, S., ... & Rezwan, K. (2016). Hierarchical porous zeolite structures for pressure swing adsorption applications. ACS applied materials & interfaces, 8(5), 3277-3286. | 2016 | 25 | 10.1021/acsami.5b11120 | 245 | ceramic | Zeo | water | 100 | 0.0 | 0 | 17.27 | 52.0 | 100 | powder | 2.0 | 10 | 10 | 0 | 123.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 73.26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.06 | 0.0 | 0.0 |
Besser, B., Tajiri, H. A., Mikolajczyk, G., Mo?llmer, J., Schumacher, T. C., Odenbach, S., ... & Rezwan, K. (2016). Hierarchical porous zeolite structures for pressure swing adsorption applications. ACS applied materials & interfaces, 8(5), 3277-3286. | 2016 | 25 | 10.1021/acsami.5b11120 | 246 | ceramic | Zeo | water | 100 | 0.0 | 0 | 18.92 | 52.0 | 100 | powder | 2.0 | 10 | 10 | 0 | 123.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.17 | 0.0 | 8.7 | 0.0 | 0.0 | 0.15 | 0.0 | 0.0 |
Besser, B., Tajiri, H. A., Mikolajczyk, G., Mo?llmer, J., Schumacher, T. C., Odenbach, S., ... & Rezwan, K. (2016). Hierarchical porous zeolite structures for pressure swing adsorption applications. ACS applied materials & interfaces, 8(5), 3277-3286. | 2016 | 25 | 10.1021/acsami.5b11120 | 247 | ceramic | Zeo | water | 100 | 0.0 | 0 | 20.64 | 52.0 | 100 | powder | 2.0 | 10 | 10 | 0 | 123.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Besser, B., Tajiri, H. A., Mikolajczyk, G., Mo?llmer, J., Schumacher, T. C., Odenbach, S., ... & Rezwan, K. (2016). Hierarchical porous zeolite structures for pressure swing adsorption applications. ACS applied materials & interfaces, 8(5), 3277-3286. | 2016 | 25 | 10.1021/acsami.5b11120 | 248 | ceramic | Zeo | water | 100 | 0.0 | 0 | 15.67 | 52.0 | 100 | powder | 2.0 | 10 | 10 | 0 | 123.0 | 0.0 | 0.0 | sponge | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Besser, B., Tajiri, H. A., Mikolajczyk, G., Mo?llmer, J., Schumacher, T. C., Odenbach, S., ... & Rezwan, K. (2016). Hierarchical porous zeolite structures for pressure swing adsorption applications. ACS applied materials & interfaces, 8(5), 3277-3286. | 2016 | 25 | 10.1021/acsami.5b11120 | 249 | ceramic | Zeo | water | 100 | 0.0 | 0 | 17.27 | 52.0 | 100 | powder | 2.0 | 10 | 10 | 0 | 123.0 | 0.0 | 0.0 | sponge | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Besser, B., Tajiri, H. A., Mikolajczyk, G., Mo?llmer, J., Schumacher, T. C., Odenbach, S., ... & Rezwan, K. (2016). Hierarchical porous zeolite structures for pressure swing adsorption applications. ACS applied materials & interfaces, 8(5), 3277-3286. | 2016 | 25 | 10.1021/acsami.5b11120 | 250 | ceramic | Zeo | water | 100 | 0.0 | 0 | 18.92 | 52.0 | 100 | powder | 2.0 | 10 | 10 | 0 | 123.0 | 0.0 | 0.0 | sponge | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 71.42 | 0.0 | 12.48 | 0.0 | 0.0 | 0.08 | 0.0 | 0.0 |
Besser, B., Tajiri, H. A., Mikolajczyk, G., Mo?llmer, J., Schumacher, T. C., Odenbach, S., ... & Rezwan, K. (2016). Hierarchical porous zeolite structures for pressure swing adsorption applications. ACS applied materials & interfaces, 8(5), 3277-3286. | 2016 | 25 | 10.1021/acsami.5b11120 | 251 | ceramic | Zeo | water | 100 | 0.0 | 0 | 20.64 | 52.0 | 100 | powder | 2.0 | 10 | 10 | 0 | 123.0 | 0.0 | 0.0 | sponge | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Besser, B., Tajiri, H. A., Mikolajczyk, G., Mo?llmer, J., Schumacher, T. C., Odenbach, S., ... & Rezwan, K. (2016). Hierarchical porous zeolite structures for pressure swing adsorption applications. ACS applied materials & interfaces, 8(5), 3277-3286. | 2016 | 25 | 10.1021/acsami.5b11120 | 252 | ceramic | Zeo | water | 100 | 0.0 | 0 | 15.67 | 52.0 | 100 | powder | 2.0 | 10 | 10 | 0 | 123.0 | 0.0 | 0.0 | sponge | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Besser, B., Tajiri, H. A., Mikolajczyk, G., Mo?llmer, J., Schumacher, T. C., Odenbach, S., ... & Rezwan, K. (2016). Hierarchical porous zeolite structures for pressure swing adsorption applications. ACS applied materials & interfaces, 8(5), 3277-3286. | 2016 | 25 | 10.1021/acsami.5b11120 | 253 | ceramic | Zeo | water | 100 | 0.0 | 0 | 17.27 | 52.0 | 100 | powder | 2.0 | 10 | 10 | 0 | 123.0 | 0.0 | 0.0 | sponge | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Besser, B., Tajiri, H. A., Mikolajczyk, G., Mo?llmer, J., Schumacher, T. C., Odenbach, S., ... & Rezwan, K. (2016). Hierarchical porous zeolite structures for pressure swing adsorption applications. ACS applied materials & interfaces, 8(5), 3277-3286. | 2016 | 25 | 10.1021/acsami.5b11120 | 254 | ceramic | Zeo | water | 100 | 0.0 | 0 | 18.92 | 52.0 | 100 | powder | 2.0 | 10 | 10 | 0 | 123.0 | 0.0 | 0.0 | sponge | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 71.24 | 0.0 | 12.17 | 0.0 | 0.0 | 0.11 | 0.0 | 0.0 |
Besser, B., Tajiri, H. A., Mikolajczyk, G., Mo?llmer, J., Schumacher, T. C., Odenbach, S., ... & Rezwan, K. (2016). Hierarchical porous zeolite structures for pressure swing adsorption applications. ACS applied materials & interfaces, 8(5), 3277-3286. | 2016 | 25 | 10.1021/acsami.5b11120 | 255 | ceramic | Zeo | water | 100 | 0.0 | 0 | 20.64 | 52.0 | 100 | powder | 2.0 | 10 | 10 | 0 | 123.0 | 0.0 | 0.0 | sponge | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Besser, B., Tajiri, H. A., Mikolajczyk, G., Mo?llmer, J., Schumacher, T. C., Odenbach, S., ... & Rezwan, K. (2016). Hierarchical porous zeolite structures for pressure swing adsorption applications. ACS applied materials & interfaces, 8(5), 3277-3286. | 2016 | 25 | 10.1021/acsami.5b11120 | 256 | ceramic | Zeo | water | 100 | 0.0 | 0 | 15.67 | 52.0 | 100 | powder | 2.0 | 10 | 10 | 0 | 123.0 | 0.0 | 0.0 | sponge | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Besser, B., Tajiri, H. A., Mikolajczyk, G., Mo?llmer, J., Schumacher, T. C., Odenbach, S., ... & Rezwan, K. (2016). Hierarchical porous zeolite structures for pressure swing adsorption applications. ACS applied materials & interfaces, 8(5), 3277-3286. | 2016 | 25 | 10.1021/acsami.5b11120 | 257 | ceramic | Zeo | water | 100 | 0.0 | 0 | 17.27 | 52.0 | 100 | powder | 2.0 | 10 | 10 | 0 | 123.0 | 0.0 | 0.0 | sponge | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Besser, B., Tajiri, H. A., Mikolajczyk, G., Mo?llmer, J., Schumacher, T. C., Odenbach, S., ... & Rezwan, K. (2016). Hierarchical porous zeolite structures for pressure swing adsorption applications. ACS applied materials & interfaces, 8(5), 3277-3286. | 2016 | 25 | 10.1021/acsami.5b11120 | 258 | ceramic | Zeo | water | 100 | 0.0 | 0 | 18.92 | 52.0 | 100 | powder | 2.0 | 10 | 10 | 0 | 123.0 | 0.0 | 0.0 | sponge | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 71.3 | 0.0 | 14.49 | 0.0 | 0.0 | 0.11 | 0.0 | 0.0 |
Besser, B., Tajiri, H. A., Mikolajczyk, G., Mo?llmer, J., Schumacher, T. C., Odenbach, S., ... & Rezwan, K. (2016). Hierarchical porous zeolite structures for pressure swing adsorption applications. ACS applied materials & interfaces, 8(5), 3277-3286. | 2016 | 25 | 10.1021/acsami.5b11120 | 259 | ceramic | Zeo | water | 100 | 0.0 | 0 | 20.64 | 52.0 | 100 | powder | 2.0 | 10 | 10 | 0 | 123.0 | 0.0 | 0.0 | sponge | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Besser, B., Tajiri, H. A., Mikolajczyk, G., Mo?llmer, J., Schumacher, T. C., Odenbach, S., ... & Rezwan, K. (2016). Hierarchical porous zeolite structures for pressure swing adsorption applications. ACS applied materials & interfaces, 8(5), 3277-3286. | 2016 | 25 | 10.1021/acsami.5b11120 | 260 | ceramic | Zeo | water | 100 | 0.0 | 0 | 15.67 | 52.0 | 100 | powder | 2.0 | 10 | 10 | 0 | 123.0 | 0.0 | 0.0 | sponge | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Besser, B., Tajiri, H. A., Mikolajczyk, G., Mo?llmer, J., Schumacher, T. C., Odenbach, S., ... & Rezwan, K. (2016). Hierarchical porous zeolite structures for pressure swing adsorption applications. ACS applied materials & interfaces, 8(5), 3277-3286. | 2016 | 25 | 10.1021/acsami.5b11120 | 261 | ceramic | Zeo | water | 100 | 0.0 | 0 | 17.27 | 52.0 | 100 | powder | 2.0 | 10 | 10 | 0 | 123.0 | 0.0 | 0.0 | sponge | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Besser, B., Tajiri, H. A., Mikolajczyk, G., Mo?llmer, J., Schumacher, T. C., Odenbach, S., ... & Rezwan, K. (2016). Hierarchical porous zeolite structures for pressure swing adsorption applications. ACS applied materials & interfaces, 8(5), 3277-3286. | 2016 | 25 | 10.1021/acsami.5b11120 | 262 | ceramic | Zeo | water | 100 | 0.0 | 0 | 18.92 | 52.0 | 100 | powder | 2.0 | 10 | 10 | 0 | 123.0 | 0.0 | 0.0 | sponge | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 71.46 | 0.0 | 68.57 | 0.0 | 0.0 | 0.11 | 0.0 | 0.0 |
Besser, B., Tajiri, H. A., Mikolajczyk, G., Mo?llmer, J., Schumacher, T. C., Odenbach, S., ... & Rezwan, K. (2016). Hierarchical porous zeolite structures for pressure swing adsorption applications. ACS applied materials & interfaces, 8(5), 3277-3286. | 2016 | 25 | 10.1021/acsami.5b11120 | 263 | ceramic | Zeo | water | 100 | 0.0 | 0 | 20.64 | 52.0 | 100 | powder | 2.0 | 10 | 10 | 0 | 123.0 | 0.0 | 0.0 | sponge | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ojuva, A., Akhtar, F., Tomsia, A. P., & Bergstro?m, L. (2013). Laminated adsorbents with very rapid CO2 uptake by freeze-casting of zeolites. ACS applied materials & interfaces, 5(7), 2669-2676. | 2013 | 444 | 10.1021/am400122r | 4051 | ceramic | Zeo | water | 100 | 0.0 | 0 | 15.0 | 52.0 | 100 | 0 | 4.0 | 9 | 0 | 0 | 0.0 | 0.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 | 0.05 | 0.0 | 0.0 |
Ojuva, A., Akhtar, F., Tomsia, A. P., & Bergstro?m, L. (2013). Laminated adsorbents with very rapid CO2 uptake by freeze-casting of zeolites. ACS applied materials & interfaces, 5(7), 2669-2676. | 2013 | 444 | 10.1021/am400122r | 4052 | ceramic | Zeo | water | 100 | 0.0 | 0 | 16.0 | 52.0 | 100 | 0 | 4.0 | 9 | 0 | 0 | 0.0 | 0.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.08 | 0.0 | 0.0 |
Ojuva, A., Akhtar, F., Tomsia, A. P., & Bergstro?m, L. (2013). Laminated adsorbents with very rapid CO2 uptake by freeze-casting of zeolites. ACS applied materials & interfaces, 5(7), 2669-2676. | 2013 | 444 | 10.1021/am400122r | 4053 | ceramic | Zeo | water | 100 | 0.0 | 0 | 17.0 | 52.0 | 100 | 0 | 4.0 | 9 | 0 | 0 | 0.0 | 0.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.08 | 0.0 | 0.0 |
Ojuva, A., Akhtar, F., Tomsia, A. P., & Bergstro?m, L. (2013). Laminated adsorbents with very rapid CO2 uptake by freeze-casting of zeolites. ACS applied materials & interfaces, 5(7), 2669-2676. | 2013 | 444 | 10.1021/am400122r | 4054 | ceramic | Zeo | water | 100 | 0.0 | 0 | 15.0 | 52.0 | 100 | 0 | 4.0 | 16 | 0 | 0 | 0.0 | 0.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.05 | 0.0 | 0.0 |
Ojuva, A., Akhtar, F., Tomsia, A. P., & Bergstro?m, L. (2013). Laminated adsorbents with very rapid CO2 uptake by freeze-casting of zeolites. ACS applied materials & interfaces, 5(7), 2669-2676. | 2013 | 444 | 10.1021/am400122r | 4055 | ceramic | Zeo | water | 100 | 0.0 | 0 | 16.0 | 52.0 | 100 | 0 | 4.0 | 16 | 0 | 0 | 0.0 | 0.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.08 | 0.0 | 0.0 |
Ojuva, A., Akhtar, F., Tomsia, A. P., & Bergstro?m, L. (2013). Laminated adsorbents with very rapid CO2 uptake by freeze-casting of zeolites. ACS applied materials & interfaces, 5(7), 2669-2676. | 2013 | 444 | 10.1021/am400122r | 4056 | ceramic | Zeo | water | 100 | 0.0 | 0 | 17.0 | 52.0 | 100 | 0 | 4.0 | 16 | 0 | 0 | 0.0 | 0.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.08 | 0.0 | 0.0 |
Ojuva, A., Akhtar, F., Tomsia, A. P., & Bergstro?m, L. (2013). Laminated adsorbents with very rapid CO2 uptake by freeze-casting of zeolites. ACS applied materials & interfaces, 5(7), 2669-2676. | 2013 | 444 | 10.1021/am400122r | 4057 | ceramic | Zeo | water | 100 | 0.0 | 0 | 15.0 | 52.0 | 100 | 0 | 4.0 | 16 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 |
Ojuva, A., Akhtar, F., Tomsia, A. P., & Bergstro?m, L. (2013). Laminated adsorbents with very rapid CO2 uptake by freeze-casting of zeolites. ACS applied materials & interfaces, 5(7), 2669-2676. | 2013 | 444 | 10.1021/am400122r | 4058 | ceramic | Zeo | water | 100 | 0.0 | 0 | 16.0 | 52.0 | 100 | 0 | 4.0 | 16 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.28 | 0.0 | 0.0 |
Ojuva, A., Akhtar, F., Tomsia, A. P., & Bergstro?m, L. (2013). Laminated adsorbents with very rapid CO2 uptake by freeze-casting of zeolites. ACS applied materials & interfaces, 5(7), 2669-2676. | 2013 | 444 | 10.1021/am400122r | 4059 | ceramic | Zeo | water | 100 | 0.0 | 0 | 17.0 | 52.0 | 100 | 0 | 4.0 | 16 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 |
Ojuva, A., Akhtar, F., Tomsia, A. P., & Bergstro?m, L. (2013). Laminated adsorbents with very rapid CO2 uptake by freeze-casting of zeolites. ACS applied materials & interfaces, 5(7), 2669-2676. | 2013 | 444 | 10.1021/am400122r | 4060 | ceramic | Zeo | water | 100 | 0.0 | 0 | 15.0 | 52.0 | 100 | 0 | 4.0 | 16 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 |
Ojuva, A., Akhtar, F., Tomsia, A. P., & Bergstro?m, L. (2013). Laminated adsorbents with very rapid CO2 uptake by freeze-casting of zeolites. ACS applied materials & interfaces, 5(7), 2669-2676. | 2013 | 444 | 10.1021/am400122r | 4061 | ceramic | Zeo | water | 100 | 0.0 | 0 | 16.0 | 52.0 | 100 | 0 | 4.0 | 16 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.28 | 0.0 | 0.0 |
Ojuva, A., Akhtar, F., Tomsia, A. P., & Bergstro?m, L. (2013). Laminated adsorbents with very rapid CO2 uptake by freeze-casting of zeolites. ACS applied materials & interfaces, 5(7), 2669-2676. | 2013 | 444 | 10.1021/am400122r | 4062 | ceramic | Zeo | water | 100 | 0.0 | 0 | 17.0 | 52.0 | 100 | 0 | 4.0 | 16 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 |
Ojuva, A., Akhtar, F., Tomsia, A. P., & Bergstro?m, L. (2013). Laminated adsorbents with very rapid CO2 uptake by freeze-casting of zeolites. ACS applied materials & interfaces, 5(7), 2669-2676. | 2013 | 444 | 10.1021/am400122r | 4063 | ceramic | Zeo | water | 100 | 0.0 | 0 | 15.0 | 52.0 | 100 | 0 | 4.0 | 16 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 | 0.13 | 0.0 | 0.0 |
Ojuva, A., Akhtar, F., Tomsia, A. P., & Bergstro?m, L. (2013). Laminated adsorbents with very rapid CO2 uptake by freeze-casting of zeolites. ACS applied materials & interfaces, 5(7), 2669-2676. | 2013 | 444 | 10.1021/am400122r | 4064 | ceramic | Zeo | water | 100 | 0.0 | 0 | 16.0 | 52.0 | 100 | 0 | 4.0 | 16 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.39 | 0.0 | 0.0 |
Ojuva, A., Akhtar, F., Tomsia, A. P., & Bergstro?m, L. (2013). Laminated adsorbents with very rapid CO2 uptake by freeze-casting of zeolites. ACS applied materials & interfaces, 5(7), 2669-2676. | 2013 | 444 | 10.1021/am400122r | 4065 | ceramic | Zeo | water | 100 | 0.0 | 0 | 17.0 | 52.0 | 100 | 0 | 4.0 | 16 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.69 | 0.0 | 0.0 |
Ojuva, A., Akhtar, F., Tomsia, A. P., & Bergstro?m, L. (2013). Laminated adsorbents with very rapid CO2 uptake by freeze-casting of zeolites. ACS applied materials & interfaces, 5(7), 2669-2676. | 2013 | 444 | 10.1021/am400122r | 4066 | ceramic | Zeo | water | 100 | 0.0 | 0 | 15.0 | 52.0 | 100 | 0 | 4.0 | 16 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.13 | 0.0 | 0.0 |
Ojuva, A., Akhtar, F., Tomsia, A. P., & Bergstro?m, L. (2013). Laminated adsorbents with very rapid CO2 uptake by freeze-casting of zeolites. ACS applied materials & interfaces, 5(7), 2669-2676. | 2013 | 444 | 10.1021/am400122r | 4067 | ceramic | Zeo | water | 100 | 0.0 | 0 | 16.0 | 52.0 | 100 | 0 | 4.0 | 16 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.39 | 0.0 | 0.0 |
Ojuva, A., Akhtar, F., Tomsia, A. P., & Bergstro?m, L. (2013). Laminated adsorbents with very rapid CO2 uptake by freeze-casting of zeolites. ACS applied materials & interfaces, 5(7), 2669-2676. | 2013 | 444 | 10.1021/am400122r | 4068 | ceramic | Zeo | water | 100 | 0.0 | 0 | 17.0 | 52.0 | 100 | 0 | 4.0 | 16 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.69 | 0.0 | 0.0 |
Ojuva, A., Järveläinen, M., Bauer, M., Keskinen, L., Valkonen, M., Akhtar, F., ... & Bergström, L. (2015). Mechanical performance and CO 2 uptake of ion-exchanged zeolite A structured by freeze-casting. Journal of the European Ceramic Society, 35(9), 2607-2618. | 2015 | 445 | 10.1016/j.jeurceramsoc.2015.03.001 | 4069 | ceramic | Zeo | water | 100 | 0.0 | 0 | 8.7 | 52.0 | 100 | 0 | 4.0 | 10 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.18 | 0.0 | 0.0 |
Ojuva, A., Järveläinen, M., Bauer, M., Keskinen, L., Valkonen, M., Akhtar, F., ... & Bergström, L. (2015). Mechanical performance and CO 2 uptake of ion-exchanged zeolite A structured by freeze-casting. Journal of the European Ceramic Society, 35(9), 2607-2618. | 2015 | 445 | 10.1016/j.jeurceramsoc.2015.03.001 | 4070 | ceramic | Zeo | water | 100 | 0.0 | 0 | 11.0 | 52.0 | 100 | 0 | 4.0 | 10 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.48 | 0.0 | 0.0 |
Ojuva, A., Järveläinen, M., Bauer, M., Keskinen, L., Valkonen, M., Akhtar, F., ... & Bergström, L. (2015). Mechanical performance and CO 2 uptake of ion-exchanged zeolite A structured by freeze-casting. Journal of the European Ceramic Society, 35(9), 2607-2618. | 2015 | 445 | 10.1016/j.jeurceramsoc.2015.03.001 | 4071 | ceramic | Zeo | water | 100 | 0.0 | 0 | 14.0 | 52.0 | 100 | 0 | 4.0 | 10 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 | 0.0 | 0.0 |
Ojuva, A., Järveläinen, M., Bauer, M., Keskinen, L., Valkonen, M., Akhtar, F., ... & Bergström, L. (2015). Mechanical performance and CO 2 uptake of ion-exchanged zeolite A structured by freeze-casting. Journal of the European Ceramic Society, 35(9), 2607-2618. | 2015 | 445 | 10.1016/j.jeurceramsoc.2015.03.001 | 4072 | ceramic | Zeo | water | 100 | 0.0 | 0 | 15.0 | 52.0 | 100 | 0 | 4.0 | 10 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.95 | 0.0 | 0.0 |
Ojuva, A., Järveläinen, M., Bauer, M., Keskinen, L., Valkonen, M., Akhtar, F., ... & Bergström, L. (2015). Mechanical performance and CO 2 uptake of ion-exchanged zeolite A structured by freeze-casting. Journal of the European Ceramic Society, 35(9), 2607-2618. | 2015 | 445 | 10.1016/j.jeurceramsoc.2015.03.001 | 4073 | ceramic | Zeo | water | 100 | 0.0 | 0 | 15.0 | 52.0 | 100 | 0 | 4.0 | 10 | 0 | 0 | 0.0 | 0.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.38 | 0.0 | 0.0 |
Ojuva, A., Järveläinen, M., Bauer, M., Keskinen, L., Valkonen, M., Akhtar, F., ... & Bergström, L. (2015). Mechanical performance and CO 2 uptake of ion-exchanged zeolite A structured by freeze-casting. Journal of the European Ceramic Society, 35(9), 2607-2618. | 2015 | 445 | 10.1016/j.jeurceramsoc.2015.03.001 | 4074 | ceramic | Zeo | water | 100 | 0.0 | 0 | 15.0 | 52.0 | 100 | 0 | 4.0 | 10 | 0 | 0 | 0.0 | 1.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.36 | 0.0 | 0.0 |
Ojuva, A., Järveläinen, M., Bauer, M., Keskinen, L., Valkonen, M., Akhtar, F., ... & Bergström, L. (2015). Mechanical performance and CO 2 uptake of ion-exchanged zeolite A structured by freeze-casting. Journal of the European Ceramic Society, 35(9), 2607-2618. | 2015 | 445 | 10.1016/j.jeurceramsoc.2015.03.001 | 4075 | ceramic | Zeo | water | 100 | 0.0 | 0 | 15.0 | 52.0 | 100 | 0 | 4.0 | 10 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.78 | 0.0 | 0.0 |
Ojuva, A., Järveläinen, M., Bauer, M., Keskinen, L., Valkonen, M., Akhtar, F., ... & Bergström, L. (2015). Mechanical performance and CO 2 uptake of ion-exchanged zeolite A structured by freeze-casting. Journal of the European Ceramic Society, 35(9), 2607-2618. | 2015 | 445 | 10.1016/j.jeurceramsoc.2015.03.001 | 4076 | ceramic | Zeo | water | 100 | 0.0 | 0 | 15.0 | 52.0 | 100 | 0 | 4.0 | 10 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.87 | 0.0 | 0.0 |
Pawelec, K. M., Husmann, A., Best, S. M., & Cameron, R. E. (2014). Understanding anisotropy and architecture in ice-templated biopolymer scaffolds. Materials Science and Engineering: C, 37, 141-147. | 2014 | 466 | 10.1016/j.msec.2014.01.009 | 4090 | ceramic | Zeo | acetic acid | 100 | 0.0 | 0 | 0.67 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.47 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., Husmann, A., Best, S. M., & Cameron, R. E. (2014). Understanding anisotropy and architecture in ice-templated biopolymer scaffolds. Materials Science and Engineering: C, 37, 141-147. | 2014 | 466 | 10.1016/j.msec.2014.01.009 | 4091 | ceramic | Zeo | acetic acid | 100 | 0.0 | 0 | 0.67 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.44 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 120.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., Husmann, A., Best, S. M., & Cameron, R. E. (2014). Understanding anisotropy and architecture in ice-templated biopolymer scaffolds. Materials Science and Engineering: C, 37, 141-147. | 2014 | 466 | 10.1016/j.msec.2014.01.009 | 4092 | ceramic | Zeo | acetic acid | 100 | 0.0 | 0 | 0.67 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.42 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 150.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., Husmann, A., Best, S. M., & Cameron, R. E. (2014). Understanding anisotropy and architecture in ice-templated biopolymer scaffolds. Materials Science and Engineering: C, 37, 141-147. | 2014 | 466 | 10.1016/j.msec.2014.01.009 | 4093 | ceramic | Zeo | acetic acid | 100 | 0.0 | 0 | 0.67 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.32 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., Husmann, A., Best, S. M., & Cameron, R. E. (2014). Understanding anisotropy and architecture in ice-templated biopolymer scaffolds. Materials Science and Engineering: C, 37, 141-147. | 2014 | 466 | 10.1016/j.msec.2014.01.009 | 4094 | ceramic | Zeo | acetic acid | 100 | 0.0 | 0 | 0.67 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.45 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 130.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., Husmann, A., Best, S. M., & Cameron, R. E. (2014). Understanding anisotropy and architecture in ice-templated biopolymer scaffolds. Materials Science and Engineering: C, 37, 141-147. | 2014 | 466 | 10.1016/j.msec.2014.01.009 | 4095 | ceramic | Zeo | acetic acid | 100 | 0.0 | 0 | 0.67 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.45 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 160.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., Husmann, A., Best, S. M., & Cameron, R. E. (2014). Understanding anisotropy and architecture in ice-templated biopolymer scaffolds. Materials Science and Engineering: C, 37, 141-147. | 2014 | 466 | 10.1016/j.msec.2014.01.009 | 4096 | ceramic | Zeo | acetic acid | 100 | 0.0 | 0 | 0.67 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.4 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 170.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., Husmann, A., Best, S. M., & Cameron, R. E. (2014). Understanding anisotropy and architecture in ice-templated biopolymer scaffolds. Materials Science and Engineering: C, 37, 141-147. | 2014 | 466 | 10.1016/j.msec.2014.01.009 | 4097 | ceramic | Zeo | acetic acid | 100 | 0.0 | 0 | 0.67 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.35 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bettge, M., Niculescu, H., & Gielisse, P. J. (2005, May). Engineered porous ceramics using a directional freeze-drying process. In Electronics Technology: Meeting the Challenges of Electronics Technology Progress, 2005. 28th International Spring Seminar on (pp. 28-34). IEEE. | 2004 | 26 | 10.1109/ISSE.2005.1490993 | 264 | ceramic | YSZ | water | 100 | 0.0 | 0 | 0.0 | 19.0 | 100 | powder | 0.0 | 3 | 0 | 0 | 258.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bettge, M., Niculescu, H., & Gielisse, P. J. (2005, May). Engineered porous ceramics using a directional freeze-drying process. In Electronics Technology: Meeting the Challenges of Electronics Technology Progress, 2005. 28th International Spring Seminar on (pp. 28-34). IEEE. | 2004 | 26 | 10.1109/ISSE.2005.1490993 | 265 | ceramic | YSZ | water | 100 | 0.0 | 0 | 0.0 | 19.0 | 100 | powder | 0.0 | 3 | 0 | 0 | 258.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bettge, M., Niculescu, H., & Gielisse, P. J. (2005, May). Engineered porous ceramics using a directional freeze-drying process. In Electronics Technology: Meeting the Challenges of Electronics Technology Progress, 2005. 28th International Spring Seminar on (pp. 28-34). IEEE. | 2004 | 26 | 10.1109/ISSE.2005.1490993 | 266 | ceramic | YSZ | water | 100 | 0.0 | 0 | 0.0 | 19.0 | 100 | powder | 0.0 | 3 | 0 | 0 | 258.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bettge, M., Niculescu, H., & Gielisse, P. J. (2005, May). Engineered porous ceramics using a directional freeze-drying process. In Electronics Technology: Meeting the Challenges of Electronics Technology Progress, 2005. 28th International Spring Seminar on (pp. 28-34). IEEE. | 2004 | 26 | 10.1109/ISSE.2005.1490993 | 267 | ceramic | YSZ | water | 100 | 0.0 | 0 | 1.22 | 19.0 | 100 | powder | 0.0 | 3 | 0 | 0 | 258.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 37 | lamellar | sintered | 71.0 | 34.0 | 24.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bettge, M., Niculescu, H., & Gielisse, P. J. (2005, May). Engineered porous ceramics using a directional freeze-drying process. In Electronics Technology: Meeting the Challenges of Electronics Technology Progress, 2005. 28th International Spring Seminar on (pp. 28-34). IEEE. | 2004 | 26 | 10.1109/ISSE.2005.1490993 | 268 | ceramic | YSZ | water | 100 | 0.0 | 0 | 1.31 | 19.0 | 100 | powder | 0.0 | 3 | 0 | 0 | 258.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 33 | lamellar | sintered | 70.0 | 24.0 | 17.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bettge, M., Niculescu, H., & Gielisse, P. J. (2005, May). Engineered porous ceramics using a directional freeze-drying process. In Electronics Technology: Meeting the Challenges of Electronics Technology Progress, 2005. 28th International Spring Seminar on (pp. 28-34). IEEE. | 2004 | 26 | 10.1109/ISSE.2005.1490993 | 269 | ceramic | YSZ | water | 100 | 0.0 | 0 | 1.89 | 19.0 | 100 | powder | 0.0 | 3 | 0 | 0 | 258.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 25 | lamellar | sintered | 72.0 | 44.0 | 27.0 | 17.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bettge, M., Niculescu, H., & Gielisse, P. J. (2005, May). Engineered porous ceramics using a directional freeze-drying process. In Electronics Technology: Meeting the Challenges of Electronics Technology Progress, 2005. 28th International Spring Seminar on (pp. 28-34). IEEE. | 2004 | 26 | 10.1109/ISSE.2005.1490993 | 270 | ceramic | YSZ | water | 100 | 0.0 | 0 | 2.9 | 19.0 | 100 | powder | 0.0 | 3 | 0 | 0 | 258.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 25 | lamellar | sintered | 58.0 | 57.0 | 34.0 | 23.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Viazzi, C., & Guizard, C. (2012). Ice-structuring mechanism for zirconium acetate. Langmuir, 28(42), 14892-14898. | 2012 | 88 | 10.1021/la302275d | 4844 | ceramic | YSZ | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Viazzi, C., & Guizard, C. (2012). Ice-structuring mechanism for zirconium acetate. Langmuir, 28(42), 14892-14898. | 2012 | 88 | 10.1021/la302275d | 4845 | ceramic | YSZ | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Viazzi, C., & Guizard, C. (2012). Ice-structuring mechanism for zirconium acetate. Langmuir, 28(42), 14892-14898. | 2012 | 88 | 10.1021/la302275d | 4846 | ceramic | YSZ | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Viazzi, C., & Guizard, C. (2012). Ice-structuring mechanism for zirconium acetate. Langmuir, 28(42), 14892-14898. | 2012 | 88 | 10.1021/la302275d | 4847 | ceramic | YSZ | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Viazzi, C., & Guizard, C. (2012). Ice-structuring mechanism for zirconium acetate. Langmuir, 28(42), 14892-14898. | 2012 | 88 | 10.1021/la302275d | 4848 | ceramic | YSZ | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Viazzi, C., & Guizard, C. (2012). Ice-structuring mechanism for zirconium acetate. Langmuir, 28(42), 14892-14898. | 2012 | 88 | 10.1021/la302275d | 4849 | ceramic | YSZ | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Viazzi, C., & Guizard, C. (2012). Ice-structuring mechanism for zirconium acetate. Langmuir, 28(42), 14892-14898. | 2012 | 88 | 10.1021/la302275d | 4850 | ceramic | YSZ | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Viazzi, C., & Guizard, C. (2012). Ice-structuring mechanism for zirconium acetate. Langmuir, 28(42), 14892-14898. | 2012 | 88 | 10.1021/la302275d | 4851 | ceramic | YSZ | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Viazzi, C., & Guizard, C. (2012). Ice-structuring mechanism for zirconium acetate. Langmuir, 28(42), 14892-14898. | 2012 | 88 | 10.1021/la302275d | 4852 | ceramic | YSZ | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Viazzi, C., & Guizard, C. (2012). Ice-structuring mechanism for zirconium acetate. Langmuir, 28(42), 14892-14898. | 2012 | 88 | 10.1021/la302275d | 4853 | ceramic | YSZ | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Viazzi, C., & Guizard, C. (2012). Ice-structuring mechanism for zirconium acetate. Langmuir, 28(42), 14892-14898. | 2012 | 88 | 10.1021/la302275d | 4854 | ceramic | YSZ | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Viazzi, C., & Guizard, C. (2012). Ice-structuring mechanism for zirconium acetate. Langmuir, 28(42), 14892-14898. | 2012 | 88 | 10.1021/la302275d | 4855 | ceramic | YSZ | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Viazzi, C., & Guizard, C. (2012). Ice-structuring mechanism for zirconium acetate. Langmuir, 28(42), 14892-14898. | 2012 | 88 | 10.1021/la302275d | 4856 | ceramic | YSZ | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dong, Y. H., Wang, C. A., Hu, L. F., & Zhou, J. (2012). Numerical calculations of effective thermal conductivity of porous ceramics by image-based finite element method. Frontiers of Materials Science, 6(1), 79-86. | 2011 | 96 | 10.1007/s11706-012-0156-6 | 591 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 0.0 | 19.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 47.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dong, Y. H., Wang, C. A., Hu, L. F., & Zhou, J. (2012). Numerical calculations of effective thermal conductivity of porous ceramics by image-based finite element method. Frontiers of Materials Science, 6(1), 79-86. | 2011 | 96 | 10.1007/s11706-012-0156-6 | 592 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 0.0 | 19.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 59.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dong, Y. H., Wang, C. A., Hu, L. F., & Zhou, J. (2012). Numerical calculations of effective thermal conductivity of porous ceramics by image-based finite element method. Frontiers of Materials Science, 6(1), 79-86. | 2011 | 96 | 10.1007/s11706-012-0156-6 | 593 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 0.0 | 19.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 64.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dong, Y. H., Wang, C. A., Hu, L. F., & Zhou, J. (2012). Numerical calculations of effective thermal conductivity of porous ceramics by image-based finite element method. Frontiers of Materials Science, 6(1), 79-86. | 2011 | 96 | 10.1007/s11706-012-0156-6 | 594 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 0.0 | 19.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 72.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dong, Y. H., Wang, C. A., Hu, L. F., & Zhou, J. (2012). Numerical calculations of effective thermal conductivity of porous ceramics by image-based finite element method. Frontiers of Materials Science, 6(1), 79-86. | 2011 | 96 | 10.1007/s11706-012-0156-6 | 5551 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 74.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dong, Y. H., Wang, C. A., Hu, L. F., & Zhou, J. (2012). Numerical calculations of effective thermal conductivity of porous ceramics by image-based finite element method. Frontiers of Materials Science, 6(1), 79-86. | 2011 | 96 | 10.1007/s11706-012-0156-6 | 5552 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dong, Y. H., Wang, C. A., Hu, L. F., & Zhou, J. (2012). Numerical calculations of effective thermal conductivity of porous ceramics by image-based finite element method. Frontiers of Materials Science, 6(1), 79-86. | 2011 | 96 | 10.1007/s11706-012-0156-6 | 5553 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 77.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Guizard, C., Leloup, J., & Deville, S. (2014). Crystal templating with mutually miscible solvents: a simple path to hierarchical porosity. Journal of the American Ceramic Society, 97(7), 2020-2023. | 2014 | 169 | 10.1111/jace.12995 | 930 | ceramic | YSZ | water | 85 | TBA | 15 | 0.0 | 19.0 | 100 | powder | 0.4 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Han, J., Hong, C., Zhang, X., Du, J., & Zhang, W. (2009). Microstructure controlling and properties of highly porosity ceramics by freeze-casting. In ICCE-17: Proc. 17th Int. Conf. Composites or Nanoengineering. Honolulu, HI: The Institute of Materials, Minerals, Mining. | 2009 | 186 | 0 | 1000 | ceramic | YSZ | camphene | 100 | 0.0 | 0 | 10.0 | 19.0 | 100 | powder | 0.4 | 0 | 0 | 0 | 278.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 85.0 | 0.0 | 0.0 | 0.0 | 0.0 | 50.0 | 0.0 | 0.0 |
Han, J., Hong, C., Zhang, X., Du, J., & Zhang, W. (2009). Microstructure controlling and properties of highly porosity ceramics by freeze-casting. In ICCE-17: Proc. 17th Int. Conf. Composites or Nanoengineering. Honolulu, HI: The Institute of Materials, Minerals, Mining. | 2009 | 186 | 0 | 1001 | ceramic | YSZ | camphene | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 0.4 | 0 | 0 | 0 | 278.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 130.0 | 0.0 | 0.0 |
Han, J., Hong, C., Zhang, X., Du, J., & Zhang, W. (2009). Microstructure controlling and properties of highly porosity ceramics by freeze-casting. In ICCE-17: Proc. 17th Int. Conf. Composites or Nanoengineering. Honolulu, HI: The Institute of Materials, Minerals, Mining. | 2009 | 186 | 0 | 1002 | ceramic | YSZ | camphene | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.4 | 0 | 0 | 0 | 278.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 67.0 | 0.0 | 0.0 | 0.0 | 0.0 | 75.0 | 0.0 | 0.0 |
Han, J., Hong, C., Zhang, X., Du, J., & Zhang, W. (2010). Highly porous ZrO 2 ceramics fabricated by a camphene-based freeze-casting route: Microstructure and properties. Journal of the European Ceramic Society, 30(1), 53-60. | 2010 | 187 | 10.1016/j.jeurceramsoc.2009.08.018 | 1003 | ceramic | YSZ | camphene | 100 | 0.0 | 0 | 10.0 | 19.0 | 100 | powder | 0.4 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 81.5 | 0.0 | 0.0 | 0.0 | 0.0 | 16.2 | 0.0 | 0.0 |
Han, J., Hong, C., Zhang, X., Du, J., & Zhang, W. (2010). Highly porous ZrO 2 ceramics fabricated by a camphene-based freeze-casting route: Microstructure and properties. Journal of the European Ceramic Society, 30(1), 53-60. | 2010 | 187 | 10.1016/j.jeurceramsoc.2009.08.018 | 1004 | ceramic | YSZ | camphene | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 0.4 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 74.4 | 0.0 | 0.0 | 0.0 | 0.0 | 32.9 | 0.0 | 0.0 |
Han, J., Hong, C., Zhang, X., Du, J., & Zhang, W. (2010). Highly porous ZrO 2 ceramics fabricated by a camphene-based freeze-casting route: Microstructure and properties. Journal of the European Ceramic Society, 30(1), 53-60. | 2010 | 187 | 10.1016/j.jeurceramsoc.2009.08.018 | 1005 | ceramic | YSZ | camphene | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.4 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 65.5 | 0.0 | 0.0 | 0.0 | 0.0 | 53.4 | 0.0 | 0.0 |
Han, J., Hong, C., Zhang, X., Du, J., & Zhang, W. (2010). Highly porous ZrO 2 ceramics fabricated by a camphene-based freeze-casting route: Microstructure and properties. Journal of the European Ceramic Society, 30(1), 53-60. | 2010 | 187 | 10.1016/j.jeurceramsoc.2009.08.018 | 1006 | ceramic | YSZ | camphene | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 0.4 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 84.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18.0 | 0.0 | 0.0 |
Han, J., Hong, C., Zhang, X., Du, J., & Zhang, W. (2010). Highly porous ZrO 2 ceramics fabricated by a camphene-based freeze-casting route: Microstructure and properties. Journal of the European Ceramic Society, 30(1), 53-60. | 2010 | 187 | 10.1016/j.jeurceramsoc.2009.08.018 | 1007 | ceramic | YSZ | camphene | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 0.4 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 77.0 | 0.0 | 0.0 | 0.0 | 0.0 | 30.0 | 0.0 | 0.0 |
Han, J., Hong, C., Zhang, X., Du, J., & Zhang, W. (2010). Highly porous ZrO 2 ceramics fabricated by a camphene-based freeze-casting route: Microstructure and properties. Journal of the European Ceramic Society, 30(1), 53-60. | 2010 | 187 | 10.1016/j.jeurceramsoc.2009.08.018 | 1008 | ceramic | YSZ | camphene | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 0.4 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 73.0 | 0.0 | 0.0 | 0.0 | 0.0 | 58.0 | 0.0 | 0.0 |
Hong, C., Zhang, X., Han, J., Du, J., & Han, W. (2009). Ultra-high-porosity zirconia ceramics fabricated by novel room-temperature freeze-casting. Scripta Materialia, 60(7), 563-566. | 2009 | 207 | 10.1016/j.scriptamat.2008.12.011 | 1879 | ceramic | YSZ | camphene | 100 | 0.0 | 0 | 10.0 | 19.0 | 100 | powder | 4.0 | 0 | 5 | 0 | 278.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 41.4 | 0.0 | 0.0 |
Hong, C., Zhang, X., Han, J., Du, J., & Han, W. (2009). Ultra-high-porosity zirconia ceramics fabricated by novel room-temperature freeze-casting. Scripta Materialia, 60(7), 563-566. | 2009 | 207 | 10.1016/j.scriptamat.2008.12.011 | 1880 | ceramic | YSZ | camphene | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 4.0 | 0 | 5 | 0 | 278.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 55.4 | 0.0 | 0.0 |
Hong, C., Zhang, X., Han, J., Du, J., & Han, W. (2009). Ultra-high-porosity zirconia ceramics fabricated by novel room-temperature freeze-casting. Scripta Materialia, 60(7), 563-566. | 2009 | 207 | 10.1016/j.scriptamat.2008.12.011 | 1881 | ceramic | YSZ | camphene | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 4.0 | 0 | 5 | 0 | 278.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 67.0 | 0.0 | 0.0 | 0.0 | 0.0 | 62.8 | 0.0 | 0.0 |
Hong, C., Zhang, X., Han, J., Du, J., & Zhang, W. (2010). Camphene-based freeze-cast ZrO 2 foam with high compressive strength. Materials Chemistry and Physics, 119(3), 359-362. | 2010 | 208 | 10.1016/j.matchemphys.2009.10.031 | 1882 | ceramic | YSZ | camphene | 100 | 0.0 | 0 | 10.0 | 19.0 | 100 | powder | 0.8 | 0 | 5 | 0 | 288.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 85.0 | 0.0 | 20.0 | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 |
Hong, C., Zhang, X., Han, J., Du, J., & Zhang, W. (2010). Camphene-based freeze-cast ZrO 2 foam with high compressive strength. Materials Chemistry and Physics, 119(3), 359-362. | 2010 | 208 | 10.1016/j.matchemphys.2009.10.031 | 1883 | ceramic | YSZ | camphene | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 0.8 | 0 | 5 | 0 | 288.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 74.0 | 0.0 | 0.0 | 0.0 | 0.0 | 30.0 | 0.0 | 0.0 |
Hong, C., Zhang, X., Han, J., Du, J., & Zhang, W. (2010). Camphene-based freeze-cast ZrO 2 foam with high compressive strength. Materials Chemistry and Physics, 119(3), 359-362. | 2010 | 208 | 10.1016/j.matchemphys.2009.10.031 | 1884 | ceramic | YSZ | camphene | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.8 | 0 | 5 | 0 | 288.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 67.0 | 0.0 | 10.0 | 0.0 | 0.0 | 58.0 | 0.0 | 0.0 |
Hu, L., & Wang, C. A. (2010). Effect of sintering temperature on compressive strength of porous yttria-stabilized zirconia ceramics. Ceramics international, 36(5), 1697-1701. | 2010 | 220 | 10.1016/j.ceramint.2010.03.009 | 1917 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 0.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 15 | cellular | sintered | 78.0 | 0.0 | 0.85 | 0.0 | 0.0 | 2.5 | 0.0 | 0.0 |
Hu, L., & Wang, C. A. (2010). Effect of sintering temperature on compressive strength of porous yttria-stabilized zirconia ceramics. Ceramics international, 36(5), 1697-1701. | 2010 | 220 | 10.1016/j.ceramint.2010.03.009 | 1918 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 0.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 17 | cellular | sintered | 75.0 | 0.0 | 0.95 | 0.0 | 0.0 | 7.5 | 0.0 | 0.0 |
Hu, L., & Wang, C. A. (2010). Effect of sintering temperature on compressive strength of porous yttria-stabilized zirconia ceramics. Ceramics international, 36(5), 1697-1701. | 2010 | 220 | 10.1016/j.ceramint.2010.03.009 | 1919 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 0.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 23 | cellular | sintered | 72.0 | 0.0 | 0.9 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 |
Hu, L., & Wang, C. A. (2010). Effect of sintering temperature on compressive strength of porous yttria-stabilized zirconia ceramics. Ceramics international, 36(5), 1697-1701. | 2010 | 220 | 10.1016/j.ceramint.2010.03.009 | 1920 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 0.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 25 | cellular | sintered | 66.0 | 0.0 | 1.0 | 0.0 | 0.0 | 12.5 | 0.0 | 0.0 |
Hu, L., & Wang, C. A. (2010). Effect of sintering temperature on compressive strength of porous yttria-stabilized zirconia ceramics. Ceramics international, 36(5), 1697-1701. | 2010 | 220 | 10.1016/j.ceramint.2010.03.009 | 1921 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 0.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 30 | cellular | sintered | 65.0 | 0.0 | 1.0 | 0.0 | 0.0 | 27.5 | 0.0 | 0.0 |
Hu, L., Wang, C. A., & Huang, Y. (2010). Porous yttria-stabilized zirconia ceramics with ultra-low thermal conductivity. Journal of materials science, 45(12), 3242-3246. | 2010 | 221 | 10.1007/s10853-010-4331-9 | 1922 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 10.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 75.9 | 0.0 | 1.28 | 0.0 | 0.0 | 3.04 | 0.0 | 0.0 |
Hu, L., Wang, C. A., & Huang, Y. (2010). Porous yttria-stabilized zirconia ceramics with ultra-low thermal conductivity. Journal of materials science, 45(12), 3242-3246. | 2010 | 221 | 10.1007/s10853-010-4331-9 | 1923 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 10.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 74.2 | 0.0 | 1.31 | 0.0 | 0.0 | 7.92 | 0.0 | 0.0 |
Hu, L., Wang, C. A., & Huang, Y. (2010). Porous yttria-stabilized zirconia ceramics with ultra-low thermal conductivity. Journal of materials science, 45(12), 3242-3246. | 2010 | 221 | 10.1007/s10853-010-4331-9 | 1924 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 10.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 72.4 | 0.0 | 1.35 | 0.0 | 0.0 | 9.64 | 0.0 | 0.0 |
Hu, L., Wang, C. A., & Huang, Y. (2010). Porous yttria-stabilized zirconia ceramics with ultra-low thermal conductivity. Journal of materials science, 45(12), 3242-3246. | 2010 | 221 | 10.1007/s10853-010-4331-9 | 1925 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 10.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 66.0 | 0.0 | 1.55 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hu, L., Wang, C. A., & Huang, Y. (2010). Porous yttria-stabilized zirconia ceramics with ultra-low thermal conductivity. Journal of materials science, 45(12), 3242-3246. | 2010 | 221 | 10.1007/s10853-010-4331-9 | 1926 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 10.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 65.6 | 0.0 | 1.78 | 0.0 | 0.0 | 24.92 | 0.0 | 0.0 |
Hu, L., Wang, C. A., & Huang, Y. (2010). Porous yttria-stabilized zirconia ceramics with ultra-low thermal conductivity. Journal of materials science, 45(12), 3242-3246. | 2010 | 221 | 10.1007/s10853-010-4331-9 | 1927 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 71.8 | 0.0 | 1.3 | 0.0 | 0.0 | 4.12 | 0.0 | 0.0 |
Hu, L., Wang, C. A., & Huang, Y. (2010). Porous yttria-stabilized zirconia ceramics with ultra-low thermal conductivity. Journal of materials science, 45(12), 3242-3246. | 2010 | 221 | 10.1007/s10853-010-4331-9 | 1928 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 65.0 | 0.0 | 1.33 | 0.0 | 0.0 | 9.22 | 0.0 | 0.0 |
Hu, L., Wang, C. A., & Huang, Y. (2010). Porous yttria-stabilized zirconia ceramics with ultra-low thermal conductivity. Journal of materials science, 45(12), 3242-3246. | 2010 | 221 | 10.1007/s10853-010-4331-9 | 1929 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 63.1 | 0.0 | 1.46 | 0.0 | 0.0 | 11.19 | 0.0 | 0.0 |
Hu, L., Wang, C. A., & Huang, Y. (2010). Porous yttria-stabilized zirconia ceramics with ultra-low thermal conductivity. Journal of materials science, 45(12), 3242-3246. | 2010 | 221 | 10.1007/s10853-010-4331-9 | 1930 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 51.5 | 0.0 | 1.57 | 0.0 | 0.0 | 10.66 | 0.0 | 0.0 |
Hu, L., Wang, C. A., & Huang, Y. (2010). Porous yttria-stabilized zirconia ceramics with ultra-low thermal conductivity. Journal of materials science, 45(12), 3242-3246. | 2010 | 221 | 10.1007/s10853-010-4331-9 | 1931 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 56.4 | 0.0 | 1.62 | 0.0 | 0.0 | 29.01 | 0.0 | 0.0 |
Hu, L., Wang, C. A., & Huang, Y. (2011). Porous YSZ ceramics with unidirectionally aligned pore channel structure: Lowering thermal conductivity by silica aerogels impregnation. Journal of the European Ceramic Society, 31(15), 2915-2922. | 2011 | 222 | 10.1016/j.jeurceramsoc.2011.07.014 | 1932 | ceramic | YSZ | 0.0 | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 78.0 | 0.0 | 18.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
Hu, L., Wang, C. A., & Huang, Y. (2011). Porous YSZ ceramics with unidirectionally aligned pore channel structure: Lowering thermal conductivity by silica aerogels impregnation. Journal of the European Ceramic Society, 31(15), 2915-2922. | 2011 | 222 | 10.1016/j.jeurceramsoc.2011.07.014 | 1933 | ceramic | YSZ | 0.0 | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 78.0 | 0.0 | 12.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
Hu, L., Wang, C. A., & Huang, Y. (2011). Porous YSZ ceramics with unidirectionally aligned pore channel structure: Lowering thermal conductivity by silica aerogels impregnation. Journal of the European Ceramic Society, 31(15), 2915-2922. | 2011 | 222 | 10.1016/j.jeurceramsoc.2011.07.014 | 1934 | ceramic | YSZ | 0.0 | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 78.0 | 0.0 | 5.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
Hu, L., Wang, C. A., Huang, Y., Sun, C., Lu, S., & Hu, Z. (2010). Control of pore channel size during freeze casting of porous YSZ ceramics with unidirectionally aligned channels using different freezing temperatures. Journal of the European Ceramic Society, 30(16), 3389-3396. | 2010 | 225 | 10.1016/j.jeurceramsoc.2010.07.032 | 1940 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 77.5 | 0.0 | 31.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hu, L., Wang, C. A., Huang, Y., Sun, C., Lu, S., & Hu, Z. (2010). Control of pore channel size during freeze casting of porous YSZ ceramics with unidirectionally aligned channels using different freezing temperatures. Journal of the European Ceramic Society, 30(16), 3389-3396. | 2010 | 225 | 10.1016/j.jeurceramsoc.2010.07.032 | 1941 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 77.4 | 0.0 | 51.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hu, L., Wang, C. A., Huang, Y., Sun, C., Lu, S., & Hu, Z. (2010). Control of pore channel size during freeze casting of porous YSZ ceramics with unidirectionally aligned channels using different freezing temperatures. Journal of the European Ceramic Society, 30(16), 3389-3396. | 2010 | 225 | 10.1016/j.jeurceramsoc.2010.07.032 | 1942 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 195.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 77.9 | 0.0 | 80.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hu, L., Wang, C. A., Huang, Y., Sun, C., Lu, S., & Hu, Z. (2010). Control of pore channel size during freeze casting of porous YSZ ceramics with unidirectionally aligned channels using different freezing temperatures. Journal of the European Ceramic Society, 30(16), 3389-3396. | 2010 | 225 | 10.1016/j.jeurceramsoc.2010.07.032 | 1943 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 195.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 74.5 | 0.0 | 28.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hu, L., Wang, C. A., Huang, Y., Sun, C., Lu, S., & Hu, Z. (2010). Control of pore channel size during freeze casting of porous YSZ ceramics with unidirectionally aligned channels using different freezing temperatures. Journal of the European Ceramic Society, 30(16), 3389-3396. | 2010 | 225 | 10.1016/j.jeurceramsoc.2010.07.032 | 1944 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 195.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 75.0 | 0.0 | 49.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hu, L., Wang, C. A., Huang, Y., Sun, C., Lu, S., & Hu, Z. (2010). Control of pore channel size during freeze casting of porous YSZ ceramics with unidirectionally aligned channels using different freezing temperatures. Journal of the European Ceramic Society, 30(16), 3389-3396. | 2010 | 225 | 10.1016/j.jeurceramsoc.2010.07.032 | 1945 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 75.5 | 0.0 | 69.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hu, L., Wang, C. A., Huang, Y., Sun, C., Lu, S., & Hu, Z. (2010). Control of pore channel size during freeze casting of porous YSZ ceramics with unidirectionally aligned channels using different freezing temperatures. Journal of the European Ceramic Society, 30(16), 3389-3396. | 2010 | 225 | 10.1016/j.jeurceramsoc.2010.07.032 | 1946 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 72.8 | 0.0 | 16.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hu, L., Wang, C. A., Huang, Y., Sun, C., Lu, S., & Hu, Z. (2010). Control of pore channel size during freeze casting of porous YSZ ceramics with unidirectionally aligned channels using different freezing temperatures. Journal of the European Ceramic Society, 30(16), 3389-3396. | 2010 | 225 | 10.1016/j.jeurceramsoc.2010.07.032 | 1947 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 74.5 | 0.0 | 26.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hu, L., Wang, C. A., Huang, Y., Sun, C., Lu, S., & Hu, Z. (2010). Control of pore channel size during freeze casting of porous YSZ ceramics with unidirectionally aligned channels using different freezing temperatures. Journal of the European Ceramic Society, 30(16), 3389-3396. | 2010 | 225 | 10.1016/j.jeurceramsoc.2010.07.032 | 1948 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 75.0 | 0.0 | 37.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Koh, Y. H., Jun, I. K., Sun, J. J., & Kim, H. E. (2006). In situ Fabrication of a Dense/Porous Bi?layered Ceramic Composite using Freeze Casting of a Ceramic?Camphene Slurry. Journal of the American Ceramic Society, 89(2), 763-766. | 2006 | 273 | 10.1111/j.1551-2916.2005.00785.x | 3198 | ceramic | YSZ | camphene | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | 0 | 0.0 | 0 | 2 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 56.0 | 0.0 | 17.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, S., Wang, C. A., & Hu, L. (2013). Improved heat insulation and mechanical properties of highly porous YSZ ceramics after silica aerogels impregnation. Journal of the American Ceramic Society, 96(10), 3223-3227. | 2013 | 315 | 10.1111/jace.12564 | 3402 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 77.0 | 0.0 | 1.9 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 |
Li, S., Wang, C. A., & Hu, L. (2013). Improved heat insulation and mechanical properties of highly porous YSZ ceramics after silica aerogels impregnation. Journal of the American Ceramic Society, 96(10), 3223-3227. | 2013 | 315 | 10.1111/jace.12564 | 3403 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 75.0 | 0.0 | 1.85 | 0.0 | 0.0 | 12.0 | 0.0 | 0.0 |
Li, S., Wang, C. A., & Hu, L. (2013). Improved heat insulation and mechanical properties of highly porous YSZ ceramics after silica aerogels impregnation. Journal of the American Ceramic Society, 96(10), 3223-3227. | 2013 | 315 | 10.1111/jace.12564 | 3404 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 72.0 | 0.0 | 1.84 | 0.0 | 0.0 | 14.0 | 0.0 | 0.0 |
Li, S., Wang, C. A., & Hu, L. (2013). Improved heat insulation and mechanical properties of highly porous YSZ ceramics after silica aerogels impregnation. Journal of the American Ceramic Society, 96(10), 3223-3227. | 2013 | 315 | 10.1111/jace.12564 | 3405 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 66.0 | 0.0 | 0.8 | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 |
Li, S., Wang, C. A., & Hu, L. (2013). Improved heat insulation and mechanical properties of highly porous YSZ ceramics after silica aerogels impregnation. Journal of the American Ceramic Society, 96(10), 3223-3227. | 2013 | 315 | 10.1111/jace.12564 | 3406 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 63.0 | 0.0 | 0.7 | 0.0 | 0.0 | 30.0 | 0.0 | 0.0 |
Pia, G. (2016). High porous yttria-stabilized zirconia with aligned pore channels: morphology directionality influence on heat transfer. Ceramics international, 42(10), 11674-11681. | 2016 | 481 | 10.1016/j.ceramint.2016.04.078i | 4142 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | 0 | 1.26 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 78.0 | 0.0 | 70.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pia, G. (2016). High porous yttria-stabilized zirconia with aligned pore channels: morphology directionality influence on heat transfer. Ceramics international, 42(10), 11674-11681. | 2016 | 481 | 10.1016/j.ceramint.2016.04.078i | 4143 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | 0 | 1.26 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 77.0 | 0.0 | 50.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pia, G. (2016). High porous yttria-stabilized zirconia with aligned pore channels: morphology directionality influence on heat transfer. Ceramics international, 42(10), 11674-11681. | 2016 | 481 | 10.1016/j.ceramint.2016.04.078i | 4144 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | 0 | 1.26 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 77.0 | 0.0 | 31.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pia, G. (2016). High porous yttria-stabilized zirconia with aligned pore channels: morphology directionality influence on heat transfer. Ceramics international, 42(10), 11674-11681. | 2016 | 481 | 10.1016/j.ceramint.2016.04.078i | 4145 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | 0 | 1.26 | 0 | 0 | 0 | 195.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 75.0 | 0.0 | 60.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pia, G. (2016). High porous yttria-stabilized zirconia with aligned pore channels: morphology directionality influence on heat transfer. Ceramics international, 42(10), 11674-11681. | 2016 | 481 | 10.1016/j.ceramint.2016.04.078i | 4146 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | 0 | 1.26 | 0 | 0 | 0 | 195.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 75.0 | 0.0 | 50.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pia, G. (2016). High porous yttria-stabilized zirconia with aligned pore channels: morphology directionality influence on heat transfer. Ceramics international, 42(10), 11674-11681. | 2016 | 481 | 10.1016/j.ceramint.2016.04.078i | 4147 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | 0 | 1.26 | 0 | 0 | 0 | 195.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 74.0 | 0.0 | 30.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pia, G. (2016). High porous yttria-stabilized zirconia with aligned pore channels: morphology directionality influence on heat transfer. Ceramics international, 42(10), 11674-11681. | 2016 | 481 | 10.1016/j.ceramint.2016.04.078i | 4148 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | 0 | 1.26 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 75.0 | 0.0 | 20.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pia, G. (2016). High porous yttria-stabilized zirconia with aligned pore channels: morphology directionality influence on heat transfer. Ceramics international, 42(10), 11674-11681. | 2016 | 481 | 10.1016/j.ceramint.2016.04.078i | 4149 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | 0 | 1.26 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 74.0 | 0.0 | 18.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pia, G. (2016). High porous yttria-stabilized zirconia with aligned pore channels: morphology directionality influence on heat transfer. Ceramics international, 42(10), 11674-11681. | 2016 | 481 | 10.1016/j.ceramint.2016.04.078i | 4150 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | 0 | 1.26 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 73.0 | 0.0 | 15.08 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pia, G., Casnedi, L., & Sanna, U. (2016). Porosity and pore size distribution influence on thermal conductivity of yttria-stabilized zirconia: Experimental findings and model predictions. Ceramics International, 42(5), 5802-5809. | 2016 | 482 | 10.1016/j.ceramint.2015.12.122 | 4151 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | 0 | 1.26 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 78.0 | 0.0 | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pia, G., Casnedi, L., & Sanna, U. (2016). Porosity and pore size distribution influence on thermal conductivity of yttria-stabilized zirconia: Experimental findings and model predictions. Ceramics International, 42(5), 5802-5809. | 2016 | 482 | 10.1016/j.ceramint.2015.12.122 | 4152 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | 0 | 1.26 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 77.0 | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pia, G., Casnedi, L., & Sanna, U. (2016). Porosity and pore size distribution influence on thermal conductivity of yttria-stabilized zirconia: Experimental findings and model predictions. Ceramics International, 42(5), 5802-5809. | 2016 | 482 | 10.1016/j.ceramint.2015.12.122 | 4153 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | 0 | 1.26 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 77.0 | 0.0 | 16.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pia, G., Casnedi, L., & Sanna, U. (2016). Porosity and pore size distribution influence on thermal conductivity of yttria-stabilized zirconia: Experimental findings and model predictions. Ceramics International, 42(5), 5802-5809. | 2016 | 482 | 10.1016/j.ceramint.2015.12.122 | 4154 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | 0 | 1.26 | 0 | 0 | 0 | 195.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 75.0 | 0.0 | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pia, G., Casnedi, L., & Sanna, U. (2016). Porosity and pore size distribution influence on thermal conductivity of yttria-stabilized zirconia: Experimental findings and model predictions. Ceramics International, 42(5), 5802-5809. | 2016 | 482 | 10.1016/j.ceramint.2015.12.122 | 4155 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | 0 | 1.26 | 0 | 0 | 0 | 195.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 75.0 | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pia, G., Casnedi, L., & Sanna, U. (2016). Porosity and pore size distribution influence on thermal conductivity of yttria-stabilized zirconia: Experimental findings and model predictions. Ceramics International, 42(5), 5802-5809. | 2016 | 482 | 10.1016/j.ceramint.2015.12.122 | 4156 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | 0 | 1.26 | 0 | 0 | 0 | 195.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 74.0 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pia, G., Casnedi, L., & Sanna, U. (2016). Porosity and pore size distribution influence on thermal conductivity of yttria-stabilized zirconia: Experimental findings and model predictions. Ceramics International, 42(5), 5802-5809. | 2016 | 482 | 10.1016/j.ceramint.2015.12.122 | 4157 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | 0 | 1.26 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 75.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pia, G., Casnedi, L., & Sanna, U. (2016). Porosity and pore size distribution influence on thermal conductivity of yttria-stabilized zirconia: Experimental findings and model predictions. Ceramics International, 42(5), 5802-5809. | 2016 | 482 | 10.1016/j.ceramint.2015.12.122 | 4158 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | 0 | 1.26 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 74.0 | 0.0 | 18.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pia, G., Casnedi, L., & Sanna, U. (2016). Porosity and pore size distribution influence on thermal conductivity of yttria-stabilized zirconia: Experimental findings and model predictions. Ceramics International, 42(5), 5802-5809. | 2016 | 482 | 10.1016/j.ceramint.2015.12.122 | 4159 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | 0 | 1.26 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 73.0 | 0.0 | 16.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pia, G., Casnedi, L., & Sanna, U. (2016). Porosity and pore size distribution influence on thermal conductivity of yttria-stabilized zirconia: Experimental findings and model predictions. Ceramics International, 42(5), 5802-5809. | 2016 | 482 | 10.1016/j.ceramint.2015.12.122 | 4160 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | fiber | 5.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 63.0 | 0.0 | 1.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pia, G., Casnedi, L., & Sanna, U. (2016). Porosity and pore size distribution influence on thermal conductivity of yttria-stabilized zirconia: Experimental findings and model predictions. Ceramics International, 42(5), 5802-5809. | 2016 | 482 | 10.1016/j.ceramint.2015.12.122 | 4161 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | fiber | 5.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 62.0 | 0.0 | 1.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pia, G., Casnedi, L., & Sanna, U. (2016). Porosity and pore size distribution influence on thermal conductivity of yttria-stabilized zirconia: Experimental findings and model predictions. Ceramics International, 42(5), 5802-5809. | 2016 | 482 | 10.1016/j.ceramint.2015.12.122 | 4162 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | fiber | 5.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 56.0 | 0.0 | 1.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pia, G., Casnedi, L., & Sanna, U. (2016). Porosity and pore size distribution influence on thermal conductivity of yttria-stabilized zirconia: Experimental findings and model predictions. Ceramics International, 42(5), 5802-5809. | 2016 | 482 | 10.1016/j.ceramint.2015.12.122 | 4163 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | fiber | 5.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 54.0 | 0.0 | 1.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). The effect of wall thickness distribution on mechanical reliability and strength in unidirectional porous ceramics. Science and technology of advanced materials, 17(1), 128-135. | 2016 | 555 | 10.1080/14686996.2016.1140309 | 3099 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | 0 | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 71.7 | 31.2 | 20.0 | 11.2 | 0.0 | 22.92 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). The effect of wall thickness distribution on mechanical reliability and strength in unidirectional porous ceramics. Science and technology of advanced materials, 17(1), 128-135. | 2016 | 555 | 10.1080/14686996.2016.1140309 | 3100 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | 0 | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 53.7 | 33.8 | 13.7 | 19.1 | 0.0 | 170.2 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). The effect of wall thickness distribution on mechanical reliability and strength in unidirectional porous ceramics. Science and technology of advanced materials, 17(1), 128-135. | 2016 | 555 | 10.1080/14686996.2016.1140309 | 3101 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | 0 | 0.0 | 2 | 0 | 0 | 0.0 | 25.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 54.5 | 6.1 | 3.1 | 3.0 | 0.0 | 198.2 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). The effect of wall thickness distribution on mechanical reliability and strength in unidirectional porous ceramics. Science and technology of advanced materials, 17(1), 128-135. | 2016 | 555 | 10.1080/14686996.2016.1140309 | 3102 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | 0 | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.5 | 32.1 | 15.0 | 17.1 | 0.0 | 40.3 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). The effect of wall thickness distribution on mechanical reliability and strength in unidirectional porous ceramics. Science and technology of advanced materials, 17(1), 128-135. | 2016 | 555 | 10.1080/14686996.2016.1140309 | 3103 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | 0 | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 53.1 | 63.5 | 27.3 | 37.2 | 0.0 | 122.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Gas permeability of ice-templated, unidirectional porous ceramics. Science and technology of advanced materials, 17(1), 313-323. | 2016 | 556 | 10.1080/14686996.2016.1197757 | 3104 | ceramic | YSZ | water | 100 | 0.0 | 0 | 14.7 | 19.0 | 100 | 0 | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 72.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Gas permeability of ice-templated, unidirectional porous ceramics. Science and technology of advanced materials, 17(1), 313-323. | 2016 | 556 | 10.1080/14686996.2016.1197757 | 3105 | ceramic | YSZ | water | 100 | 0.0 | 0 | 17.4 | 19.0 | 100 | 0 | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 67.0 | 0.0 | 18.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Gas permeability of ice-templated, unidirectional porous ceramics. Science and technology of advanced materials, 17(1), 313-323. | 2016 | 556 | 10.1080/14686996.2016.1197757 | 3106 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.6 | 19.0 | 100 | 0 | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.0 | 0.0 | 14.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Gas permeability of ice-templated, unidirectional porous ceramics. Science and technology of advanced materials, 17(1), 313-323. | 2016 | 556 | 10.1080/14686996.2016.1197757 | 3107 | ceramic | YSZ | water | 100 | 0.0 | 0 | 24.2 | 19.0 | 100 | 0 | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 54.0 | 0.0 | 14.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Gas permeability of ice-templated, unidirectional porous ceramics. Science and technology of advanced materials, 17(1), 313-323. | 2016 | 556 | 10.1080/14686996.2016.1197757 | 3108 | ceramic | YSZ | water | 100 | 0.0 | 0 | 14.7 | 19.0 | 100 | 0 | 0.0 | 2 | 0 | 0 | 0.0 | 25.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 72.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Gas permeability of ice-templated, unidirectional porous ceramics. Science and technology of advanced materials, 17(1), 313-323. | 2016 | 556 | 10.1080/14686996.2016.1197757 | 3109 | ceramic | YSZ | water | 100 | 0.0 | 0 | 17.4 | 19.0 | 100 | 0 | 0.0 | 2 | 0 | 0 | 0.0 | 25.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 68.0 | 0.0 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Gas permeability of ice-templated, unidirectional porous ceramics. Science and technology of advanced materials, 17(1), 313-323. | 2016 | 556 | 10.1080/14686996.2016.1197757 | 3110 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.6 | 19.0 | 100 | 0 | 0.0 | 2 | 0 | 0 | 0.0 | 25.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.0 | 0.0 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Gas permeability of ice-templated, unidirectional porous ceramics. Science and technology of advanced materials, 17(1), 313-323. | 2016 | 556 | 10.1080/14686996.2016.1197757 | 3111 | ceramic | YSZ | water | 100 | 0.0 | 0 | 24.2 | 19.0 | 100 | 0 | 0.0 | 2 | 0 | 0 | 0.0 | 25.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 55.0 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1112 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 69.5 | 31.2 | 20.0 | 11.2 | 0.0 | 0.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1113 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.2 | 33.0 | 17.7 | 14.7 | 0.0 | 0.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1114 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.4 | 31.0 | 13.9 | 15.8 | 0.0 | 0.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1115 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 52.5 | 33.8 | 13.7 | 19.1 | 0.0 | 0.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1116 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 25.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.4 | 8.3 | 4.7 | 3.6 | 0.0 | 0.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1117 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 25.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.2 | 8.2 | 4.3 | 3.9 | 0.0 | 0.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1118 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 25.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.7 | 9.3 | 4.1 | 5.2 | 0.0 | 0.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1119 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 25.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 51.5 | 6.1 | 3.1 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1120 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 46.0 | 0.0 | 0.0 | 0.0 | 0.0 | 245.14 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1121 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 208.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1122 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 53.0 | 0.0 | 0.0 | 0.0 | 0.0 | 201.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1123 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 53.0 | 0.0 | 0.0 | 0.0 | 0.0 | 185.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1124 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 54.0 | 0.0 | 0.0 | 0.0 | 0.0 | 180.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1125 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 193.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1126 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 200.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1127 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 49.0 | 0.0 | 0.0 | 0.0 | 0.0 | 223.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1128 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 54.0 | 0.0 | 0.0 | 0.0 | 0.0 | 167.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1129 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 53.0 | 0.0 | 0.0 | 0.0 | 0.0 | 157.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1130 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 54.0 | 0.0 | 0.0 | 0.0 | 0.0 | 155.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1131 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 54.0 | 0.0 | 0.0 | 0.0 | 0.0 | 157.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1132 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 54.0 | 0.0 | 0.0 | 0.0 | 0.0 | 155.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1133 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 54.0 | 0.0 | 0.0 | 0.0 | 0.0 | 147.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1134 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 54.0 | 0.0 | 0.0 | 0.0 | 0.0 | 140.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1135 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 54.0 | 0.0 | 0.0 | 0.0 | 0.0 | 141.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1136 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 143.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1137 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 147.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1138 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 128.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1139 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 132.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1140 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 58.0 | 0.0 | 0.0 | 0.0 | 0.0 | 169.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1141 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 58.0 | 0.0 | 0.0 | 0.0 | 0.0 | 169.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1142 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 57.0 | 0.0 | 0.0 | 0.0 | 0.0 | 173.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1143 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 58.0 | 0.0 | 0.0 | 0.0 | 0.0 | 176.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1144 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 61.0 | 0.0 | 0.0 | 0.0 | 0.0 | 101.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1145 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 62.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1146 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 62.0 | 0.0 | 0.0 | 0.0 | 0.0 | 97.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1147 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 61.0 | 0.0 | 0.0 | 0.0 | 0.0 | 91.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1148 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 61.0 | 0.0 | 0.0 | 0.0 | 0.0 | 95.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1149 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 67.0 | 0.0 | 0.0 | 0.0 | 0.0 | 42.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1150 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 38.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1151 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 30.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1152 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 71.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1153 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 72.0 | 0.0 | 0.0 | 0.0 | 0.0 | 19.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1154 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 72.0 | 0.0 | 0.0 | 0.0 | 0.0 | 16.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1155 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 72.0 | 0.0 | 0.0 | 0.0 | 0.0 | 23.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1156 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 72.0 | 0.0 | 0.0 | 0.0 | 0.0 | 11.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1157 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 72.0 | 0.0 | 0.0 | 0.0 | 0.0 | 11.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1158 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 71.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1159 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 68.0 | 0.0 | 0.0 | 0.0 | 0.0 | 63.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1160 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 67.0 | 0.0 | 0.0 | 0.0 | 0.0 | 68.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1161 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 67.0 | 0.0 | 0.0 | 0.0 | 0.0 | 62.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1162 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 67.0 | 0.0 | 0.0 | 0.0 | 0.0 | 65.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1163 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 60.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1164 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 67.0 | 0.0 | 0.0 | 0.0 | 0.0 | 63.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1165 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 67.0 | 0.0 | 0.0 | 0.0 | 0.0 | 52.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1166 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 55.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1167 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 0.0 | 0.0 | 0.0 | 0.0 | 52.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1168 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 56.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1169 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 60.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1170 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 65.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1171 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 67.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1172 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 77.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1173 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 79.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1174 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 67.0 | 0.0 | 0.0 | 0.0 | 0.0 | 82.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1175 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 67.0 | 0.0 | 0.0 | 0.0 | 0.0 | 73.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1176 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 67.0 | 0.0 | 0.0 | 0.0 | 0.0 | 70.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1177 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 57.0 | 0.0 | 0.0 | 0.0 | 0.0 | 125.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1178 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 57.0 | 0.0 | 0.0 | 0.0 | 0.0 | 137.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1179 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 57.0 | 0.0 | 0.0 | 0.0 | 0.0 | 145.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1180 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 58.0 | 0.0 | 0.0 | 0.0 | 0.0 | 149.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1181 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 59.0 | 0.0 | 0.0 | 0.0 | 0.0 | 151.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1182 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 58.0 | 0.0 | 0.0 | 0.0 | 0.0 | 154.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1183 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 58.0 | 0.0 | 0.0 | 0.0 | 0.0 | 153.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1184 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 57.0 | 0.0 | 0.0 | 0.0 | 0.0 | 158.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1185 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 126.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1186 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 63.0 | 0.0 | 0.0 | 0.0 | 0.0 | 124.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1187 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 62.0 | 0.0 | 0.0 | 0.0 | 0.0 | 107.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1188 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1189 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 77.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1190 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 77.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1191 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 74.0 | 0.0 | 0.0 | 0.0 | 0.0 | 19.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1192 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 74.0 | 0.0 | 0.0 | 0.0 | 0.0 | 19.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1193 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 73.0 | 0.0 | 0.0 | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1194 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 73.0 | 0.0 | 0.0 | 0.0 | 0.0 | 16.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1195 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 73.0 | 0.0 | 0.0 | 0.0 | 0.0 | 22.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1196 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 73.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1197 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 73.0 | 0.0 | 0.0 | 0.0 | 0.0 | 19.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1198 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 22.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1199 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 29.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1200 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 71.0 | 0.0 | 0.0 | 0.0 | 0.0 | 34.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1201 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 71.0 | 0.0 | 0.0 | 0.0 | 0.0 | 35.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1202 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 31.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1203 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 35.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1204 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 49.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1205 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 41.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1206 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 69.0 | 0.0 | 0.0 | 0.0 | 0.0 | 41.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1207 | ceramic | YSZ | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 43.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1208 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 37.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1209 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 36.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1210 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 66.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1211 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 70.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1212 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 75.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1213 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 78.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1214 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 79.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1215 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 84.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1216 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 80.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1217 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 88.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1218 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 89.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1219 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 0.0 | 0.0 | 0.0 | 0.0 | 84.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1220 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 0.0 | 0.0 | 0.0 | 0.0 | 88.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1221 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 0.0 | 0.0 | 0.0 | 0.0 | 84.0 | 0.0 | 0.0 |
Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6, 24326. | 2016 | 557 | 10.1038/srep24326 | 1222 | ceramic | YSZ | water | 100 | 0.0 | 0 | 27.0 | 19.0 | 100 | powder | 0.0 | 2 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 0.0 | 0.0 | 0.0 | 0.0 | 77.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2816 | ceramic | YSZ | water | 100 | 0.0 | 0 | 10.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 86.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2817 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2818 | ceramic | YSZ | water | 100 | 0.0 | 0 | 30.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2819 | ceramic | YSZ | water | 100 | 0.0 | 0 | 40.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2820 | ceramic | YSZ | water | 100 | 0.0 | 0 | 50.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 41.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2821 | ceramic | YSZ | water | 100 | 0.0 | 0 | 10.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 90.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2822 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2823 | ceramic | YSZ | water | 100 | 0.0 | 0 | 30.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2824 | ceramic | YSZ | water | 100 | 0.0 | 0 | 40.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2825 | ceramic | YSZ | water | 100 | 0.0 | 0 | 50.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 59.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2826 | ceramic | YSZ | water | 100 | 0.0 | 0 | 30.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 68.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2827 | ceramic | YSZ | water | 100 | 0.0 | 0 | 30.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 67.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2828 | ceramic | YSZ | water | 100 | 0.0 | 0 | 30.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 66.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2829 | ceramic | YSZ | water | 100 | 0.0 | 0 | 30.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 68.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2830 | ceramic | YSZ | water | 100 | 0.0 | 0 | 30.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 68.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2831 | ceramic | YSZ | water | 100 | 0.0 | 0 | 30.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 69.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2832 | ceramic | YSZ | water | 100 | 0.0 | 0 | 30.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 75.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2833 | ceramic | YSZ | water | 100 | 0.0 | 0 | 30.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 74.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2834 | ceramic | YSZ | water | 100 | 0.0 | 0 | 30.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 74.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2835 | ceramic | YSZ | water | 100 | 0.0 | 0 | 30.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 75.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2836 | ceramic | YSZ | water | 100 | 0.0 | 0 | 30.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 74.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2837 | ceramic | YSZ | water | 100 | 0.0 | 0 | 30.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 76.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2838 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 10.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2839 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 42.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2840 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 30.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2841 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 40.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2842 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 50.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2843 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 50.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2844 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 50.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2845 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 50.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2846 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 50.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 62.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sofie, S. W. (2007). Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(7), 2024-2031. | 2007 | 583 | 10.1111/j.1551-2916.2007.01720.x | 2847 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 50.0 | 19.0 | 100 | 0 | 0.55 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Villanova, J., Cloetens, P., Suhonen, H., Laurencin, J., Usseglio-Viretta, F., Lay, E., ... & Lichtner, A. Z. (2014). Multi-scale 3D imaging of absorbing porous materials for solid oxide fuel cells. Journal of Materials Science, 49(16), 5626-5634. | 2014 | 637 | 10.1007/s10853-014-8275-3 | 5826 | ceramic | YSZ | water | 100 | 0.0 | 0 | 0.2 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Du, H., Liu, J., & Guo, A. (2011). Preparation of sub-micron porous yttria-stabilized ceramics with ultra-low density by a TBA-based gel-casting method. Chemical engineering journal, 173(1), 251-257. | 2011 | 685 | 10.1016/j.cej.2011.07.061 | 2516 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 2.0 | 19.0 | 100 | 0 | 0.4 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Du, H., Liu, J., & Guo, A. (2011). Preparation of sub-micron porous yttria-stabilized ceramics with ultra-low density by a TBA-based gel-casting method. Chemical engineering journal, 173(1), 251-257. | 2011 | 685 | 10.1016/j.cej.2011.07.061 | 2517 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 3.0 | 19.0 | 100 | 0 | 0.4 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 74.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Du, H., Liu, J., & Guo, A. (2011). Preparation of sub-micron porous yttria-stabilized ceramics with ultra-low density by a TBA-based gel-casting method. Chemical engineering journal, 173(1), 251-257. | 2011 | 685 | 10.1016/j.cej.2011.07.061 | 2518 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 5.0 | 19.0 | 100 | 0 | 0.4 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 15 | cellular | sintered | 69.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Du, H., Liu, J., & Guo, A. (2011). Preparation of sub-micron porous yttria-stabilized ceramics with ultra-low density by a TBA-based gel-casting method. Chemical engineering journal, 173(1), 251-257. | 2011 | 685 | 10.1016/j.cej.2011.07.061 | 2519 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 6.0 | 19.0 | 100 | 0 | 0.4 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 62.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Du, H., Liu, J., & Guo, A. (2011). Preparation of sub-micron porous yttria-stabilized ceramics with ultra-low density by a TBA-based gel-casting method. Chemical engineering journal, 173(1), 251-257. | 2011 | 685 | 10.1016/j.cej.2011.07.061 | 2520 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 8.0 | 19.0 | 100 | 0 | 0.4 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Du, H., Liu, J., & Guo, A. (2011). Preparation of sub-micron porous yttria-stabilized ceramics with ultra-low density by a TBA-based gel-casting method. Chemical engineering journal, 173(1), 251-257. | 2011 | 685 | 10.1016/j.cej.2011.07.061 | 2521 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 2.0 | 19.0 | 100 | 0 | 0.4 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 31 | cellular | sintered | 76.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Du, H., Liu, J., & Guo, A. (2011). Preparation of sub-micron porous yttria-stabilized ceramics with ultra-low density by a TBA-based gel-casting method. Chemical engineering journal, 173(1), 251-257. | 2011 | 685 | 10.1016/j.cej.2011.07.061 | 2522 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 3.0 | 19.0 | 100 | 0 | 0.4 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 25 | cellular | sintered | 67.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Du, H., Liu, J., & Guo, A. (2011). Preparation of sub-micron porous yttria-stabilized ceramics with ultra-low density by a TBA-based gel-casting method. Chemical engineering journal, 173(1), 251-257. | 2011 | 685 | 10.1016/j.cej.2011.07.061 | 2523 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 5.0 | 19.0 | 100 | 0 | 0.4 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 19 | cellular | sintered | 64.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Du, H., Liu, J., & Guo, A. (2011). Preparation of sub-micron porous yttria-stabilized ceramics with ultra-low density by a TBA-based gel-casting method. Chemical engineering journal, 173(1), 251-257. | 2011 | 685 | 10.1016/j.cej.2011.07.061 | 2524 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 6.0 | 19.0 | 100 | 0 | 0.4 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 18 | cellular | sintered | 54.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Du, H., Liu, J., & Guo, A. (2011). Preparation of sub-micron porous yttria-stabilized ceramics with ultra-low density by a TBA-based gel-casting method. Chemical engineering journal, 173(1), 251-257. | 2011 | 685 | 10.1016/j.cej.2011.07.061 | 2525 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 8.0 | 19.0 | 100 | 0 | 0.4 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 16 | cellular | sintered | 48.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Du, H., Liu, J., & Guo, A. (2011). Preparation of sub-micron porous yttria-stabilized ceramics with ultra-low density by a TBA-based gel-casting method. Chemical engineering journal, 173(1), 251-257. | 2011 | 685 | 10.1016/j.cej.2011.07.061 | 2526 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 2.0 | 19.0 | 100 | 0 | 0.4 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 77.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Du, H., Liu, J., & Guo, A. (2011). Preparation of sub-micron porous yttria-stabilized ceramics with ultra-low density by a TBA-based gel-casting method. Chemical engineering journal, 173(1), 251-257. | 2011 | 685 | 10.1016/j.cej.2011.07.061 | 2527 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 3.0 | 19.0 | 100 | 0 | 0.4 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Du, H., Liu, J., & Guo, A. (2011). Preparation of sub-micron porous yttria-stabilized ceramics with ultra-low density by a TBA-based gel-casting method. Chemical engineering journal, 173(1), 251-257. | 2011 | 685 | 10.1016/j.cej.2011.07.061 | 2528 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 5.0 | 19.0 | 100 | 0 | 0.4 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 23 | cellular | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Du, H., Liu, J., & Guo, A. (2011). Preparation of sub-micron porous yttria-stabilized ceramics with ultra-low density by a TBA-based gel-casting method. Chemical engineering journal, 173(1), 251-257. | 2011 | 685 | 10.1016/j.cej.2011.07.061 | 2529 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 6.0 | 19.0 | 100 | 0 | 0.4 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Du, H., Liu, J., & Guo, A. (2011). Preparation of sub-micron porous yttria-stabilized ceramics with ultra-low density by a TBA-based gel-casting method. Chemical engineering journal, 173(1), 251-257. | 2011 | 685 | 10.1016/j.cej.2011.07.061 | 2530 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 8.0 | 19.0 | 100 | 0 | 0.4 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 47.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Du, H., Liu, J., & Guo, A. (2011). Preparation of sub-micron porous yttria-stabilized ceramics with ultra-low density by a TBA-based gel-casting method. Chemical engineering journal, 173(1), 251-257. | 2011 | 685 | 10.1016/j.cej.2011.07.061 | 2531 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 2.0 | 19.0 | 100 | 0 | 0.4 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 67.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Du, H., Liu, J., & Guo, A. (2011). Preparation of sub-micron porous yttria-stabilized ceramics with ultra-low density by a TBA-based gel-casting method. Chemical engineering journal, 173(1), 251-257. | 2011 | 685 | 10.1016/j.cej.2011.07.061 | 2532 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 3.0 | 19.0 | 100 | 0 | 0.4 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 56.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Du, H., Liu, J., & Guo, A. (2011). Preparation of sub-micron porous yttria-stabilized ceramics with ultra-low density by a TBA-based gel-casting method. Chemical engineering journal, 173(1), 251-257. | 2011 | 685 | 10.1016/j.cej.2011.07.061 | 2533 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 5.0 | 19.0 | 100 | 0 | 0.4 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 25 | cellular | sintered | 54.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Du, H., Liu, J., & Guo, A. (2011). Preparation of sub-micron porous yttria-stabilized ceramics with ultra-low density by a TBA-based gel-casting method. Chemical engineering journal, 173(1), 251-257. | 2011 | 685 | 10.1016/j.cej.2011.07.061 | 2534 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 6.0 | 19.0 | 100 | 0 | 0.4 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 43.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, H., Du, H., Liu, J., & Guo, A. (2011). Preparation of sub-micron porous yttria-stabilized ceramics with ultra-low density by a TBA-based gel-casting method. Chemical engineering journal, 173(1), 251-257. | 2011 | 685 | 10.1016/j.cej.2011.07.061 | 2535 | ceramic | YSZ | TBA | 100 | 0.0 | 0 | 8.0 | 19.0 | 100 | 0 | 0.4 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 35.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zuo, K., & Zeng, Y. P. (2010). FABRICATION OF YTTRIA-STABILIZED ZIRCONIA CERAMICS WITH RETICULATED PORE MICROSTRUCTURE BY FREEZE-DRYING. Ceramic Materials and Components for Energy and Environmental Applications: Ceramic Transactions, 210, 321. | 2010 | 774 | 0 | 6006 | ceramic | YSZ | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 95.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zuo, K., & Zeng, Y. P. (2010). FABRICATION OF YTTRIA-STABILIZED ZIRCONIA CERAMICS WITH RETICULATED PORE MICROSTRUCTURE BY FREEZE-DRYING. Ceramic Materials and Components for Energy and Environmental Applications: Ceramic Transactions, 210, 321. | 2010 | 774 | 0 | 6007 | ceramic | YSZ | water | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zuo, K., & Zeng, Y. P. (2010). FABRICATION OF YTTRIA-STABILIZED ZIRCONIA CERAMICS WITH RETICULATED PORE MICROSTRUCTURE BY FREEZE-DRYING. Ceramic Materials and Components for Energy and Environmental Applications: Ceramic Transactions, 210, 321. | 2010 | 774 | 0 | 6008 | ceramic | YSZ | water | 100 | 0.0 | 0 | 15.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 73.12 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zuo, K., & Zeng, Y. P. (2010). FABRICATION OF YTTRIA-STABILIZED ZIRCONIA CERAMICS WITH RETICULATED PORE MICROSTRUCTURE BY FREEZE-DRYING. Ceramic Materials and Components for Energy and Environmental Applications: Ceramic Transactions, 210, 321. | 2010 | 774 | 0 | 6009 | ceramic | YSZ | water | 100 | 0.0 | 0 | 15.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 69.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zuo, K., & Zeng, Y. P. (2010). FABRICATION OF YTTRIA-STABILIZED ZIRCONIA CERAMICS WITH RETICULATED PORE MICROSTRUCTURE BY FREEZE-DRYING. Ceramic Materials and Components for Energy and Environmental Applications: Ceramic Transactions, 210, 321. | 2010 | 774 | 0 | 6010 | ceramic | YSZ | water | 100 | 0.0 | 0 | 15.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 70.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zuo, K., & Zeng, Y. P. (2010). FABRICATION OF YTTRIA-STABILIZED ZIRCONIA CERAMICS WITH RETICULATED PORE MICROSTRUCTURE BY FREEZE-DRYING. Ceramic Materials and Components for Energy and Environmental Applications: Ceramic Transactions, 210, 321. | 2010 | 774 | 0 | 6011 | ceramic | YSZ | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 96.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zuo, K., & Zeng, Y. P. (2010). FABRICATION OF YTTRIA-STABILIZED ZIRCONIA CERAMICS WITH RETICULATED PORE MICROSTRUCTURE BY FREEZE-DRYING. Ceramic Materials and Components for Energy and Environmental Applications: Ceramic Transactions, 210, 321. | 2010 | 774 | 0 | 6012 | ceramic | YSZ | water | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zuo, K., & Zeng, Y. P. (2010). FABRICATION OF YTTRIA-STABILIZED ZIRCONIA CERAMICS WITH RETICULATED PORE MICROSTRUCTURE BY FREEZE-DRYING. Ceramic Materials and Components for Energy and Environmental Applications: Ceramic Transactions, 210, 321. | 2010 | 774 | 0 | 6013 | ceramic | YSZ | water | 100 | 0.0 | 0 | 15.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zuo, K., & Zeng, Y. P. (2010). FABRICATION OF YTTRIA-STABILIZED ZIRCONIA CERAMICS WITH RETICULATED PORE MICROSTRUCTURE BY FREEZE-DRYING. Ceramic Materials and Components for Energy and Environmental Applications: Ceramic Transactions, 210, 321. | 2010 | 774 | 0 | 6014 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Zuo, K., & Zeng, Y. P. (2010). FABRICATION OF YTTRIA-STABILIZED ZIRCONIA CERAMICS WITH RETICULATED PORE MICROSTRUCTURE BY FREEZE-DRYING. Ceramic Materials and Components for Energy and Environmental Applications: Ceramic Transactions, 210, 321. | 2010 | 774 | 0 | 6015 | ceramic | YSZ | water | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 38.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zuo, K. H., Zeng, Y. P., & Jiang, D. (2008). Properties of Microstructure?Controllable Porous Yttria?Stabilized Ziroconia Ceramics Fabricated by Freeze Casting. International Journal of Applied Ceramic Technology, 5(2), 198-203. | 2008 | 805 | 10.1111/j.1744-7402.2008.02190.x | 1801 | ceramic | YSZ | water | 100 | 0.0 | 0 | 32.97 | 19.0 | 100 | powder | 0.06 | 0 | 0 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 44.0 | 0.0 | 80.0 | 0.0 | 0.0 | 23.2 | 0.0 | 0.0 |
Zuo, K. H., Zeng, Y. P., & Jiang, D. (2008). Properties of Microstructure?Controllable Porous Yttria?Stabilized Ziroconia Ceramics Fabricated by Freeze Casting. International Journal of Applied Ceramic Technology, 5(2), 198-203. | 2008 | 805 | 10.1111/j.1744-7402.2008.02190.x | 1802 | ceramic | YSZ | water | 100 | 0.0 | 0 | 32.97 | 19.0 | 100 | powder | 0.06 | 1 | 0 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 57.0 | 0.0 | 0.0 | 0.0 | 0.0 | 38.0 | 0.0 | 0.0 |
Zuo, K. H., Zeng, Y. P., & Jiang, D. (2008). Properties of Microstructure?Controllable Porous Yttria?Stabilized Ziroconia Ceramics Fabricated by Freeze Casting. International Journal of Applied Ceramic Technology, 5(2), 198-203. | 2008 | 805 | 10.1111/j.1744-7402.2008.02190.x | 1803 | ceramic | YSZ | water | 100 | 0.0 | 0 | 32.97 | 19.0 | 100 | powder | 0.06 | 3 | 0 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 40.0 | 0.0 | 0.0 |
Zuo, K. H., Zeng, Y. P., & Jiang, D. (2008). Properties of Microstructure?Controllable Porous Yttria?Stabilized Ziroconia Ceramics Fabricated by Freeze Casting. International Journal of Applied Ceramic Technology, 5(2), 198-203. | 2008 | 805 | 10.1111/j.1744-7402.2008.02190.x | 1804 | ceramic | YSZ | water | 100 | 0.0 | 0 | 32.97 | 19.0 | 100 | powder | 0.06 | 5 | 0 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 65.0 | 0.0 | 2.2 | 0.0 | 0.0 | 28.0 | 0.0 | 0.0 |
Zuo, K. H., Zeng, Y. P., & Jiang, D. (2008). Properties of Microstructure?Controllable Porous Yttria?Stabilized Ziroconia Ceramics Fabricated by Freeze Casting. International Journal of Applied Ceramic Technology, 5(2), 198-203. | 2008 | 805 | 10.1111/j.1744-7402.2008.02190.x | 1805 | ceramic | YSZ | water | 100 | 0.0 | 0 | 32.97 | 19.0 | 100 | powder | 0.06 | 0 | 0 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zuo, K. H., Zeng, Y. P., & Jiang, D. (2008). Properties of Microstructure?Controllable Porous Yttria?Stabilized Ziroconia Ceramics Fabricated by Freeze Casting. International Journal of Applied Ceramic Technology, 5(2), 198-203. | 2008 | 805 | 10.1111/j.1744-7402.2008.02190.x | 1806 | ceramic | YSZ | water | 100 | 0.0 | 0 | 32.97 | 19.0 | 100 | powder | 0.06 | 1 | 0 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 56.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zuo, K. H., Zeng, Y. P., & Jiang, D. (2008). Properties of Microstructure?Controllable Porous Yttria?Stabilized Ziroconia Ceramics Fabricated by Freeze Casting. International Journal of Applied Ceramic Technology, 5(2), 198-203. | 2008 | 805 | 10.1111/j.1744-7402.2008.02190.x | 1807 | ceramic | YSZ | water | 100 | 0.0 | 0 | 32.97 | 19.0 | 100 | powder | 0.06 | 3 | 0 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 57.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zuo, K. H., Zeng, Y. P., & Jiang, D. (2008). Properties of Microstructure?Controllable Porous Yttria?Stabilized Ziroconia Ceramics Fabricated by Freeze Casting. International Journal of Applied Ceramic Technology, 5(2), 198-203. | 2008 | 805 | 10.1111/j.1744-7402.2008.02190.x | 1808 | ceramic | YSZ | water | 100 | 0.0 | 0 | 32.97 | 19.0 | 100 | powder | 0.06 | 5 | 0 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 54.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zuo, K. H., Zeng, Y. P., & Jiang, D. (2008). Properties of Microstructure?Controllable Porous Yttria?Stabilized Ziroconia Ceramics Fabricated by Freeze Casting. International Journal of Applied Ceramic Technology, 5(2), 198-203. | 2008 | 805 | 10.1111/j.1744-7402.2008.02190.x | 1809 | ceramic | YSZ | water | 100 | 0.0 | 0 | 32.97 | 19.0 | 100 | powder | 0.06 | 0 | 0 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 35.0 | 0.0 | 0.0 | 0.0 | 0.0 | 40.0 | 0.0 | 0.0 |
Zuo, K. H., Zeng, Y. P., & Jiang, D. (2008). Properties of Microstructure?Controllable Porous Yttria?Stabilized Ziroconia Ceramics Fabricated by Freeze Casting. International Journal of Applied Ceramic Technology, 5(2), 198-203. | 2008 | 805 | 10.1111/j.1744-7402.2008.02190.x | 1810 | ceramic | YSZ | water | 100 | 0.0 | 0 | 32.97 | 19.0 | 100 | powder | 0.06 | 1 | 0 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 57.0 | 0.0 | 0.0 |
Zuo, K. H., Zeng, Y. P., & Jiang, D. (2008). Properties of Microstructure?Controllable Porous Yttria?Stabilized Ziroconia Ceramics Fabricated by Freeze Casting. International Journal of Applied Ceramic Technology, 5(2), 198-203. | 2008 | 805 | 10.1111/j.1744-7402.2008.02190.x | 1811 | ceramic | YSZ | water | 100 | 0.0 | 0 | 32.97 | 19.0 | 100 | powder | 0.06 | 3 | 0 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 58.0 | 0.0 | 0.0 |
Zuo, K. H., Zeng, Y. P., & Jiang, D. (2008). Properties of Microstructure?Controllable Porous Yttria?Stabilized Ziroconia Ceramics Fabricated by Freeze Casting. International Journal of Applied Ceramic Technology, 5(2), 198-203. | 2008 | 805 | 10.1111/j.1744-7402.2008.02190.x | 1812 | ceramic | YSZ | water | 100 | 0.0 | 0 | 32.97 | 19.0 | 100 | powder | 0.06 | 5 | 0 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 62.0 | 0.0 | 0.0 |
Gurauskis, J., Graves, C. R., Moreno, R., & Nieto, M. I. (2017). Self-supported ceramic substrates with directional porosity by mold freeze casting. Journal of the European Ceramic Society, 37(2), 697-703. | 2016 | 812 | dx.doi.org/10.1016/j.jeurceramsoc.2016.08.031 | 2053 | ceramic | YSZ | water | 100 | 0.0 | 0 | 24.0 | 19.0 | 100 | powder | 0.2 | 6 | 0 | 12 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gurauskis, J., Graves, C. R., Moreno, R., & Nieto, M. I. (2017). Self-supported ceramic substrates with directional porosity by mold freeze casting. Journal of the European Ceramic Society, 37(2), 697-703. | 2016 | 812 | dx.doi.org/10.1016/j.jeurceramsoc.2016.08.031 | 2054 | ceramic | YSZ | water | 100 | 0.0 | 0 | 24.0 | 19.0 | 100 | powder | 0.2 | 6 | 0 | 16 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gurauskis, J., Graves, C. R., Moreno, R., & Nieto, M. I. (2017). Self-supported ceramic substrates with directional porosity by mold freeze casting. Journal of the European Ceramic Society, 37(2), 697-703. | 2016 | 812 | dx.doi.org/10.1016/j.jeurceramsoc.2016.08.031 | 2055 | ceramic | YSZ | water | 100 | 0.0 | 0 | 24.0 | 19.0 | 100 | powder | 0.2 | 6 | 0 | 19 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gurauskis, J., Graves, C. R., Moreno, R., & Nieto, M. I. (2017). Self-supported ceramic substrates with directional porosity by mold freeze casting. Journal of the European Ceramic Society, 37(2), 697-703. | 2016 | 812 | dx.doi.org/10.1016/j.jeurceramsoc.2016.08.031 | 2056 | ceramic | YSZ | water | 100 | 0.0 | 0 | 34.0 | 19.0 | 100 | powder | 0.2 | 9 | 0 | 16 | 243.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gurauskis, J., Graves, C. R., Moreno, R., & Nieto, M. I. (2017). Self-supported ceramic substrates with directional porosity by mold freeze casting. Journal of the European Ceramic Society, 37(2), 697-703. | 2016 | 812 | dx.doi.org/10.1016/j.jeurceramsoc.2016.08.031 | 2057 | ceramic | YSZ | water | 100 | 0.0 | 0 | 40.0 | 19.0 | 100 | powder | 0.2 | 0 | 0 | 16 | 243.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gurauskis, J., Graves, C. R., Moreno, R., & Nieto, M. I. (2017). Self-supported ceramic substrates with directional porosity by mold freeze casting. Journal of the European Ceramic Society, 37(2), 697-703. | 2016 | 812 | dx.doi.org/10.1016/j.jeurceramsoc.2016.08.031 | 2058 | ceramic | YSZ | water | 100 | 0.0 | 0 | 46.0 | 19.0 | 100 | powder | 0.2 | 1 | 0 | 16 | 243.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gurauskis, J., Graves, C. R., Moreno, R., & Nieto, M. I. (2017). Self-supported ceramic substrates with directional porosity by mold freeze casting. Journal of the European Ceramic Society, 37(2), 697-703. | 2016 | 812 | dx.doi.org/10.1016/j.jeurceramsoc.2016.08.031 | 2059 | ceramic | YSZ | water | 100 | 0.0 | 0 | 34.0 | 19.0 | 100 | powder | 0.2 | 9 | 0 | 16 | 243.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gurauskis, J., Graves, C. R., Moreno, R., & Nieto, M. I. (2017). Self-supported ceramic substrates with directional porosity by mold freeze casting. Journal of the European Ceramic Society, 37(2), 697-703. | 2016 | 812 | dx.doi.org/10.1016/j.jeurceramsoc.2016.08.031 | 2060 | ceramic | YSZ | water | 100 | 0.0 | 0 | 40.0 | 19.0 | 100 | powder | 0.2 | 0 | 0 | 16 | 243.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gurauskis, J., Graves, C. R., Moreno, R., & Nieto, M. I. (2017). Self-supported ceramic substrates with directional porosity by mold freeze casting. Journal of the European Ceramic Society, 37(2), 697-703. | 2016 | 812 | dx.doi.org/10.1016/j.jeurceramsoc.2016.08.031 | 2061 | ceramic | YSZ | water | 100 | 0.0 | 0 | 46.0 | 19.0 | 100 | powder | 0.2 | 1 | 0 | 16 | 243.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gurauskis, J., Graves, C. R., Moreno, R., & Nieto, M. I. (2017). Self-supported ceramic substrates with directional porosity by mold freeze casting. Journal of the European Ceramic Society, 37(2), 697-703. | 2017 | 833 | 10.1016/j.jeurceramsoc.2016.08.031 | 2410 | ceramic | YSZ | water | 100 | 0.0 | 0 | 24.0 | 19.0 | 0 | powder | 0.2 | 3 | 0 | 3 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gurauskis, J., Graves, C. R., Moreno, R., & Nieto, M. I. (2017). Self-supported ceramic substrates with directional porosity by mold freeze casting. Journal of the European Ceramic Society, 37(2), 697-703. | 2017 | 833 | 10.1016/j.jeurceramsoc.2016.08.031 | 2411 | ceramic | YSZ | water | 100 | 0.0 | 0 | 24.0 | 19.0 | 0 | powder | 0.2 | 3 | 0 | 3 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gurauskis, J., Graves, C. R., Moreno, R., & Nieto, M. I. (2017). Self-supported ceramic substrates with directional porosity by mold freeze casting. Journal of the European Ceramic Society, 37(2), 697-703. | 2017 | 833 | 10.1016/j.jeurceramsoc.2016.08.031 | 2412 | ceramic | YSZ | water | 100 | 0.0 | 0 | 24.0 | 19.0 | 0 | powder | 0.2 | 3 | 0 | 3 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gurauskis, J., Graves, C. R., Moreno, R., & Nieto, M. I. (2017). Self-supported ceramic substrates with directional porosity by mold freeze casting. Journal of the European Ceramic Society, 37(2), 697-703. | 2017 | 833 | 10.1016/j.jeurceramsoc.2016.08.031 | 2413 | ceramic | YSZ | water | 100 | 0.0 | 0 | 34.0 | 19.0 | 0 | powder | 0.2 | 5 | 0 | 5 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gurauskis, J., Graves, C. R., Moreno, R., & Nieto, M. I. (2017). Self-supported ceramic substrates with directional porosity by mold freeze casting. Journal of the European Ceramic Society, 37(2), 697-703. | 2017 | 833 | 10.1016/j.jeurceramsoc.2016.08.031 | 2414 | ceramic | YSZ | water | 100 | 0.0 | 0 | 40.0 | 19.0 | 0 | powder | 0.2 | 5 | 0 | 5 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gurauskis, J., Graves, C. R., Moreno, R., & Nieto, M. I. (2017). Self-supported ceramic substrates with directional porosity by mold freeze casting. Journal of the European Ceramic Society, 37(2), 697-703. | 2017 | 833 | 10.1016/j.jeurceramsoc.2016.08.031 | 2415 | ceramic | YSZ | water | 100 | 0.0 | 0 | 46.0 | 19.0 | 0 | powder | 0.2 | 5 | 0 | 5 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gurauskis, J., Graves, C. R., Moreno, R., & Nieto, M. I. (2017). Self-supported ceramic substrates with directional porosity by mold freeze casting. Journal of the European Ceramic Society, 37(2), 697-703. | 2017 | 833 | 10.1016/j.jeurceramsoc.2016.08.031 | 2416 | ceramic | YSZ | water | 100 | 0.0 | 0 | 34.0 | 19.0 | 0 | powder | 0.2 | 5 | 0 | 5 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gurauskis, J., Graves, C. R., Moreno, R., & Nieto, M. I. (2017). Self-supported ceramic substrates with directional porosity by mold freeze casting. Journal of the European Ceramic Society, 37(2), 697-703. | 2017 | 833 | 10.1016/j.jeurceramsoc.2016.08.031 | 2417 | ceramic | YSZ | water | 100 | 0.0 | 0 | 40.0 | 19.0 | 0 | powder | 0.2 | 5 | 0 | 5 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gurauskis, J., Graves, C. R., Moreno, R., & Nieto, M. I. (2017). Self-supported ceramic substrates with directional porosity by mold freeze casting. Journal of the European Ceramic Society, 37(2), 697-703. | 2017 | 833 | 10.1016/j.jeurceramsoc.2016.08.031 | 2418 | ceramic | YSZ | water | 100 | 0.0 | 0 | 46.0 | 19.0 | 0 | powder | 0.2 | 5 | 0 | 5 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhao, X., Lai, A., & Schuh, C. A. (2017). Shape memory zirconia foams through ice templating. Scripta Materialia, 135, 50-53. | 2017 | 950 | 10.1016/j.scriptamat.2017.03.032 | 5948 | ceramic | YSZ | water | 100 | 0.0 | 0 | 12.0 | 20.0 | 100 | powder | 0.1 | 0 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | parabolic | 10.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 68.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zou, Y., Gaudillere, C., Escribano, J. E., Serra, J. M., & Malzbender, J. (2017). Microstructure, mechanical behavior and flow resistance of freeze-cast porous 3YSZ substrates for membrane applications. Journal of the European Ceramic Society, 37(9), 3167-3176. | 2017 | 957 | 10.1016/j.jeurceramsoc.2017.03.056 | 5996 | ceramic | YSZ | water | 100 | 0.0 | 0 | 18.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.1 | 11.1 | 7.0 | 4.1 | 10.0 | 0.0 | 0.0 | 0.0 |
Zou, Y., Gaudillere, C., Escribano, J. E., Serra, J. M., & Malzbender, J. (2017). Microstructure, mechanical behavior and flow resistance of freeze-cast porous 3YSZ substrates for membrane applications. Journal of the European Ceramic Society, 37(9), 3167-3176. | 2017 | 957 | 10.1016/j.jeurceramsoc.2017.03.056 | 5997 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 61.8 | 11.7 | 7.0 | 4.6 | 10.0 | 0.0 | 0.0 | 0.0 |
Zou, Y., Gaudillere, C., Escribano, J. E., Serra, J. M., & Malzbender, J. (2017). Microstructure, mechanical behavior and flow resistance of freeze-cast porous 3YSZ substrates for membrane applications. Journal of the European Ceramic Society, 37(9), 3167-3176. | 2017 | 957 | 10.1016/j.jeurceramsoc.2017.03.056 | 5998 | ceramic | YSZ | water | 100 | 0.0 | 0 | 22.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 56.9 | 24.3 | 17.0 | 7.3 | 10.0 | 0.0 | 0.0 | 0.0 |
Zou, Y., Gaudillere, C., Escribano, J. E., Serra, J. M., & Malzbender, J. (2017). Microstructure, mechanical behavior and flow resistance of freeze-cast porous 3YSZ substrates for membrane applications. Journal of the European Ceramic Society, 37(9), 3167-3176. | 2017 | 957 | 10.1016/j.jeurceramsoc.2017.03.056 | 5999 | ceramic | YSZ | water | 100 | 0.0 | 0 | 24.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 50.2 | 26.6 | 16.0 | 10.6 | 15.0 | 0.0 | 0.0 | 0.0 |
Zou, Y., Gaudillere, C., Escribano, J. E., Serra, J. M., & Malzbender, J. (2017). Microstructure, mechanical behavior and flow resistance of freeze-cast porous 3YSZ substrates for membrane applications. Journal of the European Ceramic Society, 37(9), 3167-3176. | 2017 | 957 | 10.1016/j.jeurceramsoc.2017.03.056 | 6000 | ceramic | YSZ | water | 100 | 0.0 | 0 | 28.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 43.5 | 20.2 | 10.0 | 10.2 | 19.0 | 0.0 | 0.0 | 0.0 |
Zou, Y., Gaudillere, C., Escribano, J. E., Serra, J. M., & Malzbender, J. (2017). Microstructure, mechanical behavior and flow resistance of freeze-cast porous 3YSZ substrates for membrane applications. Journal of the European Ceramic Society, 37(9), 3167-3176. | 2017 | 957 | 10.1016/j.jeurceramsoc.2017.03.056 | 6001 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 61.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zou, Y., Gaudillere, C., Escribano, J. E., Serra, J. M., & Malzbender, J. (2017). Microstructure, mechanical behavior and flow resistance of freeze-cast porous 3YSZ substrates for membrane applications. Journal of the European Ceramic Society, 37(9), 3167-3176. | 2017 | 957 | 10.1016/j.jeurceramsoc.2017.03.056 | 6002 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 61.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zou, Y., Gaudillere, C., Escribano, J. E., Serra, J. M., & Malzbender, J. (2017). Microstructure, mechanical behavior and flow resistance of freeze-cast porous 3YSZ substrates for membrane applications. Journal of the European Ceramic Society, 37(9), 3167-3176. | 2017 | 957 | 10.1016/j.jeurceramsoc.2017.03.056 | 6003 | ceramic | YSZ | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 45.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zou, Y., Gaudillere, C., Escribano, J. E., Serra, J. M., & Malzbender, J. (2017). Microstructure, mechanical behavior and flow resistance of freeze-cast porous 3YSZ substrates for membrane applications. Journal of the European Ceramic Society, 37(9), 3167-3176. | 2017 | 957 | 10.1016/j.jeurceramsoc.2017.03.056 | 6004 | ceramic | YSZ | water | 100 | 0.0 | 0 | 11.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zou, Y., Gaudillere, C., Escribano, J. E., Serra, J. M., & Malzbender, J. (2017). Microstructure, mechanical behavior and flow resistance of freeze-cast porous 3YSZ substrates for membrane applications. Journal of the European Ceramic Society, 37(9), 3167-3176. | 2017 | 957 | 10.1016/j.jeurceramsoc.2017.03.056 | 6005 | ceramic | YSZ | water | 100 | 0.0 | 0 | 18.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 46.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bettge, M., Niculescu, H., & Gielisse, P. J. (2005, May). Engineered porous ceramics using a directional freeze-drying process. In Electronics Technology: Meeting the Challenges of Electronics Technology Progress, 2005. 28th International Spring Seminar on (pp. 28-34). IEEE. | 2004 | 26 | 10.1109/ISSE.2005.1490993 | 5560 | polymer | PVA | water | 100 | 0.0 | 0 | 3.0 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bettge, M., Niculescu, H., & Gielisse, P. J. (2005, May). Engineered porous ceramics using a directional freeze-drying process. In Electronics Technology: Meeting the Challenges of Electronics Technology Progress, 2005. 28th International Spring Seminar on (pp. 28-34). IEEE. | 2004 | 26 | 10.1109/ISSE.2005.1490993 | 5561 | polymer | PVA | water | 100 | 0.0 | 0 | 6.0 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bettge, M., Niculescu, H., & Gielisse, P. J. (2005, May). Engineered porous ceramics using a directional freeze-drying process. In Electronics Technology: Meeting the Challenges of Electronics Technology Progress, 2005. 28th International Spring Seminar on (pp. 28-34). IEEE. | 2004 | 26 | 10.1109/ISSE.2005.1490993 | 5562 | polymer | PVA | water | 100 | 0.0 | 0 | 9.0 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dawson, A., & Harris, P. (2010, October). Freeze casted microstructured PVA tissue phantoms using a microfabricated seed layer. In Ultrasonics Symposium (IUS), 2010 IEEE (pp. 2332-2335). IEEE. | 2010 | 65 | 10.1109/ULTSYM.2010.0588 | 481 | polymer | PVA | water | 100 | 0.0 | 0 | 5.0 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | seeded | constant | 67.0 | 0.0 | 0 | 0 | 0 | 0 | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dawson, A., & Harris, P. (2010, October). Freeze casted microstructured PVA tissue phantoms using a microfabricated seed layer. In Ultrasonics Symposium (IUS), 2010 IEEE (pp. 2332-2335). IEEE. | 2010 | 65 | 10.1109/ULTSYM.2010.0588 | 482 | polymer | PVA | water | 100 | 0.0 | 0 | 5.0 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | seeded | constant | 67.0 | 0.0 | 0 | 0 | 0 | 0 | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dawson, A., & Harris, P. (2010, October). Freeze casted microstructured PVA tissue phantoms using a microfabricated seed layer. In Ultrasonics Symposium (IUS), 2010 IEEE (pp. 2332-2335). IEEE. | 2010 | 65 | 10.1109/ULTSYM.2010.0588 | 483 | polymer | PVA | water | 100 | 0.0 | 0 | 5.0 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | seeded | constant | 67.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 22.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dawson, A., & Harris, P. (2010, October). Freeze casted microstructured PVA tissue phantoms using a microfabricated seed layer. In Ultrasonics Symposium (IUS), 2010 IEEE (pp. 2332-2335). IEEE. | 2010 | 65 | 10.1109/ULTSYM.2010.0588 | 484 | polymer | PVA | water | 100 | 0.0 | 0 | 5.0 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | seeded | constant | 67.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 35.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dawson, A., Harris, P., & Gouws, G. (2010). Anisotropic microstructured poly (vinyl alcohol) tissue-mimicking phantoms. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 57(7). | 2010 | 66 | 10.1109/tuffc.2010.1579 | 485 | polymer | PVA | water | 100 | 0.0 | 0 | 5.0 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 50.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dawson, A., Harris, P., & Gouws, G. (2010). Anisotropic microstructured poly (vinyl alcohol) tissue-mimicking phantoms. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 57(7). | 2010 | 66 | 10.1109/tuffc.2010.1579 | 486 | polymer | PVA | water | 100 | 0.0 | 0 | 5.0 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 83.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 22.0 | 15.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dawson, A., Harris, P., & Gouws, G. (2010). Anisotropic microstructured poly (vinyl alcohol) tissue-mimicking phantoms. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 57(7). | 2010 | 66 | 10.1109/tuffc.2010.1579 | 487 | polymer | PVA | water | 100 | 0.0 | 0 | 5.0 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 117.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gouws, G., Kivell, D. M., Ryan, B., Thomson, M., & Dawson, A. (2011, October). Properties of PVA tissue phantoms produced by directional solidification. In Ultrasonics Symposium (IUS), 2011 IEEE International (pp. 1341-1344). IEEE. | 2012 | 167 | 10.1109/ultsym.2011.0331 | 929 | polymer | PVA | water | 100 | 0.0 | 0 | 0.0 | 68.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | tape-casting | constant | 45.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 25.0 | 15.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutiérrez, M. C., García?Carvajal, Z. Y., Jobbágy, M., Rubio, F., Yuste, L., Rojo, F., ... & del Monte, F. (2007). Poly (vinyl alcohol) scaffolds with tailored morphologies for drug delivery and controlled release. Advanced Functional Materials, 17(17), 3505-3513. | 2007 | 178 | 10.1002/adfm.200700093 | 965 | polymer | PVA | water | 100 | 0.0 | 0 | 2.11 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 98.33 | 0.0 | 0 | 0 | 0 | dendritic | green | 88.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutiérrez, M. C., García?Carvajal, Z. Y., Jobbágy, M., Rubio, F., Yuste, L., Rojo, F., ... & del Monte, F. (2007). Poly (vinyl alcohol) scaffolds with tailored morphologies for drug delivery and controlled release. Advanced Functional Materials, 17(17), 3505-3513. | 2007 | 178 | 10.1002/adfm.200700093 | 966 | polymer | PVA | water | 100 | 0.0 | 0 | 6.57 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 98.33 | 0.0 | 0 | 0 | 0 | dendritic | green | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutiérrez, M. C., García?Carvajal, Z. Y., Jobbágy, M., Rubio, F., Yuste, L., Rojo, F., ... & del Monte, F. (2007). Poly (vinyl alcohol) scaffolds with tailored morphologies for drug delivery and controlled release. Advanced Functional Materials, 17(17), 3505-3513. | 2007 | 178 | 10.1002/adfm.200700093 | 967 | polymer | PVA | water | 100 | 0.0 | 0 | 8.54 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 98.33 | 0.0 | 0 | 0 | 0 | dendritic | green | 81.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutiérrez, M. C., García?Carvajal, Z. Y., Jobbágy, M., Rubio, F., Yuste, L., Rojo, F., ... & del Monte, F. (2007). Poly (vinyl alcohol) scaffolds with tailored morphologies for drug delivery and controlled release. Advanced Functional Materials, 17(17), 3505-3513. | 2007 | 178 | 10.1002/adfm.200700093 | 968 | polymer | PVA | water | 100 | 0.0 | 0 | 6.57 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 11.67 | 0.0 | 0 | 0 | 0 | dendritic | green | 79.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutiérrez, M. C., García?Carvajal, Z. Y., Jobbágy, M., Rubio, F., Yuste, L., Rojo, F., ... & del Monte, F. (2007). Poly (vinyl alcohol) scaffolds with tailored morphologies for drug delivery and controlled release. Advanced Functional Materials, 17(17), 3505-3513. | 2007 | 178 | 10.1002/adfm.200700093 | 969 | polymer | PVA | water | 100 | 0.0 | 0 | 6.57 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 11.67 | 0.0 | 0 | 0 | 0 | dendritic | green | 81.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutiérrez, M. C., García?Carvajal, Z. Y., Jobbágy, M., Rubio, F., Yuste, L., Rojo, F., ... & del Monte, F. (2007). Poly (vinyl alcohol) scaffolds with tailored morphologies for drug delivery and controlled release. Advanced Functional Materials, 17(17), 3505-3513. | 2007 | 178 | 10.1002/adfm.200700093 | 970 | polymer | PVA | water | 100 | 0.0 | 0 | 6.57 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 11.67 | 0.0 | 0 | 0 | 0 | dendritic | green | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutiérrez, M. C., García?Carvajal, Z. Y., Jobbágy, M., Rubio, F., Yuste, L., Rojo, F., ... & del Monte, F. (2007). Poly (vinyl alcohol) scaffolds with tailored morphologies for drug delivery and controlled release. Advanced Functional Materials, 17(17), 3505-3513. | 2007 | 178 | 10.1002/adfm.200700093 | 971 | polymer | PVA | water | 100 | 0.0 | 0 | 6.57 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 11.67 | 0.0 | 0 | 0 | 0 | dendritic | green | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutiérrez, M. C., García?Carvajal, Z. Y., Jobbágy, M., Rubio, F., Yuste, L., Rojo, F., ... & del Monte, F. (2007). Poly (vinyl alcohol) scaffolds with tailored morphologies for drug delivery and controlled release. Advanced Functional Materials, 17(17), 3505-3513. | 2007 | 178 | 10.1002/adfm.200700093 | 972 | polymer | PVA | water | 100 | 0.0 | 0 | 6.57 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 98.33 | 0.0 | 0 | 0 | 0 | dendritic | green | 84.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutiérrez, M. C., García?Carvajal, Z. Y., Jobbágy, M., Rubio, F., Yuste, L., Rojo, F., ... & del Monte, F. (2007). Poly (vinyl alcohol) scaffolds with tailored morphologies for drug delivery and controlled release. Advanced Functional Materials, 17(17), 3505-3513. | 2007 | 178 | 10.1002/adfm.200700093 | 973 | polymer | PVA | water | 100 | 0.0 | 0 | 6.57 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 98.33 | 0.0 | 0 | 0 | 0 | dendritic | green | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutiérrez, M. C., García?Carvajal, Z. Y., Jobbágy, M., Rubio, F., Yuste, L., Rojo, F., ... & del Monte, F. (2007). Poly (vinyl alcohol) scaffolds with tailored morphologies for drug delivery and controlled release. Advanced Functional Materials, 17(17), 3505-3513. | 2007 | 178 | 10.1002/adfm.200700093 | 974 | polymer | PVA | water | 100 | 0.0 | 0 | 6.57 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 98.33 | 0.0 | 0 | 0 | 0 | dendritic | green | 83.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutiérrez, M. C., García?Carvajal, Z. Y., Jobbágy, M., Rubio, F., Yuste, L., Rojo, F., ... & del Monte, F. (2007). Poly (vinyl alcohol) scaffolds with tailored morphologies for drug delivery and controlled release. Advanced Functional Materials, 17(17), 3505-3513. | 2007 | 178 | 10.1002/adfm.200700093 | 975 | polymer | PVA | water | 100 | 0.0 | 0 | 6.57 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 98.33 | 0.0 | 0 | 0 | 0 | dendritic | green | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutiérrez, M. C., García?Carvajal, Z. Y., Jobbágy, M., Rubio, F., Yuste, L., Rojo, F., ... & del Monte, F. (2007). Poly (vinyl alcohol) scaffolds with tailored morphologies for drug delivery and controlled release. Advanced Functional Materials, 17(17), 3505-3513. | 2007 | 178 | 10.1002/adfm.200700093 | 976 | polymer | PVA | water | 100 | 0.0 | 0 | 6.57 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 11.67 | 0.0 | 0 | 0 | 0 | dendritic | green | 81.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutiérrez, M. C., García?Carvajal, Z. Y., Jobbágy, M., Rubio, F., Yuste, L., Rojo, F., ... & del Monte, F. (2007). Poly (vinyl alcohol) scaffolds with tailored morphologies for drug delivery and controlled release. Advanced Functional Materials, 17(17), 3505-3513. | 2007 | 178 | 10.1002/adfm.200700093 | 977 | polymer | PVA | water | 100 | 0.0 | 0 | 6.57 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 98.33 | 0.0 | 0 | 0 | 0 | dendritic | green | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutiérrez, M. C., García?Carvajal, Z. Y., Jobbágy, M., Rubio, F., Yuste, L., Rojo, F., ... & del Monte, F. (2007). Poly (vinyl alcohol) scaffolds with tailored morphologies for drug delivery and controlled release. Advanced Functional Materials, 17(17), 3505-3513. | 2007 | 178 | 10.1002/adfm.200700093 | 978 | polymer | PVA | water | 100 | 0.0 | 0 | 8.0 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 151.67 | 0.0 | 0 | 0 | 0 | dendritic | green | 72.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutiérrez, M. C., García?Carvajal, Z. Y., Jobbágy, M., Rubio, F., Yuste, L., Rojo, F., ... & del Monte, F. (2007). Poly (vinyl alcohol) scaffolds with tailored morphologies for drug delivery and controlled release. Advanced Functional Materials, 17(17), 3505-3513. | 2007 | 178 | 10.1002/adfm.200700093 | 979 | polymer | PVA | water | 100 | 0.0 | 0 | 8.0 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 11.67 | 0.0 | 0 | 0 | 0 | dendritic | green | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutiérrez, M. C., García?Carvajal, Z. Y., Jobbágy, M., Rubio, F., Yuste, L., Rojo, F., ... & del Monte, F. (2007). Poly (vinyl alcohol) scaffolds with tailored morphologies for drug delivery and controlled release. Advanced Functional Materials, 17(17), 3505-3513. | 2007 | 178 | 10.1002/adfm.200700093 | 980 | polymer | PVA | water | 100 | 0.0 | 0 | 8.0 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 98.33 | 0.0 | 0 | 0 | 0 | dendritic | green | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gutiérrez, M. C., García?Carvajal, Z. Y., Jobbágy, M., Rubio, F., Yuste, L., Rojo, F., ... & del Monte, F. (2007). Poly (vinyl alcohol) scaffolds with tailored morphologies for drug delivery and controlled release. Advanced Functional Materials, 17(17), 3505-3513. | 2007 | 178 | 10.1002/adfm.200700093 | 981 | polymer | PVA | water | 100 | 0.0 | 0 | 8.0 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 151.67 | 0.0 | 0 | 0 | 0 | dendritic | green | 63.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Han, J., Hu, L., Zhang, Y., Jiang, Z., & Zhou, Y. (2010). In situ synthesis of hierarchically porous silica ceramics with unidirectionally aligned channel structure. Scripta Materialia, 62(6), 431-434. | 2010 | 184 | 10.1016/j.scriptamat.2009.12.019 | 996 | polymer | PVA | water | 100 | 0.0 | 0 | 4.0 | 68.0 | 100 | dissolved | 0.0 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 3.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Han, J., Hu, L., Zhang, Y., Jiang, Z., & Zhou, Y. (2010). In situ synthesis of hierarchically porous silica ceramics with unidirectionally aligned channel structure. Scripta Materialia, 62(6), 431-434. | 2010 | 184 | 10.1016/j.scriptamat.2009.12.019 | 997 | polymer | PVA | water | 100 | 0.0 | 0 | 4.0 | 68.0 | 100 | dissolved | 0.0 | 5 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, D., Ma, Z., Wang, Z., Tian, H., & Gu, M. (2014). Biodegradable poly (vinyl alcohol) foams supported by cellulose nanofibrils: processing, structure, and properties. Langmuir, 30(31), 9544-9550. | 2014 | 330 | 10.1021/la502723d | 5276 | polymer | PVA | water | 100 | 0.0 | 0 | 0.8 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, D., Ma, Z., Wang, Z., Tian, H., & Gu, M. (2014). Biodegradable poly (vinyl alcohol) foams supported by cellulose nanofibrils: processing, structure, and properties. Langmuir, 30(31), 9544-9550. | 2014 | 330 | 10.1021/la502723d | 5277 | polymer | PVA | water | 100 | 0.0 | 0 | 1.5 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, D., Ma, Z., Wang, Z., Tian, H., & Gu, M. (2014). Biodegradable poly (vinyl alcohol) foams supported by cellulose nanofibrils: processing, structure, and properties. Langmuir, 30(31), 9544-9550. | 2014 | 330 | 10.1021/la502723d | 5278 | polymer | PVA | water | 100 | 0.0 | 0 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, D., Ma, Z., Wang, Z., Tian, H., & Gu, M. (2014). Biodegradable poly (vinyl alcohol) foams supported by cellulose nanofibrils: processing, structure, and properties. Langmuir, 30(31), 9544-9550. | 2014 | 330 | 10.1021/la502723d | 5279 | polymer | PVA | water | 100 | 0.0 | 0 | 2.3 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, D., Ma, Z., Wang, Z., Tian, H., & Gu, M. (2014). Biodegradable poly (vinyl alcohol) foams supported by cellulose nanofibrils: processing, structure, and properties. Langmuir, 30(31), 9544-9550. | 2014 | 330 | 10.1021/la502723d | 5280 | polymer | PVA | water | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, D., Ma, Z., Wang, Z., Tian, H., & Gu, M. (2014). Biodegradable poly (vinyl alcohol) foams supported by cellulose nanofibrils: processing, structure, and properties. Langmuir, 30(31), 9544-9550. | 2014 | 330 | 10.1021/la502723d | 5281 | polymer | PVA | water | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 77.33 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nugent, M. J., & Higginbotham, C. L. (2007). Preparation of a novel freeze thawed poly (vinyl alcohol) composite hydrogel for drug delivery applications. European Journal of Pharmaceutics and Biopharmaceutics, 67(2), 377-386. | 2007 | 437 | 10.1016/j.ejpb.2007.02.014 | 4782 | polymer | PVA | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pot, M. W., Faraj, K. A., Adawy, A., van Enckevort, W. J., van Moerkerk, H. T., Vlieg, E., ... & van Kuppevelt, T. H. (2015). Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations. ACS applied materials & interfaces, 7(16), 8495-8505. | 2015 | 493 | 0 | 4649 | polymer | PVA | water | 100 | 0.0 | 0 | 0.45 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 87.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pot, M. W., Faraj, K. A., Adawy, A., van Enckevort, W. J., van Moerkerk, H. T., Vlieg, E., ... & van Kuppevelt, T. H. (2015). Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations. ACS applied materials & interfaces, 7(16), 8495-8505. | 2015 | 493 | 0 | 4650 | polymer | PVA | water | 100 | 0.0 | 0 | 0.45 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pot, M. W., Faraj, K. A., Adawy, A., van Enckevort, W. J., van Moerkerk, H. T., Vlieg, E., ... & van Kuppevelt, T. H. (2015). Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations. ACS applied materials & interfaces, 7(16), 8495-8505. | 2015 | 493 | 0 | 4651 | polymer | PVA | water | 100 | 0.0 | 0 | 0.45 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pot, M. W., Faraj, K. A., Adawy, A., van Enckevort, W. J., van Moerkerk, H. T., Vlieg, E., ... & van Kuppevelt, T. H. (2015). Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations. ACS applied materials & interfaces, 7(16), 8495-8505. | 2015 | 493 | 0 | 4652 | polymer | PVA | water | 100 | 0.0 | 0 | 0.45 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qian, L., Ahmed, A., Foster, A., Rannard, S. P., Cooper, A. I., & Zhang, H. (2009). Systematic tuning of pore morphologies and pore volumes in macroporous materials by freezing. Journal of Materials Chemistry, 19(29), 5212-5219. | 2009 | 505 | 10.1039/b903461g | 5433 | polymer | PVA | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | 0 | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | green | 0.0 | 0.0 | 90.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qian, L., Ahmed, A., Foster, A., Rannard, S. P., Cooper, A. I., & Zhang, H. (2009). Systematic tuning of pore morphologies and pore volumes in macroporous materials by freezing. Journal of Materials Chemistry, 19(29), 5212-5219. | 2009 | 505 | 10.1039/b903461g | 5434 | polymer | PVA | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | 0 | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | green | 0.0 | 0.0 | 90.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qian, L., Ahmed, A., Foster, A., Rannard, S. P., Cooper, A. I., & Zhang, H. (2009). Systematic tuning of pore morphologies and pore volumes in macroporous materials by freezing. Journal of Materials Chemistry, 19(29), 5212-5219. | 2009 | 505 | 10.1039/b903461g | 5435 | polymer | PVA | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | 0 | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | green | 0.0 | 0.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qian, L., Ahmed, A., Foster, A., Rannard, S. P., Cooper, A. I., & Zhang, H. (2009). Systematic tuning of pore morphologies and pore volumes in macroporous materials by freezing. Journal of Materials Chemistry, 19(29), 5212-5219. | 2009 | 505 | 10.1039/b903461g | 5436 | polymer | PVA | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | 0 | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | green | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qian, L., Ahmed, A., Foster, A., Rannard, S. P., Cooper, A. I., & Zhang, H. (2009). Systematic tuning of pore morphologies and pore volumes in macroporous materials by freezing. Journal of Materials Chemistry, 19(29), 5212-5219. | 2009 | 505 | 10.1039/b903461g | 5437 | polymer | PVA | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | 0 | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | green | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qian, L., Ahmed, A., Foster, A., Rannard, S. P., Cooper, A. I., & Zhang, H. (2009). Systematic tuning of pore morphologies and pore volumes in macroporous materials by freezing. Journal of Materials Chemistry, 19(29), 5212-5219. | 2009 | 505 | 10.1039/b903461g | 5438 | polymer | PVA | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qian, L., Ahmed, A., Foster, A., Rannard, S. P., Cooper, A. I., & Zhang, H. (2009). Systematic tuning of pore morphologies and pore volumes in macroporous materials by freezing. Journal of Materials Chemistry, 19(29), 5212-5219. | 2009 | 505 | 10.1039/b903461g | 5439 | polymer | PVA | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qian, L., Ahmed, A., Foster, A., Rannard, S. P., Cooper, A. I., & Zhang, H. (2009). Systematic tuning of pore morphologies and pore volumes in macroporous materials by freezing. Journal of Materials Chemistry, 19(29), 5212-5219. | 2009 | 505 | 10.1039/b903461g | 5440 | polymer | PVA | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qian, L., Ahmed, A., Foster, A., Rannard, S. P., Cooper, A. I., & Zhang, H. (2009). Systematic tuning of pore morphologies and pore volumes in macroporous materials by freezing. Journal of Materials Chemistry, 19(29), 5212-5219. | 2009 | 505 | 10.1039/b903461g | 5441 | polymer | PVA | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Vickery, J. L., Patil, A. J., & Mann, S. (2009). Fabrication of Graphene?Polymer Nanocomposites With Higher?Order Three?Dimensional Architectures. Advanced Materials, 21(21), 2180-2184. | 2009 | 631 | 10.1002/adma.200803606 | 5333 | polymer | PVA | water | 100 | 0.0 | 0 | 8.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, B., Ji, J., & Li, K. (2016). Crystal nuclei templated nanostructured membranes prepared by solvent crystallization and polymer migration. Nature communications, 7. | 2016 | 890 | 10.1038/ncomms12804 | 5326 | polymer | PVA | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.01 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, M., Wu, J., Bai, H., Xie, T., Zhao, Q., & Wong, T. W. (2016). Controlling three?dimensional ice template via two?dimensional surface wetting. AIChE Journal, 62(12), 4186-4192. | 2016 | 906 | 10.1002/aic.15509 | 4896 | polymer | PVA | water | 100 | 0.0 | 0 | 8.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bouville, F., Maire, E., & Deville, S. (2014). Self-assembly of faceted particles triggered by a moving ice front. Langmuir, 30(29), 8656-8663. | 2014 | 29 | 10.1021/la404426d | 277 | ceramic | BN | water | 100 | 0.0 | 0 | 18.0 | 11.0 | 100 | platelet | 8.0 | 1 | 0 | 0 | 0.0 | 0.5 | 0.0 | one-sided | linear | 7.0 | 0.0 | 0 | 0 | 0 | lamellar | frozen | 0.0 | 0.0 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bouville, F., Maire, E., & Deville, S. (2014). Self-assembly of faceted particles triggered by a moving ice front. Langmuir, 30(29), 8656-8663. | 2014 | 29 | 10.1021/la404426d | 278 | ceramic | BN | water | 100 | 0.0 | 0 | 18.0 | 11.0 | 100 | platelet | 8.0 | 1 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | frozen | 0.0 | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tushtev, K., Gonsior, M., Murck, M., Grathwohl, G., & Rezwan, K. (2014). A Novel Bioinspired Multilayered Polymer?Ceramic Composite with Outstanding Crack Resistance. Advanced Engineering Materials, 16(2), 156-160. | 2014 | 627 | 0 | 4800 | ceramic | BN | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zeng, X., Ye, L., Yu, S., Sun, R., Xu, J., & Wong, C. P. (2015). Facile preparation of superelastic and ultralow dielectric boron nitride nanosheet aerogels via freeze-casting process. Chemistry of Materials, 27(17), 5849-5855. | 2015 | 753 | 0 | 4808 | ceramic | BN | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Byrne, R. S., & Deasy, P. B. (2005). Use of porous aluminosilicate pellets for drug delivery. Journal of microencapsulation, 22(4), 423-437. | 2005 | 33 | 10.1080/02652040500100196 | 280 | ceramic | Al2SiO5 | water | 100 | 0.0 | 0 | 0.0 | 50.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 93.32 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Byrne, R. S., & Deasy, P. B. (2005). Use of porous aluminosilicate pellets for drug delivery. Journal of microencapsulation, 22(4), 423-437. | 2005 | 33 | 10.1080/02652040500100196 | 281 | ceramic | Al2SiO5 | water | 100 | 0.0 | 0 | 0.0 | 50.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 80.02 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Byrne, R. S., & Deasy, P. B. (2005). Use of porous aluminosilicate pellets for drug delivery. Journal of microencapsulation, 22(4), 423-437. | 2005 | 33 | 10.1080/02652040500100196 | 282 | ceramic | Al2SiO5 | water | 100 | 0.0 | 0 | 1.0 | 50.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 90.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Byrne, R. S., & Deasy, P. B. (2005). Use of porous aluminosilicate pellets for drug delivery. Journal of microencapsulation, 22(4), 423-437. | 2005 | 33 | 10.1080/02652040500100196 | 283 | ceramic | Al2SiO5 | water | 100 | 0.0 | 0 | 1.0 | 50.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 80.56 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Byrne, R. S., & Deasy, P. B. (2005). Use of porous aluminosilicate pellets for drug delivery. Journal of microencapsulation, 22(4), 423-437. | 2005 | 33 | 10.1080/02652040500100196 | 284 | ceramic | Al2SiO5 | water | 100 | 0.0 | 0 | 3.0 | 50.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 85.59 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Byrne, R. S., & Deasy, P. B. (2005). Use of porous aluminosilicate pellets for drug delivery. Journal of microencapsulation, 22(4), 423-437. | 2005 | 33 | 10.1080/02652040500100196 | 285 | ceramic | Al2SiO5 | water | 100 | 0.0 | 0 | 3.0 | 50.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 75.19 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Cable, T. L., Setlock, J. A., & Farmer, S. C. (2007). Regenerative operation of the NASA symmetrical support solid oxide fuel cell. Advances in Solid Oxide Fuel Cells III: Ceramic and Engineering Science Proceeding, Volume 28, Issue 4, 103-113. | 2008 | 34 | 10.1002/9780470339534 | 286 | ceramic | YSZ-LaCaCrO3 (mixed) | water | 100 | 0.0 | 0 | 0.0 | 19.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Cable, T. L., & Sofie, S. W. (2007). A symmetrical, planar SOFC design for NASA's high specific power density requirements. Journal of Power Sources, 174(1), 221-227. | 2007 | 35 | 10.1016/j.jpowsour.2007.08.110 | 287 | ceramic | YSZ-LaCaCrO3 (mixed) | water | 100 | 0.0 | 0 | 0.0 | 19.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Carlesso, M., Giacomelli, R., Günther, S., Koch, D., Kroll, S., Odenbach, S., & Rezwan, K. (2013). Near?Net?Shaped Porous Ceramics for Potential Sound Absorption Applications at High Temperatures. Journal of the American Ceramic Society, 96(3), 710-718. | 2013 | 36 | 10.1111/jace.12160 | 288 | ceramic | Al2O3-mullite (mixed) | water | 100 | 0.0 | 0 | 43.0 | 1.0 | 23 | 0 | 0.65 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 72.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Carlesso, M., Giacomelli, R., Günther, S., Koch, D., Kroll, S., Odenbach, S., & Rezwan, K. (2013). Near?Net?Shaped Porous Ceramics for Potential Sound Absorption Applications at High Temperatures. Journal of the American Ceramic Society, 96(3), 710-718. | 2013 | 36 | 10.1111/jace.12160 | 289 | ceramic | Al2O3-mullite (mixed) | water | 100 | 0.0 | 0 | 47.0 | 1.0 | 23 | 0 | 0.65 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 73.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Carlesso, M., Giacomelli, R., Günther, S., Koch, D., Kroll, S., Odenbach, S., & Rezwan, K. (2013). Near?Net?Shaped Porous Ceramics for Potential Sound Absorption Applications at High Temperatures. Journal of the American Ceramic Society, 96(3), 710-718. | 2013 | 36 | 10.1111/jace.12160 | 290 | ceramic | Al2O3-mullite (mixed) | water | 100 | 0.0 | 0 | 50.0 | 1.0 | 23 | 0 | 0.65 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 74.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Carlesso, M., Giacomelli, R., Günther, S., Koch, D., Kroll, S., Odenbach, S., & Rezwan, K. (2013). Near?Net?Shaped Porous Ceramics for Potential Sound Absorption Applications at High Temperatures. Journal of the American Ceramic Society, 96(3), 710-718. | 2013 | 36 | 10.1111/jace.12160 | 291 | ceramic | Al2O3-mullite (mixed) | water | 100 | 0.0 | 0 | 55.0 | 1.0 | 23 | 0 | 0.65 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Carlesso, M., Giacomelli, R., Günther, S., Koch, D., Kroll, S., Odenbach, S., & Rezwan, K. (2013). Near?Net?Shaped Porous Ceramics for Potential Sound Absorption Applications at High Temperatures. Journal of the American Ceramic Society, 96(3), 710-718. | 2013 | 36 | 10.1111/jace.12160 | 292 | ceramic | Al2O3-mullite (mixed) | water | 100 | 0.0 | 0 | 60.0 | 1.0 | 23 | 0 | 0.65 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 74.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Carlesso, M., Giacomelli, R., Günther, S., Koch, D., Kroll, S., Odenbach, S., & Rezwan, K. (2013). Near?Net?Shaped Porous Ceramics for Potential Sound Absorption Applications at High Temperatures. Journal of the American Ceramic Society, 96(3), 710-718. | 2013 | 36 | 10.1111/jace.12160 | 293 | ceramic | Al2O3-mullite (mixed) | water | 100 | 0.0 | 0 | 63.0 | 1.0 | 23 | 0 | 0.65 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Charnvanichborikarn, S., Worsley, M. A., Bagge-Hansen, M., Colvin, J. D., Felter, T. E., & Kucheyev, S. O. (2014). Ice templating synthesis of low-density porous Cu?C nanocomposites. Journal of Materials Chemistry A, 2(43), 18600-18605. | 2014 | 38 | 10.1039/c4ta02731k | 4743 | carbon/ceramic | Cu-C (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Charnvanichborikarn, S., Worsley, M. A., Bagge-Hansen, M., Colvin, J. D., Felter, T. E., & Kucheyev, S. O. (2014). Ice templating synthesis of low-density porous Cu?C nanocomposites. Journal of Materials Chemistry A, 2(43), 18600-18605. | 2014 | 38 | 10.1039/c4ta02731k | 5689 | metal/carbon | Ag-C (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chatterjee, S., Sen Gupta, S., & Kumaraswamy, G. (2016). Omniphilic Polymeric Sponges by Ice Templating. Chemistry of Materials, 28(6), 1823-1831. | 2016 | 39 | 10.1021/acs.chemma-ter.5b04988. | 4603 | polymer | PEI | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 4744 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dash, R., Li, Y., & Ragauskas, A. J. (2012). Cellulose nanowhisker foams by freeze casting. Carbohydrate Polymers, 88(2), 789-792. | 2012 | 64 | 10.1016/j.carbpol.2011.12.035 | 475 | polymer | cellulose | water | 100 | 0.0 | 0 | 1.34 | 40.0 | 100 | dissolved | 0.0 | 20 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dash, R., Li, Y., & Ragauskas, A. J. (2012). Cellulose nanowhisker foams by freeze casting. Carbohydrate Polymers, 88(2), 789-792. | 2012 | 64 | 10.1016/j.carbpol.2011.12.035 | 476 | polymer | cellulose | water | 100 | 0.0 | 0 | 1.34 | 40.0 | 100 | dissolved | 0.0 | 20 | 0 | 0 | 0.0 | 4.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dash, R., Li, Y., & Ragauskas, A. J. (2012). Cellulose nanowhisker foams by freeze casting. Carbohydrate Polymers, 88(2), 789-792. | 2012 | 64 | 10.1016/j.carbpol.2011.12.035 | 477 | polymer | cellulose | water | 100 | 0.0 | 0 | 1.34 | 40.0 | 100 | dissolved | 0.0 | 20 | 0 | 0 | 0.0 | 13.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dash, R., Li, Y., & Ragauskas, A. J. (2012). Cellulose nanowhisker foams by freeze casting. Carbohydrate Polymers, 88(2), 789-792. | 2012 | 64 | 10.1016/j.carbpol.2011.12.035 | 478 | polymer | cellulose | water | 100 | 0.0 | 0 | 1.34 | 40.0 | 100 | dissolved | 0.0 | 50 | 0 | 0 | 0.0 | 4.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dash, R., Li, Y., & Ragauskas, A. J. (2012). Cellulose nanowhisker foams by freeze casting. Carbohydrate Polymers, 88(2), 789-792. | 2012 | 64 | 10.1016/j.carbpol.2011.12.035 | 479 | polymer | cellulose | water | 100 | 0.0 | 0 | 1.34 | 40.0 | 100 | dissolved | 0.0 | 50 | 0 | 0 | 0.0 | 13.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dash, R., Li, Y., & Ragauskas, A. J. (2012). Cellulose nanowhisker foams by freeze casting. Carbohydrate Polymers, 88(2), 789-792. | 2012 | 64 | 10.1016/j.carbpol.2011.12.035 | 480 | polymer | cellulose | water | 100 | 0.0 | 0 | 1.34 | 40.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 13.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Flauder, S., Heinze, T., & Müller, F. A. (2014). Cellulose scaffolds with an aligned and open porosity fabricated via ice-templating. Cellulose, 21(1), 97-103. | 2014 | 122 | 10.1007/s10570-013-0119-9 | 691 | polymer | cellulose | water | 100 | 0.0 | 0 | 3.39 | 40.0 | 100 | dissolved | 0.0 | 11 | 7 | 0 | 0.0 | 0.0 | 0.0 | one-sided | exponential | 8.8 | 8.8 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 30.0 | 0.0 | 2.3 | 0.0 | 0.0 | 0.0 |
Flauder, S., Heinze, T., & Müller, F. A. (2014). Cellulose scaffolds with an aligned and open porosity fabricated via ice-templating. Cellulose, 21(1), 97-103. | 2014 | 122 | 10.1007/s10570-013-0119-9 | 692 | polymer | cellulose | water | 100 | 0.0 | 0 | 3.39 | 40.0 | 100 | dissolved | 0.0 | 11 | 7 | 0 | 0.0 | 0.0 | 0.0 | one-sided | exponential | 26.2 | 26.2 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 20.0 | 0.0 | 2.5 | 0.0 | 0.0 | 0.0 |
Köhnke, T., Elder, T., Theliander, H., & Ragauskas, A. J. (2014). Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels. Carbohydrate polymers, 100, 24-30. | 2014 | 271 | 10.1016/j.carbpol.2013.03.060 | 5244 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Köhnke, T., Elder, T., Theliander, H., & Ragauskas, A. J. (2014). Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels. Carbohydrate polymers, 100, 24-30. | 2014 | 271 | 10.1016/j.carbpol.2013.03.060 | 5245 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Köhnke, T., Elder, T., Theliander, H., & Ragauskas, A. J. (2014). Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels. Carbohydrate polymers, 100, 24-30. | 2014 | 271 | 10.1016/j.carbpol.2013.03.060 | 5246 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Köhnke, T., Elder, T., Theliander, H., & Ragauskas, A. J. (2014). Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels. Carbohydrate polymers, 100, 24-30. | 2014 | 271 | 10.1016/j.carbpol.2013.03.060 | 5247 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Köhnke, T., Elder, T., Theliander, H., & Ragauskas, A. J. (2014). Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels. Carbohydrate polymers, 100, 24-30. | 2014 | 271 | 10.1016/j.carbpol.2013.03.060 | 5248 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Köhnke, T., Lin, A., Elder, T., Theliander, H., & Ragauskas, A. J. (2012). Nanoreinforced xylan?cellulose composite foams by freeze-casting. Green Chemistry, 14(7), 1864-1869. | 2012 | 272 | 10.1039/c2gc35413f | 5249 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 93.0 | 38.0 | 35.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Köhnke, T., Lin, A., Elder, T., Theliander, H., & Ragauskas, A. J. (2012). Nanoreinforced xylan?cellulose composite foams by freeze-casting. Green Chemistry, 14(7), 1864-1869. | 2012 | 272 | 10.1039/c2gc35413f | 5250 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Köhnke, T., Lin, A., Elder, T., Theliander, H., & Ragauskas, A. J. (2012). Nanoreinforced xylan?cellulose composite foams by freeze-casting. Green Chemistry, 14(7), 1864-1869. | 2012 | 272 | 10.1039/c2gc35413f | 5251 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Köhnke, T., Lin, A., Elder, T., Theliander, H., & Ragauskas, A. J. (2012). Nanoreinforced xylan?cellulose composite foams by freeze-casting. Green Chemistry, 14(7), 1864-1869. | 2012 | 272 | 10.1039/c2gc35413f | 5252 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Köhnke, T., Lin, A., Elder, T., Theliander, H., & Ragauskas, A. J. (2012). Nanoreinforced xylan?cellulose composite foams by freeze-casting. Green Chemistry, 14(7), 1864-1869. | 2012 | 272 | 10.1039/c2gc35413f | 5253 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Köhnke, T., Lin, A., Elder, T., Theliander, H., & Ragauskas, A. J. (2012). Nanoreinforced xylan?cellulose composite foams by freeze-casting. Green Chemistry, 14(7), 1864-1869. | 2012 | 272 | 10.1039/c2gc35413f | 5254 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Köhnke, T., Lin, A., Elder, T., Theliander, H., & Ragauskas, A. J. (2012). Nanoreinforced xylan?cellulose composite foams by freeze-casting. Green Chemistry, 14(7), 1864-1869. | 2012 | 272 | 10.1039/c2gc35413f | 5255 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Köhnke, T., Lin, A., Elder, T., Theliander, H., & Ragauskas, A. J. (2012). Nanoreinforced xylan?cellulose composite foams by freeze-casting. Green Chemistry, 14(7), 1864-1869. | 2012 | 272 | 10.1039/c2gc35413f | 5256 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lee, J., & Deng, Y. (2011). The morphology and mechanical properties of layer structured cellulose microfibril foams from ice-templating methods. Soft Matter, 7(13), 6034-6040. | 2011 | 295 | 10.1039/c1sm05388d | 5258 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.14 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 98.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 |
Lee, J., & Deng, Y. (2011). The morphology and mechanical properties of layer structured cellulose microfibril foams from ice-templating methods. Soft Matter, 7(13), 6034-6040. | 2011 | 295 | 10.1039/c1sm05388d | 5259 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.56 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 97.5 | 0.0 | 5.0 | 0.0 | 0.0 | 0.15 | 0.0 | 0.0 |
Lee, J., & Deng, Y. (2011). The morphology and mechanical properties of layer structured cellulose microfibril foams from ice-templating methods. Soft Matter, 7(13), 6034-6040. | 2011 | 295 | 10.1039/c1sm05388d | 5260 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.98 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 96.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.18 | 0.0 | 0.0 |
Lee, J., & Deng, Y. (2011). The morphology and mechanical properties of layer structured cellulose microfibril foams from ice-templating methods. Soft Matter, 7(13), 6034-6040. | 2011 | 295 | 10.1039/c1sm05388d | 5261 | polymer | cellulose | water | 100 | 0.0 | 0 | 1.21 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 94.5 | 0.0 | 5.0 | 0.0 | 0.0 | 0.29 | 0.0 | 0.0 |
Lee, J., & Deng, Y. (2011). The morphology and mechanical properties of layer structured cellulose microfibril foams from ice-templating methods. Soft Matter, 7(13), 6034-6040. | 2011 | 295 | 10.1039/c1sm05388d | 5262 | polymer | cellulose | water | 100 | 0.0 | 0 | 1.56 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 98.0 | 0.0 | 2.8 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 |
Lee, J., & Deng, Y. (2011). The morphology and mechanical properties of layer structured cellulose microfibril foams from ice-templating methods. Soft Matter, 7(13), 6034-6040. | 2011 | 295 | 10.1039/c1sm05388d | 5263 | polymer | cellulose | water | 100 | 0.0 | 0 | 1.78 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 97.5 | 0.0 | 2.8 | 0.0 | 0.0 | 0.15 | 0.0 | 0.0 |
Lee, J., & Deng, Y. (2011). The morphology and mechanical properties of layer structured cellulose microfibril foams from ice-templating methods. Soft Matter, 7(13), 6034-6040. | 2011 | 295 | 10.1039/c1sm05388d | 5264 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.14 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 96.0 | 0.0 | 2.8 | 0.0 | 0.0 | 0.23 | 0.0 | 0.0 |
Lee, J., & Deng, Y. (2011). The morphology and mechanical properties of layer structured cellulose microfibril foams from ice-templating methods. Soft Matter, 7(13), 6034-6040. | 2011 | 295 | 10.1039/c1sm05388d | 5265 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.56 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 94.5 | 0.0 | 2.8 | 0.0 | 0.0 | 0.32 | 0.0 | 0.0 |
Mah, T. I., Keller, K. A., Kerans, R. J., & Cinibulk, M. K. (2015). Reduced Cracking in Oxide Fiber?Reinforced Oxide Composites via Freeze?Dry Processing. Journal of the American Ceramic Society, 98(5), 1437-1443. | 2015 | 375 | 10.1111/jace.13500 | 4776 | polymer | cellulose | camphene | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Munier, P., Gordeyeva, K., Bergstro?m, L., & Fall, A. B. (2016). Directional freezing of nanocellulose dispersions aligns the rod-like particles and produces low-density and robust particle networks. Biomacromolecules, 17(5), 1875-1881. | 2016 | 415 | 0 | 4779 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Prakobna, K., Berthold, F., Medina, L., & Berglund, L. A. (2016). Mechanical performance and architecture of biocomposite honeycombs and foams from core?shell holocellulose nanofibers. Composites Part A: Applied Science and Manufacturing, 88, 116-122. | 2016 | 498 | 10.1016/j.compositesa.2016.05.023 | 5454 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Prakobna, K., Berthold, F., Medina, L., & Berglund, L. A. (2016). Mechanical performance and architecture of biocomposite honeycombs and foams from core?shell holocellulose nanofibers. Composites Part A: Applied Science and Manufacturing, 88, 116-122. | 2016 | 498 | 10.1016/j.compositesa.2016.05.023 | 5455 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Prakobna, K., Berthold, F., Medina, L., & Berglund, L. A. (2016). Mechanical performance and architecture of biocomposite honeycombs and foams from core?shell holocellulose nanofibers. Composites Part A: Applied Science and Manufacturing, 88, 116-122. | 2016 | 498 | 10.1016/j.compositesa.2016.05.023 | 5456 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Prakobna, K., Berthold, F., Medina, L., & Berglund, L. A. (2016). Mechanical performance and architecture of biocomposite honeycombs and foams from core?shell holocellulose nanofibers. Composites Part A: Applied Science and Manufacturing, 88, 116-122. | 2016 | 498 | 10.1016/j.compositesa.2016.05.023 | 5457 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Prakobna, K., Berthold, F., Medina, L., & Berglund, L. A. (2016). Mechanical performance and architecture of biocomposite honeycombs and foams from core?shell holocellulose nanofibers. Composites Part A: Applied Science and Manufacturing, 88, 116-122. | 2016 | 498 | 10.1016/j.compositesa.2016.05.023 | 5458 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Prakobna, K., Berthold, F., Medina, L., & Berglund, L. A. (2016). Mechanical performance and architecture of biocomposite honeycombs and foams from core?shell holocellulose nanofibers. Composites Part A: Applied Science and Manufacturing, 88, 116-122. | 2016 | 498 | 10.1016/j.compositesa.2016.05.023 | 5459 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Prakobna, K., Berthold, F., Medina, L., & Berglund, L. A. (2016). Mechanical performance and architecture of biocomposite honeycombs and foams from core?shell holocellulose nanofibers. Composites Part A: Applied Science and Manufacturing, 88, 116-122. | 2016 | 498 | 10.1016/j.compositesa.2016.05.023 | 5460 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Prakobna, K., Berthold, F., Medina, L., & Berglund, L. A. (2016). Mechanical performance and architecture of biocomposite honeycombs and foams from core?shell holocellulose nanofibers. Composites Part A: Applied Science and Manufacturing, 88, 116-122. | 2016 | 498 | 10.1016/j.compositesa.2016.05.023 | 5461 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Prakobna, K., Berthold, F., Medina, L., & Berglund, L. A. (2016). Mechanical performance and architecture of biocomposite honeycombs and foams from core?shell holocellulose nanofibers. Composites Part A: Applied Science and Manufacturing, 88, 116-122. | 2016 | 498 | 10.1016/j.compositesa.2016.05.023 | 5462 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Prakobna, K., Berthold, F., Medina, L., & Berglund, L. A. (2016). Mechanical performance and architecture of biocomposite honeycombs and foams from core?shell holocellulose nanofibers. Composites Part A: Applied Science and Manufacturing, 88, 116-122. | 2016 | 498 | 10.1016/j.compositesa.2016.05.023 | 5463 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Prakobna, K., Berthold, F., Medina, L., & Berglund, L. A. (2016). Mechanical performance and architecture of biocomposite honeycombs and foams from core?shell holocellulose nanofibers. Composites Part A: Applied Science and Manufacturing, 88, 116-122. | 2016 | 498 | 10.1016/j.compositesa.2016.05.023 | 5464 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Prakobna, K., Berthold, F., Medina, L., & Berglund, L. A. (2016). Mechanical performance and architecture of biocomposite honeycombs and foams from core?shell holocellulose nanofibers. Composites Part A: Applied Science and Manufacturing, 88, 116-122. | 2016 | 498 | 10.1016/j.compositesa.2016.05.023 | 5465 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Prakobna, K., Berthold, F., Medina, L., & Berglund, L. A. (2016). Mechanical performance and architecture of biocomposite honeycombs and foams from core?shell holocellulose nanofibers. Composites Part A: Applied Science and Manufacturing, 88, 116-122. | 2016 | 498 | 10.1016/j.compositesa.2016.05.023 | 5466 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Prakobna, K., Berthold, F., Medina, L., & Berglund, L. A. (2016). Mechanical performance and architecture of biocomposite honeycombs and foams from core?shell holocellulose nanofibers. Composites Part A: Applied Science and Manufacturing, 88, 116-122. | 2016 | 498 | 10.1016/j.compositesa.2016.05.023 | 5467 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Prakobna, K., Berthold, F., Medina, L., & Berglund, L. A. (2016). Mechanical performance and architecture of biocomposite honeycombs and foams from core?shell holocellulose nanofibers. Composites Part A: Applied Science and Manufacturing, 88, 116-122. | 2016 | 498 | 10.1016/j.compositesa.2016.05.023 | 5468 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wicklein, B., Kocjan, A., Salazar-Alvarez, G., Carosio, F., Camino, G., Antonietti, M., & Bergström, L. (2015). Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nature nanotechnology, 10(3), 277-283. | 2015 | 661 | 0 | 4925 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 99.6 | 0.0 | 18.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yuan, N. Y., Lin, Y. A., Ho, M. H., Wang, D. M., Lai, J. Y., & Hsieh, H. J. (2009). Effects of the cooling mode on the structure and strength of porous scaffolds made of chitosan, alginate, and carboxymethyl cellulose by the freeze-gelation method. Carbohydrate polymers, 78(2), 349-356. | 2009 | 743 | 10.1016/j.carbpol.2009.04.021 | 2116 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 42.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 24.4 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | green | 96.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yuan, N. Y., Lin, Y. A., Ho, M. H., Wang, D. M., Lai, J. Y., & Hsieh, H. J. (2009). Effects of the cooling mode on the structure and strength of porous scaffolds made of chitosan, alginate, and carboxymethyl cellulose by the freeze-gelation method. Carbohydrate polymers, 78(2), 349-356. | 2009 | 743 | 10.1016/j.carbpol.2009.04.021 | 2117 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 42.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 233.0 | 31.2 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | green | 96.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yuan, N. Y., Lin, Y. A., Ho, M. H., Wang, D. M., Lai, J. Y., & Hsieh, H. J. (2009). Effects of the cooling mode on the structure and strength of porous scaffolds made of chitosan, alginate, and carboxymethyl cellulose by the freeze-gelation method. Carbohydrate polymers, 78(2), 349-356. | 2009 | 743 | 10.1016/j.carbpol.2009.04.021 | 2118 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 42.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 213.0 | 42.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | green | 96.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yuan, N. Y., Lin, Y. A., Ho, M. H., Wang, D. M., Lai, J. Y., & Hsieh, H. J. (2009). Effects of the cooling mode on the structure and strength of porous scaffolds made of chitosan, alginate, and carboxymethyl cellulose by the freeze-gelation method. Carbohydrate polymers, 78(2), 349-356. | 2009 | 743 | 10.1016/j.carbpol.2009.04.021 | 2119 | polymer | cellulose | water | 100 | 0.0 | 0 | 0.0 | 42.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 193.0 | 55.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | green | 96.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kumar, A., Lee, Y., Kim, D., Rao, K. M., Kim, J., Park, S., ... & Han, S. S. (2017). Effect of crosslinking functionality on microstructure, mechanical properties, and in vitro cytocompatibility of cellulose nanocrystals reinforced poly (vinyl alcohol)/sodium alginate hybrid scaffolds. International journal of biological macromolecules, 95, 962-973. | 2017 | 823 | 10.1016/j.ijbiomac.2016.10.085 | 1670 | polymer | cellulose | water | 100 | 0.0 | 0 | 1.5 | 40.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 90.8 | 0.0 | 190.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kumar, A., Lee, Y., Kim, D., Rao, K. M., Kim, J., Park, S., ... & Han, S. S. (2017). Effect of crosslinking functionality on microstructure, mechanical properties, and in vitro cytocompatibility of cellulose nanocrystals reinforced poly (vinyl alcohol)/sodium alginate hybrid scaffolds. International journal of biological macromolecules, 95, 962-973. | 2017 | 823 | 10.1016/j.ijbiomac.2016.10.085 | 1671 | polymer | cellulose | water | 100 | 0.0 | 0 | 1.5 | 40.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 93.5 | 0.0 | 245.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kumar, A., Lee, Y., Kim, D., Rao, K. M., Kim, J., Park, S., ... & Han, S. S. (2017). Effect of crosslinking functionality on microstructure, mechanical properties, and in vitro cytocompatibility of cellulose nanocrystals reinforced poly (vinyl alcohol)/sodium alginate hybrid scaffolds. International journal of biological macromolecules, 95, 962-973. | 2017 | 823 | 10.1016/j.ijbiomac.2016.10.085 | 1672 | polymer | cellulose | water | 100 | 0.0 | 0 | 1.5 | 40.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 91.2 | 0.0 | 165.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kumar, A., Lee, Y., Kim, D., Rao, K. M., Kim, J., Park, S., ... & Han, S. S. (2017). Effect of crosslinking functionality on microstructure, mechanical properties, and in vitro cytocompatibility of cellulose nanocrystals reinforced poly (vinyl alcohol)/sodium alginate hybrid scaffolds. International journal of biological macromolecules, 95, 962-973. | 2017 | 823 | 10.1016/j.ijbiomac.2016.10.085 | 1673 | polymer | cellulose | water | 100 | 0.0 | 0 | 1.5 | 40.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 95.2 | 0.0 | 228.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5690 | polymer | POEGMA-17wt.% Cellulose | water | 100 | 0.0 | 0 | 0.83 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5693 | polymer | POEGMA-17wt.% Cellulose | water | 100 | 0.0 | 0 | 2.0 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5696 | polymer | POEGMA-17wt.% Cellulose | water | 100 | 0.0 | 0 | 3.6 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5699 | polymer | POEGMA-17wt.% Cellulose | water | 100 | 0.0 | 0 | 6.0 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5702 | polymer | POEGMA-17wt.% Cellulose | water | 100 | 0.0 | 0 | 0.83 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5705 | polymer | POEGMA-17wt.% Cellulose | water | 100 | 0.0 | 0 | 2.0 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5708 | polymer | POEGMA-17wt.% Cellulose | water | 100 | 0.0 | 0 | 3.6 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5711 | polymer | POEGMA-17wt.% Cellulose | water | 100 | 0.0 | 0 | 6.0 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5714 | polymer | POEGMA-17wt.% Cellulose | water | 100 | 0.0 | 0 | 0.83 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 4.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5717 | polymer | POEGMA-17wt.% Cellulose | water | 100 | 0.0 | 0 | 2.0 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5720 | polymer | POEGMA-17wt.% Cellulose | water | 100 | 0.0 | 0 | 3.6 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5723 | polymer | POEGMA-17wt.% Cellulose | water | 100 | 0.0 | 0 | 6.0 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 200.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5691 | polymer | POEGMA-24wt.% Cellulose | water | 100 | 0.0 | 0 | 0.83 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5694 | polymer | POEGMA-24wt.% Cellulose | water | 100 | 0.0 | 0 | 2.0 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5697 | polymer | POEGMA-24wt.% Cellulose | water | 100 | 0.0 | 0 | 3.6 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5700 | polymer | POEGMA-24wt.% Cellulose | water | 100 | 0.0 | 0 | 6.0 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5703 | polymer | POEGMA-24wt.% Cellulose | water | 100 | 0.0 | 0 | 0.83 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5706 | polymer | POEGMA-24wt.% Cellulose | water | 100 | 0.0 | 0 | 2.0 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5709 | polymer | POEGMA-24wt.% Cellulose | water | 100 | 0.0 | 0 | 3.6 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5712 | polymer | POEGMA-24wt.% Cellulose | water | 100 | 0.0 | 0 | 6.0 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5715 | polymer | POEGMA-24wt.% Cellulose | water | 100 | 0.0 | 0 | 0.83 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 4.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5718 | polymer | POEGMA-24wt.% Cellulose | water | 100 | 0.0 | 0 | 2.0 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5721 | polymer | POEGMA-24wt.% Cellulose | water | 100 | 0.0 | 0 | 3.6 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5724 | polymer | POEGMA-24wt.% Cellulose | water | 100 | 0.0 | 0 | 6.0 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 200.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5692 | polymer | POEGMA-50wt.% Cellulose | water | 100 | 0.0 | 0 | 0.83 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5695 | polymer | POEGMA-50wt.% Cellulose | water | 100 | 0.0 | 0 | 2.0 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5698 | polymer | POEGMA-50wt.% Cellulose | water | 100 | 0.0 | 0 | 3.6 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5701 | polymer | POEGMA-50wt.% Cellulose | water | 100 | 0.0 | 0 | 6.0 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5704 | polymer | POEGMA-50wt.% Cellulose | water | 100 | 0.0 | 0 | 0.83 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5707 | polymer | POEGMA-50wt.% Cellulose | water | 100 | 0.0 | 0 | 2.0 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5710 | polymer | POEGMA-50wt.% Cellulose | water | 100 | 0.0 | 0 | 3.6 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5713 | polymer | POEGMA-50wt.% Cellulose | water | 100 | 0.0 | 0 | 6.0 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5716 | polymer | POEGMA-50wt.% Cellulose | water | 100 | 0.0 | 0 | 0.83 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 4.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5719 | polymer | POEGMA-50wt.% Cellulose | water | 100 | 0.0 | 0 | 2.0 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5722 | polymer | POEGMA-50wt.% Cellulose | water | 100 | 0.0 | 0 | 3.6 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., De France, K. J., Kopera, B., Machado, V. R., Rosenfeldt, S., Reyes, L., ... & Kumacheva, E. (2016). Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chemistry of Materials, 28(10), 3406-3415. | 2016 | 40 | 10.1021/acs.chemmater.6b00792 | 5725 | polymer | POEGMA-50wt.% Cellulose | water | 100 | 0.0 | 0 | 6.0 | 117.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 200.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, H. M., Yin, Y. F., Dong, H. B., Tong, Y., Luo, M., & Li, X. (2014). Porous alumina infiltrated with melt and its dynamic analysis during pressureless infiltration. Ceramics International, 40(4), 6293-6299. | 2014 | 41 | 10.1016/j.ceramint.2013.11.088 | 294 | metal/ceramic | Al2O3/Nb-Ti-Al-Cr (infiltration) | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 0.15 | 0 | 0 | 0 | 196.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 52.0 | 30.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, J., Liu, G., & Button, T. W. (2013). Mechanical properties of porous TiO2 ceramics fabricated by freeze casting process. Advances in Applied Ceramics, 112(7), 436-441. | 2013 | 42 | 10.1179/1743676113y.0000000099 | 298 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 13.47 | 27.0 | 100 | powder | 2.0 | 2 | 8 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 110.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 68.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.2 | 0.0 | 0.0 |
Chen, J., Liu, G., & Button, T. W. (2013). Mechanical properties of porous TiO2 ceramics fabricated by freeze casting process. Advances in Applied Ceramics, 112(7), 436-441. | 2013 | 42 | 10.1179/1743676113y.0000000099 | 299 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 18.93 | 27.0 | 100 | powder | 2.0 | 2 | 8 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 110.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.0 | 35.0 | 20.0 | 15.0 | 0.0 | 1.5 | 0.0 | 0.0 |
Chen, J., Liu, G., & Button, T. W. (2013). Mechanical properties of porous TiO2 ceramics fabricated by freeze casting process. Advances in Applied Ceramics, 112(7), 436-441. | 2013 | 42 | 10.1179/1743676113y.0000000099 | 300 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 25.94 | 27.0 | 100 | powder | 2.0 | 2 | 8 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 110.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 45.0 | 0.0 | 0.0 | 8.0 | 0.0 | 10.0 | 0.0 | 0.0 |
Chen, J., Liu, G., & Button, T. W. (2013). Mechanical properties of porous TiO2 ceramics fabricated by freeze casting process. Advances in Applied Ceramics, 112(7), 436-441. | 2013 | 42 | 10.1179/1743676113y.0000000099 | 301 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 35.27 | 27.0 | 100 | powder | 2.0 | 2 | 8 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 110.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 36.0 | 0.0 | 0.0 | 0.0 | 0.0 | 17.0 | 0.0 | 0.0 |
Chen, J., Liu, G., & Button, T. W. (2013). Mechanical properties of porous TiO2 ceramics fabricated by freeze casting process. Advances in Applied Ceramics, 112(7), 436-441. | 2013 | 42 | 10.1179/1743676113y.0000000099 | 302 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 48.29 | 27.0 | 100 | powder | 2.0 | 2 | 8 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 110.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 16.0 | 0.0 | 0.0 | 0.0 | 0.0 | 22.5 | 0.0 | 0.0 |
Hazan, Y. (2012). Porous ceramics, ceramic/polymer, and metal?doped ceramic/polymer nanocomposites via freeze casting of photo?curable colloidal fluids. Journal of the American Ceramic Society, 95(1), 177-187. | 2012 | 67 | 10.1111/j.1551-2916.2011.04870.x | 4841 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Delattre, B., Bai, H., Ritchie, R. O., De Coninck, J., & Tomsia, A. P. (2013). Unidirectional freezing of ceramic suspensions: In situ X-ray investigation of the effects of additives. ACS applied materials & interfaces, 6(1), 159-166. | 2014 | 69 | 10.1021/am403793x | 491 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 20.0 | 27.0 | 100 | powder | 0.54 | 0 | 0 | 0 | 0.0 | 2.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Delattre, B., Bai, H., Ritchie, R. O., De Coninck, J., & Tomsia, A. P. (2013). Unidirectional freezing of ceramic suspensions: In situ X-ray investigation of the effects of additives. ACS applied materials & interfaces, 6(1), 159-166. | 2014 | 69 | 10.1021/am403793x | 492 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 20.0 | 27.0 | 100 | powder | 0.54 | 1 | 0 | 0 | 0.0 | 2.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Delattre, B., Bai, H., Ritchie, R. O., De Coninck, J., & Tomsia, A. P. (2013). Unidirectional freezing of ceramic suspensions: In situ X-ray investigation of the effects of additives. ACS applied materials & interfaces, 6(1), 159-166. | 2014 | 69 | 10.1021/am403793x | 493 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 20.0 | 27.0 | 100 | powder | 0.54 | 1 | 0 | 1 | 0.0 | 2.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Delattre, B., Bai, H., Ritchie, R. O., De Coninck, J., & Tomsia, A. P. (2013). Unidirectional freezing of ceramic suspensions: In situ X-ray investigation of the effects of additives. ACS applied materials & interfaces, 6(1), 159-166. | 2014 | 69 | 10.1021/am403793x | 494 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 20.0 | 27.0 | 100 | powder | 0.54 | 0 | 0 | 0 | 0.0 | 2.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Delattre, B., Bai, H., Ritchie, R. O., De Coninck, J., & Tomsia, A. P. (2013). Unidirectional freezing of ceramic suspensions: In situ X-ray investigation of the effects of additives. ACS applied materials & interfaces, 6(1), 159-166. | 2014 | 69 | 10.1021/am403793x | 495 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 20.0 | 27.0 | 100 | powder | 0.54 | 1 | 0 | 0 | 0.0 | 2.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Delattre, B., Bai, H., Ritchie, R. O., De Coninck, J., & Tomsia, A. P. (2013). Unidirectional freezing of ceramic suspensions: In situ X-ray investigation of the effects of additives. ACS applied materials & interfaces, 6(1), 159-166. | 2014 | 69 | 10.1021/am403793x | 496 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 20.0 | 27.0 | 100 | powder | 0.54 | 1 | 0 | 1 | 0.0 | 2.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Delattre, B., Bai, H., Ritchie, R. O., De Coninck, J., & Tomsia, A. P. (2013). Unidirectional freezing of ceramic suspensions: In situ X-ray investigation of the effects of additives. ACS applied materials & interfaces, 6(1), 159-166. | 2014 | 69 | 10.1021/am403793x | 497 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 20.0 | 27.0 | 100 | powder | 0.54 | 0 | 1 | 0 | 0.0 | 2.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Delattre, B., Bai, H., Ritchie, R. O., De Coninck, J., & Tomsia, A. P. (2013). Unidirectional freezing of ceramic suspensions: In situ X-ray investigation of the effects of additives. ACS applied materials & interfaces, 6(1), 159-166. | 2014 | 69 | 10.1021/am403793x | 498 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 20.0 | 27.0 | 100 | powder | 0.54 | 1 | 1 | 0 | 0.0 | 2.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Delattre, B., Bai, H., Ritchie, R. O., De Coninck, J., & Tomsia, A. P. (2013). Unidirectional freezing of ceramic suspensions: In situ X-ray investigation of the effects of additives. ACS applied materials & interfaces, 6(1), 159-166. | 2014 | 69 | 10.1021/am403793x | 499 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 20.0 | 27.0 | 100 | powder | 0.54 | 1 | 1 | 1 | 0.0 | 2.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Delattre, B., Bai, H., Ritchie, R. O., De Coninck, J., & Tomsia, A. P. (2013). Unidirectional freezing of ceramic suspensions: In situ X-ray investigation of the effects of additives. ACS applied materials & interfaces, 6(1), 159-166. | 2014 | 69 | 10.1021/am403793x | 500 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 20.0 | 27.0 | 100 | powder | 0.54 | 0 | 0 | 0 | 0.0 | 2.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Delattre, B., Bai, H., Ritchie, R. O., De Coninck, J., & Tomsia, A. P. (2013). Unidirectional freezing of ceramic suspensions: In situ X-ray investigation of the effects of additives. ACS applied materials & interfaces, 6(1), 159-166. | 2014 | 69 | 10.1021/am403793x | 501 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 20.0 | 27.0 | 100 | powder | 0.54 | 0 | 0 | 0 | 0.0 | 2.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Delattre, B., Bai, H., Ritchie, R. O., De Coninck, J., & Tomsia, A. P. (2013). Unidirectional freezing of ceramic suspensions: In situ X-ray investigation of the effects of additives. ACS applied materials & interfaces, 6(1), 159-166. | 2014 | 69 | 10.1021/am403793x | 502 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 20.0 | 27.0 | 100 | powder | 0.54 | 0 | 0 | 0 | 0.0 | 2.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Delattre, B., Bai, H., Ritchie, R. O., De Coninck, J., & Tomsia, A. P. (2013). Unidirectional freezing of ceramic suspensions: In situ X-ray investigation of the effects of additives. ACS applied materials & interfaces, 6(1), 159-166. | 2014 | 69 | 10.1021/am403793x | 503 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 20.0 | 27.0 | 100 | powder | 0.54 | 0 | 0 | 0 | 0.0 | 2.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Delattre, B., Bai, H., Ritchie, R. O., De Coninck, J., & Tomsia, A. P. (2013). Unidirectional freezing of ceramic suspensions: In situ X-ray investigation of the effects of additives. ACS applied materials & interfaces, 6(1), 159-166. | 2014 | 69 | 10.1021/am403793x | 504 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 20.0 | 27.0 | 100 | powder | 0.54 | 0 | 0 | 0 | 0.0 | 2.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Delattre, B., Bai, H., Ritchie, R. O., De Coninck, J., & Tomsia, A. P. (2013). Unidirectional freezing of ceramic suspensions: In situ X-ray investigation of the effects of additives. ACS applied materials & interfaces, 6(1), 159-166. | 2014 | 69 | 10.1021/am403793x | 505 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 20.0 | 27.0 | 100 | powder | 0.54 | 1 | 0 | 0 | 0.0 | 2.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Delattre, B., Bai, H., Ritchie, R. O., De Coninck, J., & Tomsia, A. P. (2013). Unidirectional freezing of ceramic suspensions: In situ X-ray investigation of the effects of additives. ACS applied materials & interfaces, 6(1), 159-166. | 2014 | 69 | 10.1021/am403793x | 506 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 20.0 | 27.0 | 100 | powder | 0.54 | 2 | 0 | 0 | 0.0 | 2.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Delattre, B., Bai, H., Ritchie, R. O., De Coninck, J., & Tomsia, A. P. (2013). Unidirectional freezing of ceramic suspensions: In situ X-ray investigation of the effects of additives. ACS applied materials & interfaces, 6(1), 159-166. | 2014 | 69 | 10.1021/am403793x | 507 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 20.0 | 27.0 | 100 | powder | 0.54 | 0 | 0 | 0 | 0.0 | 2.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Delattre, B., Bai, H., Ritchie, R. O., De Coninck, J., & Tomsia, A. P. (2013). Unidirectional freezing of ceramic suspensions: In situ X-ray investigation of the effects of additives. ACS applied materials & interfaces, 6(1), 159-166. | 2014 | 69 | 10.1021/am403793x | 508 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 20.0 | 27.0 | 100 | powder | 0.54 | 0 | 0 | 0 | 0.0 | 2.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Delattre, B., Bai, H., Ritchie, R. O., De Coninck, J., & Tomsia, A. P. (2013). Unidirectional freezing of ceramic suspensions: In situ X-ray investigation of the effects of additives. ACS applied materials & interfaces, 6(1), 159-166. | 2014 | 69 | 10.1021/am403793x | 509 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 20.0 | 27.0 | 100 | powder | 0.54 | 0 | 0 | 0 | 0.0 | 2.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Delattre, B., Bai, H., Ritchie, R. O., De Coninck, J., & Tomsia, A. P. (2013). Unidirectional freezing of ceramic suspensions: In situ X-ray investigation of the effects of additives. ACS applied materials & interfaces, 6(1), 159-166. | 2014 | 69 | 10.1021/am403793x | 510 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 20.0 | 27.0 | 100 | powder | 0.54 | 0 | 0 | 0 | 0.0 | 2.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Delattre, B., Bai, H., Ritchie, R. O., De Coninck, J., & Tomsia, A. P. (2013). Unidirectional freezing of ceramic suspensions: In situ X-ray investigation of the effects of additives. ACS applied materials & interfaces, 6(1), 159-166. | 2014 | 69 | 10.1021/am403793x | 511 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 20.0 | 27.0 | 100 | powder | 0.54 | 0 | 0 | 0 | 0.0 | 2.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Delattre, B., Bai, H., Ritchie, R. O., De Coninck, J., & Tomsia, A. P. (2013). Unidirectional freezing of ceramic suspensions: In situ X-ray investigation of the effects of additives. ACS applied materials & interfaces, 6(1), 159-166. | 2014 | 69 | 10.1021/am403793x | 512 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 20.0 | 27.0 | 100 | powder | 0.54 | 0 | 0 | 1 | 0.0 | 2.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Delattre, B., Bai, H., Ritchie, R. O., De Coninck, J., & Tomsia, A. P. (2013). Unidirectional freezing of ceramic suspensions: In situ X-ray investigation of the effects of additives. ACS applied materials & interfaces, 6(1), 159-166. | 2014 | 69 | 10.1021/am403793x | 513 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 20.0 | 27.0 | 100 | powder | 0.54 | 0 | 0 | 2 | 0.0 | 2.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | solidification | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Khaleghi, E., Olevsky, E., & Meyers, M. (2009). Uniaxial Freezing, Freeze?Drying, and Anodization for Aligned Pore Structure in Dye?Sensitized Solar Cells. Journal of the American Ceramic Society, 92(7), 1487-1491. | 2009 | 256 | 10.1111/j.1551-2916.2009.03038.x | 3115 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 64.0 | 27.0 | 100 | powder | 0.02 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, W., Porter, M. M., Olevsky, E. A., German, R. M., & McKittrick, J. (2015). Sintering of bi-porous titanium dioxide scaffolds: experimentation, modeling and simulation. Materials Science and Engineering: A, 636, 148-156. | 2015 | 323 | 10.1016/j.msea.2015.03.065 | 3462 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 10.0 | 27.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, W., Porter, M. M., Olevsky, E. A., German, R. M., & McKittrick, J. (2015). Sintering of bi-porous titanium dioxide scaffolds: experimentation, modeling and simulation. Materials Science and Engineering: A, 636, 148-156. | 2015 | 323 | 10.1016/j.msea.2015.03.065 | 3463 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 10.0 | 27.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, W., Porter, M. M., Olevsky, E. A., German, R. M., & McKittrick, J. (2015). Sintering of bi-porous titanium dioxide scaffolds: experimentation, modeling and simulation. Materials Science and Engineering: A, 636, 148-156. | 2015 | 323 | 10.1016/j.msea.2015.03.065 | 3464 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 10.0 | 27.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, W., Porter, M. M., Olevsky, E. A., German, R. M., & McKittrick, J. (2015). Sintering of bi-porous titanium dioxide scaffolds: experimentation, modeling and simulation. Materials Science and Engineering: A, 636, 148-156. | 2015 | 323 | 10.1016/j.msea.2015.03.065 | 3465 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 10.0 | 27.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, W., Porter, M. M., Olevsky, E. A., German, R. M., & McKittrick, J. (2015). Sintering of bi-porous titanium dioxide scaffolds: experimentation, modeling and simulation. Materials Science and Engineering: A, 636, 148-156. | 2015 | 323 | 10.1016/j.msea.2015.03.065 | 3466 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 0.0 | 27.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 7 | 0 | 0 | lamellar | sintered | 87.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.88 | 0.0 | 208.44 |
Li, W., Porter, M. M., Olevsky, E. A., German, R. M., & McKittrick, J. (2015). Sintering of bi-porous titanium dioxide scaffolds: experimentation, modeling and simulation. Materials Science and Engineering: A, 636, 148-156. | 2015 | 323 | 10.1016/j.msea.2015.03.065 | 3467 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 0.0 | 27.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 18 | 0 | 0 | lamellar | sintered | 85.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.13 | 0.0 | 154.11 |
Li, W., Porter, M. M., Olevsky, E. A., German, R. M., & McKittrick, J. (2015). Sintering of bi-porous titanium dioxide scaffolds: experimentation, modeling and simulation. Materials Science and Engineering: A, 636, 148-156. | 2015 | 323 | 10.1016/j.msea.2015.03.065 | 3468 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 0.0 | 27.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 30 | 0 | 0 | lamellar | sintered | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.88 | 0.0 | 146.65 |
Li, W., Porter, M. M., Olevsky, E. A., German, R. M., & McKittrick, J. (2015). Sintering of bi-porous titanium dioxide scaffolds: experimentation, modeling and simulation. Materials Science and Engineering: A, 636, 148-156. | 2015 | 323 | 10.1016/j.msea.2015.03.065 | 3469 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 0.0 | 27.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 50 | 0 | 0 | lamellar | sintered | 28.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, W., Porter, M. M., Olevsky, E. A., German, R. M., & McKittrick, J. (2015). Sintering of bi-porous titanium dioxide scaffolds: experimentation, modeling and simulation. Materials Science and Engineering: A, 636, 148-156. | 2015 | 323 | 10.1016/j.msea.2015.03.065 | 5915 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 10.0 | 27.0 | 100 | powder | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 87.1 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Monmaturapoj, N., & Thepsuwan, W. (2013). Fabrication and Characterization of Porous Biphasic Calcium Phosphate Scaffolds by Doping TiO2. In Advanced Materials Research (Vol. 747, pp. 190-193). Trans Tech Publications. | 2013 | 388 | 0 | 4282 | ceramic | TiO2 | camphene | 100 | 0.0 | 0 | 3.0 | 27.0 | 100 | powder | 0.0 | 5 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 95.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.55 | 0.0 | 0.0 |
Monmaturapoj, N., & Thepsuwan, W. (2013). Fabrication and Characterization of Porous Biphasic Calcium Phosphate Scaffolds by Doping TiO2. In Advanced Materials Research (Vol. 747, pp. 190-193). Trans Tech Publications. | 2013 | 388 | 0 | 4283 | ceramic | TiO2 | camphene | 100 | 0.0 | 0 | 5.0 | 27.0 | 100 | powder | 0.0 | 3 | 3 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 93.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 | 0.0 | 0.0 |
Monmaturapoj, N., & Thepsuwan, W. (2013). Fabrication and Characterization of Porous Biphasic Calcium Phosphate Scaffolds by Doping TiO2. In Advanced Materials Research (Vol. 747, pp. 190-193). Trans Tech Publications. | 2013 | 388 | 0 | 4284 | ceramic | TiO2 | camphene | 100 | 0.0 | 0 | 7.0 | 27.0 | 100 | powder | 0.0 | 2 | 2 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 89.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.95 | 0.0 | 0.0 |
Porter, M. M., Imperio, R., Wen, M., Meyers, M. A., & McKittrick, J. (2014). Bioinspired scaffolds with varying pore architectures and mechanical properties. Advanced Functional Materials, 24(14), 1978-1987. | 2014 | 489 | 10.1002/adfm.201302958 | 4164 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 10.0 | 27.0 | 100 | 0 | 0.15 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 82.0 | 19.69 | 16.0 | 3.69 | 2.36 | 4.4 | 0.0 | 309.0 |
Porter, M. M., Imperio, R., Wen, M., Meyers, M. A., & McKittrick, J. (2014). Bioinspired scaffolds with varying pore architectures and mechanical properties. Advanced Functional Materials, 24(14), 1978-1987. | 2014 | 489 | 10.1002/adfm.201302958 | 4165 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 10.0 | 27.0 | 100 | 0 | 0.15 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 82.8 | 17.06 | 13.0 | 4.06 | 2.33 | 6.1 | 0.0 | 616.0 |
Porter, M. M., Imperio, R., Wen, M., Meyers, M. A., & McKittrick, J. (2014). Bioinspired scaffolds with varying pore architectures and mechanical properties. Advanced Functional Materials, 24(14), 1978-1987. | 2014 | 489 | 10.1002/adfm.201302958 | 4166 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 10.0 | 27.0 | 100 | 0 | 0.15 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 83.2 | 12.54 | 10.0 | 2.54 | 2.74 | 6.7 | 0.0 | 662.0 |
Porter, M. M., Imperio, R., Wen, M., Meyers, M. A., & McKittrick, J. (2014). Bioinspired scaffolds with varying pore architectures and mechanical properties. Advanced Functional Materials, 24(14), 1978-1987. | 2014 | 489 | 10.1002/adfm.201302958 | 4167 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 10.0 | 27.0 | 100 | 0 | 0.15 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 83.7 | 16.87 | 14.0 | 2.87 | 3.52 | 3.0 | 0.0 | 327.0 |
Porter, M. M., Imperio, R., Wen, M., Meyers, M. A., & McKittrick, J. (2014). Bioinspired scaffolds with varying pore architectures and mechanical properties. Advanced Functional Materials, 24(14), 1978-1987. | 2014 | 489 | 10.1002/adfm.201302958 | 4168 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 10.0 | 27.0 | 100 | 0 | 0.15 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 82.3 | 45.73 | 28.0 | 17.73 | 5.59 | 4.8 | 0.0 | 301.0 |
Porter, M. M., Imperio, R., Wen, M., Meyers, M. A., & McKittrick, J. (2014). Bioinspired scaffolds with varying pore architectures and mechanical properties. Advanced Functional Materials, 24(14), 1978-1987. | 2014 | 489 | 10.1002/adfm.201302958 | 4169 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 10.0 | 27.0 | 100 | 0 | 0.15 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 83.7 | 34.12 | 22.0 | 12.12 | 4.45 | 6.6 | 0.0 | 415.0 |
Porter, M. M., Imperio, R., Wen, M., Meyers, M. A., & McKittrick, J. (2014). Bioinspired scaffolds with varying pore architectures and mechanical properties. Advanced Functional Materials, 24(14), 1978-1987. | 2014 | 489 | 10.1002/adfm.201302958 | 4170 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 10.0 | 27.0 | 100 | 0 | 0.15 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 37 | lamellar | sintered | 84.5 | 18.32 | 12.0 | 6.32 | 4.77 | 5.4 | 0.0 | 442.0 |
Porter, M. M., Imperio, R., Wen, M., Meyers, M. A., & McKittrick, J. (2014). Bioinspired scaffolds with varying pore architectures and mechanical properties. Advanced Functional Materials, 24(14), 1978-1987. | 2014 | 489 | 10.1002/adfm.201302958 | 4171 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 10.0 | 27.0 | 100 | 0 | 0.15 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 84.0 | 13.13 | 10.0 | 3.13 | 2.15 | 9.5 | 0.0 | 621.0 |
Porter, M. M., Imperio, R., Wen, M., Meyers, M. A., & McKittrick, J. (2014). Bioinspired scaffolds with varying pore architectures and mechanical properties. Advanced Functional Materials, 24(14), 1978-1987. | 2014 | 489 | 10.1002/adfm.201302958 | 4172 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 10.0 | 27.0 | 100 | 0 | 0.15 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 84.8 | 15.86 | 12.0 | 3.86 | 2.94 | 7.2 | 0.0 | 496.0 |
Porter, M. M., Imperio, R., Wen, M., Meyers, M. A., & McKittrick, J. (2014). Bioinspired scaffolds with varying pore architectures and mechanical properties. Advanced Functional Materials, 24(14), 1978-1987. | 2014 | 489 | 10.1002/adfm.201302958 | 4173 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 10.0 | 27.0 | 100 | 0 | 0.15 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 85.7 | 23.13 | 18.0 | 5.13 | 3.47 | 7.1 | 0.0 | 582.0 |
Porter, M. M., Imperio, R., Wen, M., Meyers, M. A., & McKittrick, J. (2014). Bioinspired scaffolds with varying pore architectures and mechanical properties. Advanced Functional Materials, 24(14), 1978-1987. | 2014 | 489 | 10.1002/adfm.201302958 | 4174 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 10.0 | 27.0 | 100 | 0 | 0.15 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 83.2 | 12.54 | 10.0 | 2.54 | 2.74 | 6.7 | 0.0 | 662.0 |
Porter, M. M., Imperio, R., Wen, M., Meyers, M. A., & McKittrick, J. (2014). Bioinspired scaffolds with varying pore architectures and mechanical properties. Advanced Functional Materials, 24(14), 1978-1987. | 2014 | 489 | 10.1002/adfm.201302958 | 4175 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 10.0 | 27.0 | 100 | 0 | 0.15 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 84.6 | 25.72 | 19.0 | 6.72 | 8.46 | 3.3 | 0.0 | 263.0 |
Porter, M. M., Imperio, R., Wen, M., Meyers, M. A., & McKittrick, J. (2014). Bioinspired scaffolds with varying pore architectures and mechanical properties. Advanced Functional Materials, 24(14), 1978-1987. | 2014 | 489 | 10.1002/adfm.201302958 | 4176 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 10.0 | 27.0 | 100 | 0 | 0.15 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 84.8 | 40.71 | 25.0 | 15.71 | 9.61 | 0.7 | 0.0 | 90.0 |
Porter, M. M., Imperio, R., Wen, M., Meyers, M. A., & McKittrick, J. (2014). Bioinspired scaffolds with varying pore architectures and mechanical properties. Advanced Functional Materials, 24(14), 1978-1987. | 2014 | 489 | 10.1002/adfm.201302958 | 4177 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 10.0 | 27.0 | 100 | 0 | 0.15 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 83.1 | 31.39 | 21.0 | 10.39 | 8.17 | 1.3 | 0.0 | 176.0 |
Porter, M. M., Imperio, R., Wen, M., Meyers, M. A., & McKittrick, J. (2014). Bioinspired scaffolds with varying pore architectures and mechanical properties. Advanced Functional Materials, 24(14), 1978-1987. | 2014 | 489 | 10.1002/adfm.201302958 | 4178 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 10.0 | 27.0 | 100 | 0 | 0.15 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 78.9 | 15.53 | 11.0 | 4.53 | 6.67 | 1.0 | 0.0 | 132.0 |
Porter, M. M., Yeh, M., Strawson, J., Goehring, T., Lujan, S., Siripasopsotorn, P., ... & McKittrick, J. (2012). Magnetic freeze casting inspired by nature. Materials Science and Engineering: A, 556, 741-750. | 2012 | 492 | 10.1016/j.msea.2012.07.058 | 4179 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 10.0 | 27.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 87.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Porter, M. M., Yeh, M., Strawson, J., Goehring, T., Lujan, S., Siripasopsotorn, P., ... & McKittrick, J. (2012). Magnetic freeze casting inspired by nature. Materials Science and Engineering: A, 556, 741-750. | 2012 | 492 | 10.1016/j.msea.2012.07.058 | 4180 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 10.0 | 27.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | magnetic | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Porter, M. M., Yeh, M., Strawson, J., Goehring, T., Lujan, S., Siripasopsotorn, P., ... & McKittrick, J. (2012). Magnetic freeze casting inspired by nature. Materials Science and Engineering: A, 556, 741-750. | 2012 | 492 | 10.1016/j.msea.2012.07.058 | 4181 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 10.0 | 27.0 | 0 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 87.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Porter, M. M., Yeh, M., Strawson, J., Goehring, T., Lujan, S., Siripasopsotorn, P., ... & McKittrick, J. (2012). Magnetic freeze casting inspired by nature. Materials Science and Engineering: A, 556, 741-750. | 2012 | 492 | 10.1016/j.msea.2012.07.058 | 4182 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 10.0 | 27.0 | 0 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | magnetic | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 87.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Porter, M. M., Yeh, M., Strawson, J., Goehring, T., Lujan, S., Siripasopsotorn, P., ... & McKittrick, J. (2012). Magnetic freeze casting inspired by nature. Materials Science and Engineering: A, 556, 741-750. | 2012 | 492 | 10.1016/j.msea.2012.07.058 | 4183 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 10.0 | 27.0 | 0 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 88.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Porter, M. M., Yeh, M., Strawson, J., Goehring, T., Lujan, S., Siripasopsotorn, P., ... & McKittrick, J. (2012). Magnetic freeze casting inspired by nature. Materials Science and Engineering: A, 556, 741-750. | 2012 | 492 | 10.1016/j.msea.2012.07.058 | 4184 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 10.0 | 27.0 | 0 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | magnetic | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 87.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Porter, M. M., Yeh, M., Strawson, J., Goehring, T., Lujan, S., Siripasopsotorn, P., ... & McKittrick, J. (2012). Magnetic freeze casting inspired by nature. Materials Science and Engineering: A, 556, 741-750. | 2012 | 492 | 10.1016/j.msea.2012.07.058 | 4185 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 10.0 | 27.0 | 0 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 89.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Porter, M. M., Yeh, M., Strawson, J., Goehring, T., Lujan, S., Siripasopsotorn, P., ... & McKittrick, J. (2012). Magnetic freeze casting inspired by nature. Materials Science and Engineering: A, 556, 741-750. | 2012 | 492 | 10.1016/j.msea.2012.07.058 | 4186 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 10.0 | 27.0 | 0 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | magnetic | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 89.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ren, L., Zeng, Y. P., & Jiang, D. (2007). Fabrication of Gradient Pore TiO2 Sheets by a Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(9), 3001-3004. | 2007 | 518 | 10.1111/j.1551-2916.2007.01833.x | 4224 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 2.84 | 27.0 | 100 | 0 | 0.15 | 2 | 1 | 0 | 255.0 | 0.0 | 0.0 | tape-casting | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 88.0 | 0.0 | 13.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ren, L., Zeng, Y. P., & Jiang, D. (2007). Fabrication of Gradient Pore TiO2 Sheets by a Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(9), 3001-3004. | 2007 | 518 | 10.1111/j.1551-2916.2007.01833.x | 4225 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 6.17 | 27.0 | 100 | 0 | 0.15 | 2 | 1 | 0 | 255.0 | 0.0 | 0.0 | tape-casting | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 87.0 | 0.0 | 14.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ren, L., Zeng, Y. P., & Jiang, D. (2007). Fabrication of Gradient Pore TiO2 Sheets by a Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(9), 3001-3004. | 2007 | 518 | 10.1111/j.1551-2916.2007.01833.x | 4226 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 10.14 | 27.0 | 100 | 0 | 0.15 | 2 | 1 | 0 | 255.0 | 0.0 | 0.0 | tape-casting | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 86.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ren, L., Zeng, Y. P., & Jiang, D. (2007). Fabrication of Gradient Pore TiO2 Sheets by a Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(9), 3001-3004. | 2007 | 518 | 10.1111/j.1551-2916.2007.01833.x | 4227 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 14.93 | 27.0 | 100 | 0 | 0.15 | 2 | 1 | 0 | 255.0 | 0.0 | 0.0 | tape-casting | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 82.0 | 0.0 | 10.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ren, L., Zeng, Y. P., & Jiang, D. (2007). Fabrication of Gradient Pore TiO2 Sheets by a Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(9), 3001-3004. | 2007 | 518 | 10.1111/j.1551-2916.2007.01833.x | 4228 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 20.83 | 27.0 | 100 | 0 | 0.15 | 2 | 1 | 0 | 255.0 | 0.0 | 0.0 | tape-casting | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 74.0 | 0.0 | 8.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ren, L., Zeng, Y. P., & Jiang, D. (2007). Fabrication of Gradient Pore TiO2 Sheets by a Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(9), 3001-3004. | 2007 | 518 | 10.1111/j.1551-2916.2007.01833.x | 4229 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 0.0 | 27.0 | 100 | 0 | 0.15 | 2 | 0 | 0 | 255.0 | 0.0 | 0.0 | tape-casting | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 56.99 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ren, L., Zeng, Y. P., & Jiang, D. (2007). Fabrication of Gradient Pore TiO2 Sheets by a Novel Freeze?Tape?Casting Process. Journal of the American Ceramic Society, 90(9), 3001-3004. | 2007 | 518 | 10.1111/j.1551-2916.2007.01833.x | 4230 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 0.0 | 27.0 | 100 | 0 | 0.15 | 5 | 0 | 0 | 255.0 | 0.0 | 0.0 | tape-casting | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 60.39 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ren, L., Zeng, Y. P., & Jiang, D. (2009). Preparation of porous TiO 2 by a novel freeze casting. Ceramics international, 35(3), 1267-1270. | 2009 | 519 | 10.1016/j.ceramint.2008.04.009 | 4231 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 28.0 | 27.0 | 0 | powder | 0.15 | 2 | 0 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 56.99 | 0.0 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ren, L., Zeng, Y. P., & Jiang, D. (2009). Preparation of porous TiO 2 by a novel freeze casting. Ceramics international, 35(3), 1267-1270. | 2009 | 519 | 10.1016/j.ceramint.2008.04.009 | 4232 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 28.0 | 27.0 | 0 | powder | 0.15 | 5 | 0 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 60.39 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Romeo, H. E., Trabadelo, F., Jobbágy, M., & Parra, R. (2014). 2D-ice templated titanium oxide films as advanced conducting platforms for electrical stimulation. Journal of Materials Chemistry C, 2(15), 2806-2814. | 2014 | 529 | 10.1039/c3tc32370f | 4347 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 0.0 | 27.0 | 100 | powder | 0.02 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | doctor-blade | constant | 500.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Romeo, H. E., Trabadelo, F., Jobbágy, M., & Parra, R. (2014). 2D-ice templated titanium oxide films as advanced conducting platforms for electrical stimulation. Journal of Materials Chemistry C, 2(15), 2806-2814. | 2014 | 529 | 10.1039/c3tc32370f | 4348 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 0.0 | 27.0 | 100 | powder | 0.02 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | doctor-blade | constant | 83.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Romeo, H. E., Trabadelo, F., Jobbágy, M., & Parra, R. (2014). 2D-ice templated titanium oxide films as advanced conducting platforms for electrical stimulation. Journal of Materials Chemistry C, 2(15), 2806-2814. | 2014 | 529 | 10.1039/c3tc32370f | 4349 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 0.0 | 27.0 | 100 | powder | 0.02 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | doctor-blade | constant | 17.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, X., Yang, B., Zhou, K., Zhang, D., Li, Z., & Zhou, C. (2015). Ordered porous TiO 2 films obtained by freezing and the application in dye sensitized solar cells. Current Applied Physics, 15(5), 662-668. | 2015 | 649 | 10.1016/j.cap.2015.02.021 | 3028 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 5.0 | 27.0 | 100 | 0 | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.01 | 0.0 | 0.0 | 5.6 | 0.0 | 0.0 |
Wu, Y., Zhao, J., Li, Y., & Lu, K. (2016). Preparation and freezing behavior of TiO 2 nanoparticle suspensions. Ceramics International, 42(14), 15597-15602. | 2016 | 669 | 10.1016/j.ceramint.2016.07.012 | 2460 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 10.0 | 27.0 | 100 | 0 | 0.02 | 0 | 2 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 3.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wu, Y., Zhao, J., Li, Y., & Lu, K. (2016). Preparation and freezing behavior of TiO 2 nanoparticle suspensions. Ceramics International, 42(14), 15597-15602. | 2016 | 669 | 10.1016/j.ceramint.2016.07.012 | 2461 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 20.0 | 27.0 | 100 | 0 | 0.02 | 0 | 2 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wu, Y., Zhao, J., Li, Y., & Lu, K. (2016). Preparation and freezing behavior of TiO 2 nanoparticle suspensions. Ceramics International, 42(14), 15597-15602. | 2016 | 669 | 10.1016/j.ceramint.2016.07.012 | 2462 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 30.0 | 27.0 | 100 | 0 | 0.02 | 0 | 2 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 3.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xing, Z., Zhou, W., Du, F., Zhang, L., Li, Z., Zhang, H., & Li, W. (2014). Facile synthesis of hierarchical porous TiO2 ceramics with enhanced photocatalytic performance for micropolluted pesticide degradation. ACS applied materials & interfaces, 6(19), 16653-16660. | 2014 | 682 | 10.1021/am5034236 | 2506 | ceramic | TiO2 | camphene | 100 | 0.0 | 0 | 3.0 | 27.0 | 100 | 0 | 0.02 | 0 | 60 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 95.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.55 | 0.0 | 0.0 |
Xing, Z., Zhou, W., Du, F., Zhang, L., Li, Z., Zhang, H., & Li, W. (2014). Facile synthesis of hierarchical porous TiO2 ceramics with enhanced photocatalytic performance for micropolluted pesticide degradation. ACS applied materials & interfaces, 6(19), 16653-16660. | 2014 | 682 | 10.1021/am5034236 | 2507 | ceramic | TiO2 | camphene | 100 | 0.0 | 0 | 5.0 | 27.0 | 100 | 0 | 0.02 | 0 | 60 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 93.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.83 | 0.0 | 0.0 |
Xing, Z., Zhou, W., Du, F., Zhang, L., Li, Z., Zhang, H., & Li, W. (2014). Facile synthesis of hierarchical porous TiO2 ceramics with enhanced photocatalytic performance for micropolluted pesticide degradation. ACS applied materials & interfaces, 6(19), 16653-16660. | 2014 | 682 | 10.1021/am5034236 | 2508 | ceramic | TiO2 | camphene | 100 | 0.0 | 0 | 6.3 | 27.0 | 100 | 0 | 0.02 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 89.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.98 | 0.0 | 0.0 |
Xing, Z., Li, J., Wang, Q., Zhou, W., Tian, G., Pan, K., ... & Fu, H. (2013). A floating porous crystalline TiO2 ceramic with enhanced photocatalytic performance for wastewater decontamination. European Journal of Inorganic Chemistry, 2013(13), 2411-2417. | 2013 | 683 | 10.1002/ejic.201201494 | 2509 | ceramic | TiO2 | camphene | 100 | 0.0 | 0 | 0.0 | 27.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 96.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xing, Z., Li, J., Wang, Q., Zhou, W., Tian, G., Pan, K., ... & Fu, H. (2013). A floating porous crystalline TiO2 ceramic with enhanced photocatalytic performance for wastewater decontamination. European Journal of Inorganic Chemistry, 2013(13), 2411-2417. | 2013 | 683 | 10.1002/ejic.201201494 | 2510 | ceramic | TiO2 | camphene | 100 | 0.0 | 0 | 0.0 | 27.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 94.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.75 | 0.0 | 0.0 |
Xing, Z., Li, J., Wang, Q., Zhou, W., Tian, G., Pan, K., ... & Fu, H. (2013). A floating porous crystalline TiO2 ceramic with enhanced photocatalytic performance for wastewater decontamination. European Journal of Inorganic Chemistry, 2013(13), 2411-2417. | 2013 | 683 | 10.1002/ejic.201201494 | 2511 | ceramic | TiO2 | camphene | 100 | 0.0 | 0 | 0.0 | 27.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 88.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.2 | 0.0 | 0.0 |
Xing, Z., Li, J., Wang, Q., Zhou, W., Tian, G., Pan, K., ... & Fu, H. (2013). A floating porous crystalline TiO2 ceramic with enhanced photocatalytic performance for wastewater decontamination. European Journal of Inorganic Chemistry, 2013(13), 2411-2417. | 2013 | 683 | 10.1002/ejic.201201494 | 2512 | ceramic | TiO2 | camphene | 100 | 0.0 | 0 | 0.0 | 27.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.8 | 0.0 | 0.0 |
Xing, Z., Zhou, W., Du, F., Qu, Y., Tian, G., Pan, K., ... & Fu, H. (2014). A floating macro/mesoporous crystalline anatase TiO 2 ceramic with enhanced photocatalytic performance for recalcitrant wastewater degradation. Dalton Transactions, 43(2), 790-798. | 2014 | 684 | 10.1039/c3dt52433g | 2513 | ceramic | TiO2 | camphene | 100 | 0.0 | 0 | 0.0 | 27.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 96.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xing, Z., Zhou, W., Du, F., Qu, Y., Tian, G., Pan, K., ... & Fu, H. (2014). A floating macro/mesoporous crystalline anatase TiO 2 ceramic with enhanced photocatalytic performance for recalcitrant wastewater degradation. Dalton Transactions, 43(2), 790-798. | 2014 | 684 | 10.1039/c3dt52433g | 2514 | ceramic | TiO2 | camphene | 100 | 0.0 | 0 | 0.0 | 27.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 94.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.66 | 0.0 | 0.0 |
Xing, Z., Zhou, W., Du, F., Qu, Y., Tian, G., Pan, K., ... & Fu, H. (2014). A floating macro/mesoporous crystalline anatase TiO 2 ceramic with enhanced photocatalytic performance for recalcitrant wastewater degradation. Dalton Transactions, 43(2), 790-798. | 2014 | 684 | 10.1039/c3dt52433g | 2515 | ceramic | TiO2 | camphene | 100 | 0.0 | 0 | 0.0 | 27.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 86.7 | 0.0 | 0.0 | 0.0 | 0.0 | 1.19 | 0.0 | 0.0 |
Yoon, H., Choe, H., & Choi, H. (2012). A Morphological Study on the Titanium-Oxide Foams Processed Using Freeze-Casting. Journal of the Korean Ceramic Society, 49(5), 427-431. | 2012 | 732 | 10.4191/kcers.2012.49.5.427 | 6083 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 20.9 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 8.2 | 3.0 | 5.2 | 0.0 | 0.0 | 0.0 | 0.0 |
Yoon, H., Choe, H., & Choi, H. (2012). A Morphological Study on the Titanium-Oxide Foams Processed Using Freeze-Casting. Journal of the Korean Ceramic Society, 49(5), 427-431. | 2012 | 732 | 10.4191/kcers.2012.49.5.427 | 6084 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 20.9 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 9.3 | 1.8 | 7.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Yoon, H., Choe, H., & Choi, H. (2012). A Morphological Study on the Titanium-Oxide Foams Processed Using Freeze-Casting. Journal of the Korean Ceramic Society, 49(5), 427-431. | 2012 | 732 | 10.4191/kcers.2012.49.5.427 | 6085 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 20.9 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 12.8 | 1.8 | 11.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Scotti, K. L., Northard, E. E., Plunk, A., Tappan, B. C., & Dunand, D. C. (2017). Directional solidification of aqueous TiO 2 suspensions under reduced gravity. Acta Materialia, 124, 608-619. | 2017 | 820 | 10.1016/j.actamat.2016.11.038 | 1659 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 1.5 | 27.0 | 100 | powder | 0.02 | 1 | 0 | 0 | 228.0 | 0.0 | 0.0 | micro-g | constant | 100.0 | 0.0 | 0 | 0 | 20 | lamellar | sintered | 0.0 | 182.0 | 116.0 | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Scotti, K. L., Northard, E. E., Plunk, A., Tappan, B. C., & Dunand, D. C. (2017). Directional solidification of aqueous TiO 2 suspensions under reduced gravity. Acta Materialia, 124, 608-619. | 2017 | 820 | 10.1016/j.actamat.2016.11.038 | 1660 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 1.5 | 27.0 | 100 | powder | 0.02 | 1 | 0 | 0 | 228.0 | 0.0 | 0.0 | one-sided | constant | 100.0 | 0.0 | 0 | 0 | 20 | lamellar | sintered | 0.0 | 81.0 | 36.0 | 46.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Scotti, K. L., Northard, E. E., Plunk, A., Tappan, B. C., & Dunand, D. C. (2017). Directional solidification of aqueous TiO 2 suspensions under reduced gravity. Acta Materialia, 124, 608-619. | 2017 | 820 | 10.1016/j.actamat.2016.11.038 | 1661 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 2.5 | 27.0 | 100 | powder | 0.02 | 1 | 0 | 0 | 228.0 | 0.0 | 0.0 | micro-g | constant | 100.0 | 0.0 | 0 | 0 | 18 | lamellar | sintered | 0.0 | 153.0 | 91.0 | 53.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Scotti, K. L., Northard, E. E., Plunk, A., Tappan, B. C., & Dunand, D. C. (2017). Directional solidification of aqueous TiO 2 suspensions under reduced gravity. Acta Materialia, 124, 608-619. | 2017 | 820 | 10.1016/j.actamat.2016.11.038 | 1662 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 2.5 | 27.0 | 100 | powder | 0.02 | 1 | 0 | 0 | 228.0 | 0.0 | 0.0 | one-sided | constant | 100.0 | 0.0 | 0 | 0 | 18 | lamellar | sintered | 0.0 | 55.0 | 35.0 | 24.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Scotti, K. L., Northard, E. E., Plunk, A., Tappan, B. C., & Dunand, D. C. (2017). Directional solidification of aqueous TiO 2 suspensions under reduced gravity. Acta Materialia, 124, 608-619. | 2017 | 820 | 10.1016/j.actamat.2016.11.038 | 1663 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 5.0 | 27.0 | 100 | powder | 0.02 | 1 | 0 | 0 | 228.0 | 0.0 | 0.0 | micro-g | constant | 100.0 | 0.0 | 0 | 0 | 15 | lamellar | sintered | 0.0 | 119.0 | 70.0 | 46.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Scotti, K. L., Northard, E. E., Plunk, A., Tappan, B. C., & Dunand, D. C. (2017). Directional solidification of aqueous TiO 2 suspensions under reduced gravity. Acta Materialia, 124, 608-619. | 2017 | 820 | 10.1016/j.actamat.2016.11.038 | 1664 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 5.0 | 27.0 | 100 | powder | 0.02 | 1 | 0 | 0 | 228.0 | 0.0 | 0.0 | one-sided | constant | 100.0 | 0.0 | 0 | 0 | 15 | lamellar | sintered | 0.0 | 92.0 | 58.0 | 42.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Scotti, K. L., Northard, E. E., Plunk, A., Tappan, B. C., & Dunand, D. C. (2017). Directional solidification of aqueous TiO 2 suspensions under reduced gravity. Acta Materialia, 124, 608-619. | 2017 | 820 | 10.1016/j.actamat.2016.11.038 | 1665 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 5.0 | 27.0 | 100 | powder | 0.02 | 1 | 0 | 0 | 228.0 | 0.0 | 0.0 | one-sided | constant | 100.0 | 0.0 | 0 | 0 | 15 | lamellar | sintered | 0.0 | 36.0 | 18.0 | 18.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Scotti, K. L., Northard, E. E., Plunk, A., Tappan, B. C., & Dunand, D. C. (2017). Directional solidification of aqueous TiO 2 suspensions under reduced gravity. Acta Materialia, 124, 608-619. | 2017 | 820 | 10.1016/j.actamat.2016.11.038 | 1666 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 7.0 | 27.0 | 100 | powder | 0.02 | 1 | 0 | 0 | 228.0 | 0.0 | 0.0 | micro-g | constant | 100.0 | 0.0 | 0 | 0 | 15 | lamellar | sintered | 0.0 | 50.0 | 24.0 | 32.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Scotti, K. L., Northard, E. E., Plunk, A., Tappan, B. C., & Dunand, D. C. (2017). Directional solidification of aqueous TiO 2 suspensions under reduced gravity. Acta Materialia, 124, 608-619. | 2017 | 820 | 10.1016/j.actamat.2016.11.038 | 1667 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 7.0 | 27.0 | 100 | powder | 0.02 | 1 | 0 | 0 | 228.0 | 0.0 | 0.0 | one-sided | constant | 100.0 | 0.0 | 0 | 0 | 15 | lamellar | sintered | 0.0 | 34.0 | 14.0 | 19.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Scotti, K. L., Northard, E. E., Plunk, A., Tappan, B. C., & Dunand, D. C. (2017). Directional solidification of aqueous TiO 2 suspensions under reduced gravity. Acta Materialia, 124, 608-619. | 2017 | 820 | 10.1016/j.actamat.2016.11.038 | 1668 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 7.0 | 27.0 | 100 | powder | 0.02 | 1 | 0 | 0 | 228.0 | 0.0 | 0.0 | one-sided | constant | 100.0 | 0.0 | 0 | 0 | 15 | lamellar | sintered | 0.0 | 30.0 | 9.0 | 19.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Scotti, K. L., Northard, E. E., Plunk, A., Tappan, B. C., & Dunand, D. C. (2017). Directional solidification of aqueous TiO 2 suspensions under reduced gravity. Acta Materialia, 124, 608-619. | 2017 | 820 | 10.1016/j.actamat.2016.11.038 | 1669 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 7.0 | 27.0 | 100 | powder | 0.02 | 1 | 0 | 0 | 228.0 | 0.0 | 0.0 | one-sided | constant | 100.0 | 0.0 | 0 | 0 | 15 | lamellar | sintered | 0.0 | 23.0 | 11.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhao, J., Li, Y., Wu, Y., Lv, S., & Lu, K. (2017). Microstructure of TiO2 porous ceramics by freeze casting of nanoparticle suspensions. Ceramics International. | 2017 | 961 | 10.1016/j.ceramint.2017.06.134 | 6155 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 35.0 | 27.0 | 100 | powder | 0.1 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 20.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhao, J., Li, Y., Wu, Y., Lv, S., & Lu, K. (2017). Microstructure of TiO2 porous ceramics by freeze casting of nanoparticle suspensions. Ceramics International. | 2017 | 961 | 10.1016/j.ceramint.2017.06.134 | 6156 | ceramic | TiO2 | water | 100 | 0.0 | 0 | 35.0 | 27.0 | 100 | powder | 0.02 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 10.0 | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, M., Zhu, J., Qi, G., He, C., & Wang, H. (2012). Anisotropic hydrogels fabricated with directional freezing and radiation-induced polymerization and crosslinking method. Materials Letters, 89, 104-107. | 2012 | 43 | 10.1016/j.matlet.2012.08.087 | 303 | polymer | HEMA | water | 100 | 0.0 | 0 | 30.0 | 96.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 33.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, M., Zhu, J., Qi, G., He, C., & Wang, H. (2012). Anisotropic hydrogels fabricated with directional freezing and radiation-induced polymerization and crosslinking method. Materials Letters, 89, 104-107. | 2012 | 43 | 10.1016/j.matlet.2012.08.087 | 304 | polymer | HEMA | water | 100 | 0.0 | 0 | 30.0 | 96.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 33.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, M., Zhu, J., Qi, G., He, C., & Wang, H. (2012). Anisotropic hydrogels fabricated with directional freezing and radiation-induced polymerization and crosslinking method. Materials Letters, 89, 104-107. | 2012 | 43 | 10.1016/j.matlet.2012.08.087 | 305 | polymer | HEMA | water | 100 | 0.0 | 0 | 30.0 | 96.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 33.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, M., Zhu, J., Qi, G., He, C., & Wang, H. (2012). Anisotropic hydrogels fabricated with directional freezing and radiation-induced polymerization and crosslinking method. Materials Letters, 89, 104-107. | 2012 | 43 | 10.1016/j.matlet.2012.08.087 | 306 | polymer | HEMA | water | 100 | 0.0 | 0 | 30.0 | 96.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 33.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 30.0 | 15.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, M., Zhu, J., Qi, G., He, C., & Wang, H. (2012). Anisotropic hydrogels fabricated with directional freezing and radiation-induced polymerization and crosslinking method. Materials Letters, 89, 104-107. | 2012 | 43 | 10.1016/j.matlet.2012.08.087 | 307 | polymer | HEMA | water | 100 | 0.0 | 0 | 35.0 | 96.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 33.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, M., Zhu, J., Qi, G., He, C., & Wang, H. (2012). Anisotropic hydrogels fabricated with directional freezing and radiation-induced polymerization and crosslinking method. Materials Letters, 89, 104-107. | 2012 | 43 | 10.1016/j.matlet.2012.08.087 | 308 | polymer | HEMA | water | 100 | 0.0 | 0 | 35.0 | 96.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 33.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, M., Zhu, J., Qi, G., He, C., & Wang, H. (2012). Anisotropic hydrogels fabricated with directional freezing and radiation-induced polymerization and crosslinking method. Materials Letters, 89, 104-107. | 2012 | 43 | 10.1016/j.matlet.2012.08.087 | 309 | polymer | HEMA | water | 100 | 0.0 | 0 | 35.0 | 96.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 33.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, M., Zhu, J., Qi, G., He, C., & Wang, H. (2012). Anisotropic hydrogels fabricated with directional freezing and radiation-induced polymerization and crosslinking method. Materials Letters, 89, 104-107. | 2012 | 43 | 10.1016/j.matlet.2012.08.087 | 310 | polymer | HEMA | water | 100 | 0.0 | 0 | 35.0 | 96.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 33.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, M., Zhu, J., Qi, G., He, C., & Wang, H. (2012). Anisotropic hydrogels fabricated with directional freezing and radiation-induced polymerization and crosslinking method. Materials Letters, 89, 104-107. | 2012 | 43 | 10.1016/j.matlet.2012.08.087 | 311 | polymer | HEMA | water | 100 | 0.0 | 0 | 40.0 | 96.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 33.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 30.0 | 16.0 | 14.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, M., Zhu, J., Qi, G., He, C., & Wang, H. (2012). Anisotropic hydrogels fabricated with directional freezing and radiation-induced polymerization and crosslinking method. Materials Letters, 89, 104-107. | 2012 | 43 | 10.1016/j.matlet.2012.08.087 | 312 | polymer | HEMA | water | 100 | 0.0 | 0 | 40.0 | 96.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 33.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, M., Zhu, J., Qi, G., He, C., & Wang, H. (2012). Anisotropic hydrogels fabricated with directional freezing and radiation-induced polymerization and crosslinking method. Materials Letters, 89, 104-107. | 2012 | 43 | 10.1016/j.matlet.2012.08.087 | 313 | polymer | HEMA | water | 100 | 0.0 | 0 | 40.0 | 96.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 33.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, M., Zhu, J., Qi, G., He, C., & Wang, H. (2012). Anisotropic hydrogels fabricated with directional freezing and radiation-induced polymerization and crosslinking method. Materials Letters, 89, 104-107. | 2012 | 43 | 10.1016/j.matlet.2012.08.087 | 314 | polymer | HEMA | water | 100 | 0.0 | 0 | 40.0 | 96.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 33.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, M., Zhu, J., Qi, G., He, C., & Wang, H. (2012). Anisotropic hydrogels fabricated with directional freezing and radiation-induced polymerization and crosslinking method. Materials Letters, 89, 104-107. | 2012 | 43 | 10.1016/j.matlet.2012.08.087 | 315 | polymer | HEMA | water | 100 | 0.0 | 0 | 40.0 | 96.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 33.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, M., Zhu, J., Qi, G., He, C., & Wang, H. (2012). Anisotropic hydrogels fabricated with directional freezing and radiation-induced polymerization and crosslinking method. Materials Letters, 89, 104-107. | 2012 | 43 | 10.1016/j.matlet.2012.08.087 | 316 | polymer | HEMA | water | 100 | 0.0 | 0 | 2.0 | 96.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 33.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 20.0 | 15.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dinu, M. V., P?ádný, M., Dr?gan, E. S., & Michálek, J. (2013). Morphogical and swelling properties of porous hydrogels based on poly (hydroxyethyl methacrylate) and chitosan modulated by ice-templating process and porogen leaching. Journal of Polymer Research, 20(11), 285. | 2013 | 93 | 10.1007/s10965-013-0285-3 | 4873 | polymer | HEMA | water | 100 | 0.0 | 0 | 15.0 | 96.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 255.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dinu, M. V., P?ádný, M., Dr?gan, E. S., & Michálek, J. (2013). Morphogical and swelling properties of porous hydrogels based on poly (hydroxyethyl methacrylate) and chitosan modulated by ice-templating process and porogen leaching. Journal of Polymer Research, 20(11), 285. | 2013 | 93 | 10.1007/s10965-013-0285-3 | 4875 | polymer | HEMA | water | 100 | 0.0 | 0 | 40.0 | 96.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 255.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 62.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dinu, M. V., P?ádný, M., Dr?gan, E. S., & Michálek, J. (2013). Morphogical and swelling properties of porous hydrogels based on poly (hydroxyethyl methacrylate) and chitosan modulated by ice-templating process and porogen leaching. Journal of Polymer Research, 20(11), 285. | 2013 | 93 | 10.1007/s10965-013-0285-3 | 4877 | polymer | HEMA | water | 100 | 0.0 | 0 | 45.0 | 96.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 255.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 44.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dinu, M. V., P?ádný, M., Dr?gan, E. S., & Michálek, J. (2013). Morphogical and swelling properties of porous hydrogels based on poly (hydroxyethyl methacrylate) and chitosan modulated by ice-templating process and porogen leaching. Journal of Polymer Research, 20(11), 285. | 2013 | 93 | 10.1007/s10965-013-0285-3 | 4879 | polymer | HEMA | water | 100 | 0.0 | 0 | 65.0 | 96.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 255.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 36.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dinu, M. V., P?ádný, M., Dr?gan, E. S., & Michálek, J. (2013). Morphogical and swelling properties of porous hydrogels based on poly (hydroxyethyl methacrylate) and chitosan modulated by ice-templating process and porogen leaching. Journal of Polymer Research, 20(11), 285. | 2013 | 93 | 10.1007/s10965-013-0285-3 | 4881 | polymer | HEMA | water | 100 | 0.0 | 0 | 26.0 | 96.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhu, J., Wang, J., Liu, Q., Liu, Y., Wang, L., He, C., & Wang, H. (2013). Anisotropic tough poly (2-hydroxyethyl methacrylate) hydrogels fabricated by directional freezing redox polymerization. Journal of Materials Chemistry B, 1(7), 978-986. | 2013 | 795 | 10.1039/c2tb00288d | 5177 | polymer | HEMA | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 33.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 35.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhu, J., Wang, J., Liu, Q., Liu, Y., Wang, L., He, C., & Wang, H. (2013). Anisotropic tough poly (2-hydroxyethyl methacrylate) hydrogels fabricated by directional freezing redox polymerization. Journal of Materials Chemistry B, 1(7), 978-986. | 2013 | 795 | 10.1039/c2tb00288d | 5178 | polymer | HEMA | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 333.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhu, J., Wang, J., Liu, Q., Liu, Y., Wang, L., He, C., & Wang, H. (2013). Anisotropic tough poly (2-hydroxyethyl methacrylate) hydrogels fabricated by directional freezing redox polymerization. Journal of Materials Chemistry B, 1(7), 978-986. | 2013 | 795 | 10.1039/c2tb00288d | 5179 | polymer | HEMA | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhu, J., Wang, J., Liu, Q., Liu, Y., Wang, L., He, C., & Wang, H. (2013). Anisotropic tough poly (2-hydroxyethyl methacrylate) hydrogels fabricated by directional freezing redox polymerization. Journal of Materials Chemistry B, 1(7), 978-986. | 2013 | 795 | 10.1039/c2tb00288d | 5180 | polymer | HEMA | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhu, J., Wang, J., Liu, Q., Liu, Y., Wang, L., He, C., & Wang, H. (2013). Anisotropic tough poly (2-hydroxyethyl methacrylate) hydrogels fabricated by directional freezing redox polymerization. Journal of Materials Chemistry B, 1(7), 978-986. | 2013 | 795 | 10.1039/c2tb00288d | 5181 | polymer | HEMA | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, R., Johnson, M. B., Plucknett, K. P., & White, M. A. (2012). Thermal conductivity of tunable lamellar aluminum oxide/polymethyl methacrylate hybrid composites. Journal of Materials Research, 27(14), 1869-1876. | 2012 | 44 | 10.1557/jmr.2012.112 | 328 | ceramic/polymer | Al2O3/PMMA (impregnation) | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.4 | 1 | 1 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, R., Johnson, M. B., Plucknett, K. P., & White, M. A. (2012). Thermal conductivity of tunable lamellar aluminum oxide/polymethyl methacrylate hybrid composites. Journal of Materials Research, 27(14), 1869-1876. | 2012 | 44 | 10.1557/jmr.2012.112 | 329 | ceramic/polymer | Al2O3/PMMA (impregnation) | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 93 | powder | 0.4 | 1 | 1 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 30.0 | 15.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, R., Johnson, M. B., Plucknett, K. P., & White, M. A. (2012). Thermal conductivity of tunable lamellar aluminum oxide/polymethyl methacrylate hybrid composites. Journal of Materials Research, 27(14), 1869-1876. | 2012 | 44 | 10.1557/jmr.2012.112 | 330 | ceramic/polymer | Al2O3/PMMA (impregnation) | water | 100 | 0.0 | 0 | 40.0 | 1.0 | 89 | powder | 0.4 | 1 | 1 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 19.0 | 2.0 | 17.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, Y., Bunch, J., Li, T., Mao, Z., & Chen, F. (2012). Novel functionally graded acicular electrode for solid oxide cells fabricated by the freeze-tape-casting process. Journal of Power Sources, 213, 93-99. | 2012 | 46 | 10.1016/j.jpowsour.2012.03.109 | 355 | ceramic | NiO-YSZ (mixed) | water | 100 | 0.0 | 0 | 15.0 | 63.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | tape-casting | constant | 800.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, Y., Bunch, J., Li, T., Mao, Z., & Chen, F. (2012). Novel functionally graded acicular electrode for solid oxide cells fabricated by the freeze-tape-casting process. Journal of Power Sources, 213, 93-99. | 2012 | 46 | 10.1016/j.jpowsour.2012.03.109 | 356 | ceramic | NiO-YSZ (mixed) | water | 100 | 0.0 | 0 | 20.0 | 63.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | tape-casting | constant | 800.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 19.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, Y., Bunch, J., Li, T., Mao, Z., & Chen, F. (2012). Novel functionally graded acicular electrode for solid oxide cells fabricated by the freeze-tape-casting process. Journal of Power Sources, 213, 93-99. | 2012 | 46 | 10.1016/j.jpowsour.2012.03.109 | 357 | ceramic | NiO-YSZ (mixed) | water | 100 | 0.0 | 0 | 25.0 | 63.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | tape-casting | constant | 800.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, Y., Bunch, J., Li, T., Mao, Z., & Chen, F. (2012). Novel functionally graded acicular electrode for solid oxide cells fabricated by the freeze-tape-casting process. Journal of Power Sources, 213, 93-99. | 2012 | 46 | 10.1016/j.jpowsour.2012.03.109 | 358 | ceramic | NiO-YSZ (mixed) | water | 100 | 0.0 | 0 | 15.0 | 63.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 213.0 | 0.0 | 0.0 | tape-casting | constant | 800.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.88 | 0.0 | 46.64 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, Y., Bunch, J., Li, T., Mao, Z., & Chen, F. (2012). Novel functionally graded acicular electrode for solid oxide cells fabricated by the freeze-tape-casting process. Journal of Power Sources, 213, 93-99. | 2012 | 46 | 10.1016/j.jpowsour.2012.03.109 | 359 | ceramic | NiO-YSZ (mixed) | water | 100 | 0.0 | 0 | 20.0 | 63.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 213.0 | 0.0 | 0.0 | tape-casting | constant | 800.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 49.01 | 0.0 | 19.68 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, Y., Bunch, J., Li, T., Mao, Z., & Chen, F. (2012). Novel functionally graded acicular electrode for solid oxide cells fabricated by the freeze-tape-casting process. Journal of Power Sources, 213, 93-99. | 2012 | 46 | 10.1016/j.jpowsour.2012.03.109 | 360 | ceramic | NiO-YSZ (mixed) | water | 100 | 0.0 | 0 | 25.0 | 63.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 213.0 | 0.0 | 0.0 | tape-casting | constant | 800.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 37.57 | 0.0 | 8.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, Y., Bunch, J., Li, T., Mao, Z., & Chen, F. (2012). Novel functionally graded acicular electrode for solid oxide cells fabricated by the freeze-tape-casting process. Journal of Power Sources, 213, 93-99. | 2012 | 46 | 10.1016/j.jpowsour.2012.03.109 | 361 | ceramic | NiO-YSZ (mixed) | water | 100 | 0.0 | 0 | 15.0 | 63.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 213.0 | 0.0 | 0.0 | tape-casting | constant | 800.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, Y., Bunch, J., Li, T., Mao, Z., & Chen, F. (2012). Novel functionally graded acicular electrode for solid oxide cells fabricated by the freeze-tape-casting process. Journal of Power Sources, 213, 93-99. | 2012 | 46 | 10.1016/j.jpowsour.2012.03.109 | 362 | ceramic | NiO-YSZ (mixed) | water | 100 | 0.0 | 0 | 20.0 | 63.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 213.0 | 0.0 | 0.0 | tape-casting | constant | 800.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 18.66 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, Y., Bunch, J., Li, T., Mao, Z., & Chen, F. (2012). Novel functionally graded acicular electrode for solid oxide cells fabricated by the freeze-tape-casting process. Journal of Power Sources, 213, 93-99. | 2012 | 46 | 10.1016/j.jpowsour.2012.03.109 | 363 | ceramic | NiO-YSZ (mixed) | water | 100 | 0.0 | 0 | 25.0 | 63.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 213.0 | 0.0 | 0.0 | tape-casting | constant | 800.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, Y., Bunch, J., Li, T., Mao, Z., & Chen, F. (2012). Novel functionally graded acicular electrode for solid oxide cells fabricated by the freeze-tape-casting process. Journal of Power Sources, 213, 93-99. | 2012 | 46 | 10.1016/j.jpowsour.2012.03.109 | 364 | ceramic | NiO-YSZ (mixed) | water | 100 | 0.0 | 0 | 15.0 | 63.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 213.0 | 0.0 | 0.0 | tape-casting | constant | 800.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 18.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, Y., Bunch, J., Li, T., Mao, Z., & Chen, F. (2012). Novel functionally graded acicular electrode for solid oxide cells fabricated by the freeze-tape-casting process. Journal of Power Sources, 213, 93-99. | 2012 | 46 | 10.1016/j.jpowsour.2012.03.109 | 365 | ceramic | NiO-YSZ (mixed) | water | 100 | 0.0 | 0 | 20.0 | 63.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 213.0 | 0.0 | 0.0 | gel | constant | 800.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 18.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, Y., Bunch, J., Li, T., Mao, Z., & Chen, F. (2012). Novel functionally graded acicular electrode for solid oxide cells fabricated by the freeze-tape-casting process. Journal of Power Sources, 213, 93-99. | 2012 | 46 | 10.1016/j.jpowsour.2012.03.109 | 366 | ceramic | NiO-YSZ (mixed) | water | 100 | 0.0 | 0 | 25.0 | 63.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 213.0 | 0.0 | 0.0 | tape-casting | constant | 1000.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 17.77 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, Y., Zhang, Y., Baker, J., Majumdar, P., Yang, Z., Han, M., & Chen, F. (2014). Hierarchically oriented macroporous anode-supported solid oxide fuel cell with thin ceria electrolyte film. ACS applied materials & interfaces, 6(7), 5130-5136. | 2014 | 47 | 10.1021/am5003662 | 367 | ceramic | NiO-GDC (mixed) | water | 100 | 0.0 | 0 | 25.0 | 63.0 | 63 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | tape-casting | constant | 0.0 | 0.0 | 0 | 0 | 15 | lamellar | sintered | 43.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, Y., Zhang, Y., Baker, J., Majumdar, P., Yang, Z., Han, M., & Chen, F. (2014). Hierarchically oriented macroporous anode-supported solid oxide fuel cell with thin ceria electrolyte film. ACS applied materials & interfaces, 6(7), 5130-5136. | 2014 | 47 | 10.1021/am5003662 | 368 | ceramic | NiO-GDC (mixed) | water | 100 | 0.0 | 0 | 25.0 | 63.0 | 63 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | tape-casting | constant | 0.0 | 0.0 | 0 | 0 | 17 | lamellar | sintered | 42.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, Y., Zhang, Y., Baker, J., Majumdar, P., Yang, Z., Han, M., & Chen, F. (2014). Hierarchically oriented macroporous anode-supported solid oxide fuel cell with thin ceria electrolyte film. ACS applied materials & interfaces, 6(7), 5130-5136. | 2014 | 47 | 10.1021/am5003662 | 369 | ceramic | NiO-GDC (mixed) | water | 100 | 0.0 | 0 | 25.0 | 63.0 | 63 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | tape-casting | constant | 0.0 | 0.0 | 0 | 0 | 18 | lamellar | sintered | 41.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chino, Y., & Dunand, D. C. (2008). Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Materialia, 56(1), 105-113. | 2008 | 51 | doi:10.1016/j.actamat.2007.09.002 | 381 | metal | Ti, 3.8wtO2 | water | 100 | 0.0 | 0 | 24.0 | 29.0 | 100 | powder | 45.0 | 0 | 0 | 0 | 256.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 62.0 | 0.0 | 160.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chino, Y., & Dunand, D. C. (2008). Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Materialia, 56(1), 105-113. | 2008 | 51 | doi:10.1016/j.actamat.2007.09.002 | 382 | metal | Ti, 3.8wtO2 | water | 100 | 0.0 | 0 | 24.0 | 29.0 | 100 | powder | 45.0 | 0 | 0 | 0 | 256.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 62.0 | 0.0 | 155.0 | 0.0 | 0.0 | 52.0 | 0.0 | 0.0 |
Chino, Y., & Dunand, D. C. (2008). Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Materialia, 56(1), 105-113. | 2008 | 51 | doi:10.1016/j.actamat.2007.09.002 | 383 | metal | Ti, 3.8wtO2 | water | 100 | 0.0 | 0 | 24.0 | 29.0 | 100 | powder | 45.0 | 0 | 0 | 0 | 256.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 62.0 | 0.0 | 155.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chino, Y., & Dunand, D. C. (2008). Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Materialia, 56(1), 105-113. | 2008 | 51 | doi:10.1016/j.actamat.2007.09.002 | 384 | metal | Ti, 3.8wtO2 | water | 100 | 0.0 | 0 | 24.0 | 29.0 | 100 | powder | 45.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chino, Y., & Dunand, D. C. (2008). Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Materialia, 56(1), 105-113. | 2008 | 51 | doi:10.1016/j.actamat.2007.09.002 | 385 | metal | Ti, 3.8wtO2 | water | 100 | 0.0 | 0 | 24.0 | 29.0 | 100 | powder | 125.0 | 0 | 0 | 0 | 256.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jung, H. D., Jang, T. S., Wang, L., Kim, H. E., Koh, Y. H., & Song, J. (2015). Novel strategy for mechanically tunable and bioactive metal implants. Biomaterials, 37, 49-61. | 2015 | 247 | 10.1016/j.biomaterials.2014.10.027 | 1275 | metal | Ti, 3.8wtO2 | camphene | 100 | 0.0 | 0 | 30.0 | 29.0 | 100 | powder | 44.0 | 0 | 0 | 0 | 318.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 70.0 | 0.0 | 360.0 | 0.0 | 0.0 | 90.0 | 0.0 | 0.0 |
Jung, H. D., Jang, T. S., Wang, L., Kim, H. E., Koh, Y. H., & Song, J. (2015). Novel strategy for mechanically tunable and bioactive metal implants. Biomaterials, 37, 49-61. | 2015 | 247 | 10.1016/j.biomaterials.2014.10.027 | 1276 | metal | Ti, 3.8wtO2 | camphene | 100 | 0.0 | 0 | 30.0 | 29.0 | 100 | powder | 44.0 | 0 | 0 | 0 | 318.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 56.0 | 0.0 | 265.0 | 0.0 | 0.0 | 170.0 | 0.0 | 0.0 |
Jung, H. D., Jang, T. S., Wang, L., Kim, H. E., Koh, Y. H., & Song, J. (2015). Novel strategy for mechanically tunable and bioactive metal implants. Biomaterials, 37, 49-61. | 2015 | 247 | 10.1016/j.biomaterials.2014.10.027 | 1277 | metal | Ti, 3.8wtO2 | camphene | 100 | 0.0 | 0 | 30.0 | 29.0 | 100 | powder | 44.0 | 0 | 0 | 0 | 318.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 33.0 | 0.0 | 150.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jung, H. D., Jang, T. S., Wang, L., Kim, H. E., Koh, Y. H., & Song, J. (2015). Novel strategy for mechanically tunable and bioactive metal implants. Biomaterials, 37, 49-61. | 2015 | 247 | 10.1016/j.biomaterials.2014.10.027 | 1278 | metal | Ti, 3.8wtO2 | camphene | 100 | 0.0 | 0 | 30.0 | 29.0 | 100 | powder | 44.0 | 0 | 0 | 0 | 318.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 19.0 | 0.0 | 37.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jung, H. D., Jang, T. S., Wang, L., Kim, H. E., Koh, Y. H., & Song, J. (2015). Novel strategy for mechanically tunable and bioactive metal implants. Biomaterials, 37, 49-61. | 2015 | 247 | 10.1016/j.biomaterials.2014.10.027 | 1279 | metal | Ti, 3.8wtO2 | camphene | 100 | 0.0 | 0 | 30.0 | 29.0 | 100 | powder | 44.0 | 0 | 0 | 0 | 318.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 13.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jung, H. D., Jang, T. S., Wang, L., Kim, H. E., Koh, Y. H., & Song, J. (2015). Novel strategy for mechanically tunable and bioactive metal implants. Biomaterials, 37, 49-61. | 2015 | 247 | 10.1016/j.biomaterials.2014.10.027 | 1280 | metal | Ti, 3.8wtO2 | camphene | 100 | 0.0 | 0 | 30.0 | 29.0 | 100 | powder | 44.0 | 0 | 0 | 0 | 318.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 7.0 | 0.0 | 12.0 | 0.0 | 0.0 | 370.0 | 0.0 | 0.0 |
Porous titanium scaffolds by dynamic freeze casting for bone tissue engineering | 2011 | 248 | 0 | 1281 | metal | Ti, 3.8wtO2 | camphene | 100 | 0.0 | 0 | 15.0 | 29.0 | 100 | powder | 44.0 | 0 | 0 | 0 | 318.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 67.0 | 0.0 | 300.0 | 0.0 | 0.0 | 110.0 | 0.0 | 0.0 |
Jung, H. D., Yook, S. W., Kim, H. E., & Koh, Y. H. (2009). Fabrication of titanium scaffolds with porosity and pore size gradients by sequential freeze casting. Materials letters, 63(17), 1545-1547. | 2009 | 249 | 10.1016/j.matlet.2009.04.012 | 1283 | metal | Ti, 3.8wtO2 | camphene | 100 | 0.0 | 0 | 10.0 | 28.0 | 100 | powder | 44.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 200.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jung, H. D., Yook, S. W., Kim, H. E., & Koh, Y. H. (2009). Fabrication of titanium scaffolds with porosity and pore size gradients by sequential freeze casting. Materials letters, 63(17), 1545-1547. | 2009 | 249 | 10.1016/j.matlet.2009.04.012 | 1284 | metal | Ti, 3.8wtO2 | camphene | 100 | 0.0 | 0 | 10.0 | 28.0 | 100 | powder | 44.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 275.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jung, H. D., Yook, S. W., Kim, H. E., & Koh, Y. H. (2009). Fabrication of titanium scaffolds with porosity and pore size gradients by sequential freeze casting. Materials letters, 63(17), 1545-1547. | 2009 | 249 | 10.1016/j.matlet.2009.04.012 | 1285 | metal | Ti, 3.8wtO2 | camphene | 100 | 0.0 | 0 | 25.0 | 28.0 | 100 | powder | 44.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 55.0 | 0.0 | 110.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jung, H. D., Yook, S. W., Kim, H. E., & Koh, Y. H. (2009). Fabrication of titanium scaffolds with porosity and pore size gradients by sequential freeze casting. Materials letters, 63(17), 1545-1547. | 2009 | 249 | 10.1016/j.matlet.2009.04.012 | 1286 | metal | Ti, 3.8wtO2 | camphene | 100 | 0.0 | 0 | 25.0 | 28.0 | 100 | powder | 44.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 125.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jung, H. D., Yook, S. W., Kim, H. E., & Koh, Y. H. (2009). Fabrication of titanium scaffolds with porosity and pore size gradients by sequential freeze casting. Materials letters, 63(17), 1545-1547. | 2009 | 249 | 10.1016/j.matlet.2009.04.012 | 1287 | metal | Ti, 3.8wtO2 | camphene | 100 | 0.0 | 0 | 25.0 | 28.0 | 100 | powder | 44.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 175.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jung, H. D., Yook, S. W., Kim, H. E., & Koh, Y. H. (2009). Fabrication of titanium scaffolds with porosity and pore size gradients by sequential freeze casting. Materials letters, 63(17), 1545-1547. | 2009 | 249 | 10.1016/j.matlet.2009.04.012 | 1288 | metal | Ti, 3.8wtO2 | camphene | 100 | 0.0 | 0 | 40.0 | 28.0 | 100 | powder | 44.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 35.0 | 0.0 | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jung, H. D., Yook, S. W., Kim, H. E., & Koh, Y. H. (2009). Fabrication of titanium scaffolds with porosity and pore size gradients by sequential freeze casting. Materials letters, 63(17), 1545-1547. | 2009 | 249 | 10.1016/j.matlet.2009.04.012 | 1289 | metal | Ti, 3.8wtO2 | camphene | 100 | 0.0 | 0 | 40.0 | 28.0 | 100 | powder | 44.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jung, H. D., Yook, S. W., Kim, H. E., & Koh, Y. H. (2009). Fabrication of titanium scaffolds with porosity and pore size gradients by sequential freeze casting. Materials letters, 63(17), 1545-1547. | 2009 | 249 | 10.1016/j.matlet.2009.04.012 | 1290 | metal | Ti, 3.8wtO2 | camphene | 100 | 0.0 | 0 | 40.0 | 28.0 | 100 | powder | 44.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jung, H. D., Yook, S. W., Jang, T. S., Li, Y., Kim, H. E., & Koh, Y. H. (2013). Dynamic freeze casting for the production of porous titanium (Ti) scaffolds. Materials Science and Engineering: C, 33(1), 59-63. | 2013 | 250 | 10.1016/j.msec.2012.08.004 | 1291 | metal | Ti, 3.8wtO2 | camphene | 100 | 0.0 | 0 | 15.0 | 29.0 | 100 | powder | 44.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 71.0 | 0.0 | 362.0 | 0.0 | 0.0 | 60.0 | 0.0 | 1200.0 |
Jung, H. D., Yook, S. W., Jang, T. S., Li, Y., Kim, H. E., & Koh, Y. H. (2013). Dynamic freeze casting for the production of porous titanium (Ti) scaffolds. Materials Science and Engineering: C, 33(1), 59-63. | 2013 | 250 | 10.1016/j.msec.2012.08.004 | 1292 | metal | Ti, 3.8wtO2 | camphene | 100 | 0.0 | 0 | 20.0 | 29.0 | 100 | powder | 44.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 60.0 | 0.0 | 208.0 | 0.0 | 0.0 | 120.0 | 0.0 | 3000.0 |
Jung, H. D., Yook, S. W., Jang, T. S., Li, Y., Kim, H. E., & Koh, Y. H. (2013). Dynamic freeze casting for the production of porous titanium (Ti) scaffolds. Materials Science and Engineering: C, 33(1), 59-63. | 2013 | 250 | 10.1016/j.msec.2012.08.004 | 1293 | metal | Ti, 3.8wtO2 | camphene | 100 | 0.0 | 0 | 25.0 | 29.0 | 100 | powder | 44.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 52.0 | 0.0 | 95.0 | 0.0 | 0.0 | 180.0 | 0.0 | 5000.0 |
Jung, H. D., Yook, S. W., Han, C. M., Jang, T. S., Kim, H. E., Koh, Y. H., & Estrin, Y. (2014). Highly aligned porous Ti scaffold coated with bone morphogenetic protein?loaded silica/chitosan hybrid for enhanced bone regeneration. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 102(5), 913-921. | 2014 | 251 | 10.1002/jbm.b.33072 | 1294 | metal | Ti, 3.8wtO2 | camphene | 100 | 0.0 | 0 | 10.0 | 29.0 | 100 | powder | 20.0 | 0 | 0 | 0 | 276.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 51.0 | 0.0 | 0.0 | 0.0 | 0.0 | 254.0 | 0.0 | 0.0 |
Li, J. C., & Dunand, D. C. (2011). Mechanical properties of directionally freeze-cast titanium foams. Acta Materialia, 59(1), 146-158. | 2011 | 311 | 10.1016/j.actamat.2010.09.019 | 1266 | metal | Ti, 3.8wtO2 | water | 100 | 0.0 | 0 | 22.0 | 29.0 | 100 | powder | 20.0 | 0 | 0 | 0 | 268.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 52.7 | 0.0 | 61.0 | 0.0 | 0.0 | 200.0 | 0.0 | 4000.0 |
Li, J. C., & Dunand, D. C. (2011). Mechanical properties of directionally freeze-cast titanium foams. Acta Materialia, 59(1), 146-158. | 2011 | 311 | 10.1016/j.actamat.2010.09.019 | 1267 | metal | Ti, 3.8wtO2 | water | 100 | 0.0 | 0 | 22.0 | 29.0 | 100 | powder | 20.0 | 0 | 0 | 0 | 268.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 55.0 | 0.0 | 61.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3000.0 |
Li, J. C., & Dunand, D. C. (2011). Mechanical properties of directionally freeze-cast titanium foams. Acta Materialia, 59(1), 146-158. | 2011 | 311 | 10.1016/j.actamat.2010.09.019 | 1268 | metal | Ti, 3.8wtO2 | water | 100 | 0.0 | 0 | 22.0 | 29.0 | 100 | powder | 20.0 | 0 | 0 | 0 | 268.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 52.4 | 0.0 | 61.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10000.0 |
Li, J. C., & Dunand, D. C. (2011). Mechanical properties of directionally freeze-cast titanium foams. Acta Materialia, 59(1), 146-158. | 2011 | 311 | 10.1016/j.actamat.2010.09.019 | 1269 | metal | Ti, 3.8wtO2 | water | 100 | 0.0 | 0 | 22.0 | 29.0 | 100 | powder | 20.0 | 0 | 0 | 0 | 268.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 44.6 | 0.0 | 61.0 | 0.0 | 0.0 | 0.0 | 0.0 | 35000.0 |
Li, J. C., & Dunand, D. C. (2011). Mechanical properties of directionally freeze-cast titanium foams. Acta Materialia, 59(1), 146-158. | 2011 | 311 | 10.1016/j.actamat.2010.09.019 | 1270 | metal | Ti, 3.8wtO2 | water | 100 | 0.0 | 0 | 22.0 | 29.0 | 100 | powder | 20.0 | 0 | 0 | 0 | 268.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 37.4 | 0.0 | 57.0 | 0.0 | 0.0 | 500.0 | 0.0 | 52000.0 |
Li, J. C., & Dunand, D. C. (2011). Mechanical properties of directionally freeze-cast titanium foams. Acta Materialia, 59(1), 146-158. | 2011 | 311 | 10.1016/j.actamat.2010.09.019 | 1271 | metal | Ti, 3.8wtO2 | water | 100 | 0.0 | 0 | 22.0 | 29.0 | 100 | powder | 10.0 | 0 | 0 | 0 | 268.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 51.3 | 0.0 | 70.0 | 0.0 | 0.0 | 270.0 | 0.0 | 15000.0 |
Li, J. C., & Dunand, D. C. (2011). Mechanical properties of directionally freeze-cast titanium foams. Acta Materialia, 59(1), 146-158. | 2011 | 311 | 10.1016/j.actamat.2010.09.019 | 1272 | metal | Ti, 3.8wtO2 | water | 100 | 0.0 | 0 | 22.0 | 29.0 | 100 | powder | 10.0 | 0 | 0 | 0 | 268.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 46.9 | 0.0 | 64.0 | 0.0 | 0.0 | 0.0 | 0.0 | 15000.0 |
Li, J. C., & Dunand, D. C. (2011). Mechanical properties of directionally freeze-cast titanium foams. Acta Materialia, 59(1), 146-158. | 2011 | 311 | 10.1016/j.actamat.2010.09.019 | 1273 | metal | Ti, 3.8wtO2 | water | 100 | 0.0 | 0 | 22.0 | 29.0 | 100 | powder | 10.0 | 0 | 0 | 0 | 268.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 41.5 | 0.0 | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 30000.0 |
Li, J. C., & Dunand, D. C. (2011). Mechanical properties of directionally freeze-cast titanium foams. Acta Materialia, 59(1), 146-158. | 2011 | 311 | 10.1016/j.actamat.2010.09.019 | 1274 | metal | Ti, 3.8wtO2 | water | 100 | 0.0 | 0 | 22.0 | 29.0 | 100 | powder | 20.0 | 0 | 0 | 0 | 268.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 52.5 | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yook, S. W., Jung, H. D., Park, C. H., Shin, K. H., Koh, Y. H., Estrin, Y., & Kim, H. E. (2012). Reverse freeze casting: a new method for fabricating highly porous titanium scaffolds with aligned large pores. Acta biomaterialia, 8(6), 2401-2410. | 2012 | 721 | 10.1016/j.actbio.2012.03.020 | 1233 | metal | Ti, 3.8wtO2 | camphene | 100 | 0.0 | 0 | 20.0 | 29.0 | 100 | 0 | 15.0 | 0 | 0 | 0 | 276.0 | 0.0 | 0.0 | reverse | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 69.0 | 479.0 | 300.0 | 179.0 | 0.0 | 121.0 | 0.0 | 2000.0 |
Yook, S. W., Jung, H. D., Park, C. H., Shin, K. H., Koh, Y. H., Estrin, Y., & Kim, H. E. (2012). Reverse freeze casting: a new method for fabricating highly porous titanium scaffolds with aligned large pores. Acta biomaterialia, 8(6), 2401-2410. | 2012 | 721 | 10.1016/j.actbio.2012.03.020 | 1234 | metal | Ti, 3.8wtO2 | camphene | 100 | 0.0 | 0 | 20.0 | 29.0 | 100 | 0 | 15.0 | 0 | 0 | 0 | 276.0 | 0.0 | 0.0 | reverse | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 58.0 | 0.0 | 400.0 | 0.0 | 0.0 | 195.0 | 0.0 | 0.0 |
Yook, S. W., Jung, H. D., Park, C. H., Shin, K. H., Koh, Y. H., Estrin, Y., & Kim, H. E. (2012). Reverse freeze casting: a new method for fabricating highly porous titanium scaffolds with aligned large pores. Acta biomaterialia, 8(6), 2401-2410. | 2012 | 721 | 10.1016/j.actbio.2012.03.020 | 1235 | metal | Ti, 3.8wtO2 | camphene | 100 | 0.0 | 0 | 20.0 | 29.0 | 100 | 0 | 15.0 | 0 | 0 | 0 | 276.0 | 0.0 | 0.0 | reverse | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 51.0 | 810.0 | 500.0 | 310.0 | 0.0 | 302.0 | 0.0 | 5000.0 |
Yook, S. W., Yoon, B. H., Kim, H. E., Koh, Y. H., & Kim, Y. S. (2008). Porous titanium (Ti) scaffolds by freezing TiH 2/camphene slurries. Materials Letters, 62(30), 4506-4508. | 2008 | 724 | 10.1016/j.matlet.2008.08.010 | 1246 | metal | Ti, 3.8wtO2 | camphene | 100 | 0.0 | 0 | 15.0 | 28.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 306.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 63.0 | 0.0 | 125.0 | 0.0 | 0.0 | 81.0 | 0.0 | 0.0 |
Yook, S. W., Yoon, B. H., Kim, H. E., Koh, Y. H., & Kim, Y. S. (2008). Porous titanium (Ti) scaffolds by freezing TiH 2/camphene slurries. Materials Letters, 62(30), 4506-4508. | 2008 | 724 | 10.1016/j.matlet.2008.08.010 | 1247 | metal | Ti, 3.8wtO2 | camphene | 100 | 0.0 | 0 | 20.0 | 28.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 306.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 56.0 | 0.0 | 75.0 | 0.0 | 0.0 | 180.0 | 0.0 | 0.0 |
Yook, S. W., Yoon, B. H., Kim, H. E., Koh, Y. H., & Kim, Y. S. (2008). Porous titanium (Ti) scaffolds by freezing TiH 2/camphene slurries. Materials Letters, 62(30), 4506-4508. | 2008 | 724 | 10.1016/j.matlet.2008.08.010 | 1248 | metal | Ti, 3.8wtO2 | camphene | 100 | 0.0 | 0 | 25.0 | 28.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 306.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 49.0 | 0.0 | 100.0 | 0.0 | 0.0 | 253.0 | 0.0 | 0.0 |
Lee, H., Jang, T. S., Song, J., Kim, H. E., & Jung, H. D. (2016). Multi-scale porous Ti6Al4V scaffolds with enhanced strength and biocompatibility formed via dynamic freeze-casting coupled with micro-arc oxidation. Materials Letters, 185, 21-24. | 2016 | 810 | http://dx.doi.org/10.1016/j.matlet.2016.08.075 | 1046 | metal | Ti, 3.8wtO2 | camphene | 100 | 0.0 | 0 | 15.0 | 29.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 293.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 71.0 | 0.0 | 0.0 | 0.0 | 0.0 | 60.0 | 0.0 | 4000.0 |
Lee, H., Jang, T. S., Song, J., Kim, H. E., & Jung, H. D. (2016). Multi-scale porous Ti6Al4V scaffolds with enhanced strength and biocompatibility formed via dynamic freeze-casting coupled with micro-arc oxidation. Materials Letters, 185, 21-24. | 2016 | 810 | http://dx.doi.org/10.1016/j.matlet.2016.08.075 | 1047 | metal | Ti, 3.8wtO2 | camphene | 100 | 0.0 | 0 | 20.0 | 29.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 293.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 61.0 | 0.0 | 0.0 | 0.0 | 0.0 | 125.0 | 0.0 | 12000.0 |
Lee, H., Jang, T. S., Song, J., Kim, H. E., & Jung, H. D. (2016). Multi-scale porous Ti6Al4V scaffolds with enhanced strength and biocompatibility formed via dynamic freeze-casting coupled with micro-arc oxidation. Materials Letters, 185, 21-24. | 2016 | 810 | http://dx.doi.org/10.1016/j.matlet.2016.08.075 | 1048 | metal | Ti, 3.8wtO2 | camphene | 100 | 0.0 | 0 | 25.0 | 29.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 293.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 51.0 | 0.0 | 0.0 | 0.0 | 0.0 | 180.0 | 0.0 | 16000.0 |
Yan, L., Wu, J., Zhang, L., Liu, X., Zhou, K., & Su, B. (2017). Pore structures and mechanical properties of porous titanium scaffolds by bidirectional freeze casting. Materials Science and Engineering: C, 75, 335-340. | 2016 | 903 | 10.1016/j.msec.2016.12.044 | 1038 | metal | Ti, 3.8wtO2 | water | 100 | 0.0 | 0 | 15.0 | 29.0 | 100 | powder | 15.0 | 1 | 0 | 0 | 243.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 67.3 | 98.0 | 80.0 | 18.0 | 0.0 | 52.0 | 0.0 | 2500.0 |
Yan, L., Wu, J., Zhang, L., Liu, X., Zhou, K., & Su, B. (2017). Pore structures and mechanical properties of porous titanium scaffolds by bidirectional freeze casting. Materials Science and Engineering: C, 75, 335-340. | 2016 | 903 | 10.1016/j.msec.2016.12.044 | 1039 | metal | Ti, 3.8wtO2 | water | 100 | 0.0 | 0 | 20.0 | 29.0 | 100 | powder | 15.0 | 1 | 0 | 0 | 243.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 59.2 | 95.0 | 72.0 | 23.0 | 0.0 | 90.0 | 0.0 | 4000.0 |
Yan, L., Wu, J., Zhang, L., Liu, X., Zhou, K., & Su, B. (2017). Pore structures and mechanical properties of porous titanium scaffolds by bidirectional freeze casting. Materials Science and Engineering: C, 75, 335-340. | 2016 | 903 | 10.1016/j.msec.2016.12.044 | 1040 | metal | Ti, 3.8wtO2 | water | 100 | 0.0 | 0 | 25.0 | 29.0 | 100 | powder | 15.0 | 1 | 0 | 0 | 243.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 50.2 | 97.0 | 67.0 | 30.0 | 0.0 | 150.0 | 0.0 | 6500.0 |
Cho, Y. K., Yang, T. Y., Lee, J. M., Yoon, S. Y., Stevens, R., & Park, H. C. (2008). Freeze cast symmetric three-layer alumina-matrix composites with improved damage resistance. Journal of Physics and Chemistry of Solids, 69(5), 1525-1527. | 2008 | 52 | 10.1016/j.jpcs.2007.09.010 | 386 | ceramic | Al2O3-ZrO2 (layered) | water | 100 | 0.0 | 0 | 50.0 | 1.0 | 100 | powder | 0.57 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 6.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Cho, Y. K., Yang, T. Y., Lee, J. M., Yoon, S. Y., Stevens, R., & Park, H. C. (2008). Freeze cast symmetric three-layer alumina-matrix composites with improved damage resistance. Journal of Physics and Chemistry of Solids, 69(5), 1525-1527. | 2008 | 52 | 10.1016/j.jpcs.2007.09.010 | 387 | ceramic | Al2O3-ZrO2 (layered) | water | 100 | 0.0 | 0 | 50.0 | 1.0 | 100 | powder | 0.57 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Cho, Y. K., Yang, T. Y., Lee, J. M., Yoon, S. Y., Stevens, R., & Park, H. C. (2008). Freeze cast symmetric three-layer alumina-matrix composites with improved damage resistance. Journal of Physics and Chemistry of Solids, 69(5), 1525-1527. | 2008 | 52 | 10.1016/j.jpcs.2007.09.010 | 388 | ceramic | Al2O3-ZrO2 (layered) | water | 100 | 0.0 | 0 | 50.0 | 1.0 | 85 | powder | 0.57 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Choi, H. J., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16-20. | 2012 | 54 | 10.1016/j.matchemphys.2011.12.055 | 405 | ceramic | Al2O3-ZrO2 (layered) | TBA | 100 | 0.0 | 0 | 10.0 | 1.0 | 0 | powder | 0.57 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 60.0 | 150.0 | 140.0 | 10.0 | 0.0 | 50.0 | 0.0 | 0.0 |
Choi, H. J., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16-20. | 2012 | 54 | 10.1016/j.matchemphys.2011.12.055 | 406 | ceramic | Al2O3-ZrO2 (layered) | TBA | 100 | 0.0 | 0 | 15.0 | 1.0 | 0 | powder | 0.57 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 50.0 | 82.0 | 70.0 | 12.0 | 0.0 | 100.0 | 0.0 | 0.0 |
Choi, H. J., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16-20. | 2012 | 54 | 10.1016/j.matchemphys.2011.12.055 | 407 | ceramic | Al2O3-ZrO2 (layered) | TBA | 100 | 0.0 | 0 | 20.0 | 1.0 | 0 | powder | 0.57 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 43.0 | 53.0 | 40.0 | 13.0 | 0.0 | 240.0 | 0.0 | 0.0 |
Choi, H. J., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16-20. | 2012 | 54 | 10.1016/j.matchemphys.2011.12.055 | 408 | ceramic | Al2O3-ZrO2 (layered) | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 0 | powder | 0.57 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 34.0 | 39.0 | 25.0 | 14.0 | 0.0 | 325.0 | 0.0 | 0.0 |
Choi, H. J., Lee, J. H., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). The microstructure and properties of porous alumina/zirconia composites fabricated by a TBA-based freeze casting route. J. Ceram, 13, 762-6. | 2012 | 53 | 0 | 389 | ceramic | Al2O3-7wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 10.0 | 1.0 | 94 | powder | 0.57 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 25 | honeycomb | sintered | 63.5 | 0.0 | 0.0 | 0.0 | 0.0 | 48.2 | 0.0 | 0.0 |
Choi, H. J., Lee, J. H., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). The microstructure and properties of porous alumina/zirconia composites fabricated by a TBA-based freeze casting route. J. Ceram, 13, 762-6. | 2012 | 53 | 0 | 390 | ceramic | Al2O3-7wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 15.0 | 1.0 | 94 | powder | 0.57 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 20 | honeycomb | sintered | 50.8 | 0.0 | 0.0 | 0.0 | 0.0 | 86.4 | 0.0 | 0.0 |
Choi, H. J., Lee, J. H., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). The microstructure and properties of porous alumina/zirconia composites fabricated by a TBA-based freeze casting route. J. Ceram, 13, 762-6. | 2012 | 53 | 0 | 391 | ceramic | Al2O3-7wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 20.0 | 1.0 | 94 | powder | 0.57 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 19 | honeycomb | sintered | 42.2 | 0.0 | 0.0 | 0.0 | 0.0 | 206.2 | 0.0 | 0.0 |
Choi, H. J., Lee, J. H., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). The microstructure and properties of porous alumina/zirconia composites fabricated by a TBA-based freeze casting route. J. Ceram, 13, 762-6. | 2012 | 53 | 0 | 392 | ceramic | Al2O3-7wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 94 | powder | 0.57 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 14 | honeycomb | sintered | 33.1 | 0.0 | 0.0 | 0.0 | 0.0 | 308.1 | 0.0 | 0.0 |
Choi, H. J., Lee, J. H., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). The microstructure and properties of porous alumina/zirconia composites fabricated by a TBA-based freeze casting route. J. Ceram, 13, 762-6. | 2012 | 53 | 0 | 397 | ceramic | Al2O3-7wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 10.0 | 1.0 | 94 | powder | 0.57 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 27 | honeycomb | sintered | 58.0 | 212.5 | 200.0 | 12.5 | 0.0 | 70.4 | 0.0 | 0.0 |
Choi, H. J., Lee, J. H., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). The microstructure and properties of porous alumina/zirconia composites fabricated by a TBA-based freeze casting route. J. Ceram, 13, 762-6. | 2012 | 53 | 0 | 398 | ceramic | Al2O3-7wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 15.0 | 1.0 | 94 | powder | 0.57 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 24 | honeycomb | sintered | 49.0 | 94.0 | 80.0 | 14.0 | 0.0 | 100.1 | 0.0 | 0.0 |
Choi, H. J., Lee, J. H., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). The microstructure and properties of porous alumina/zirconia composites fabricated by a TBA-based freeze casting route. J. Ceram, 13, 762-6. | 2012 | 53 | 0 | 399 | ceramic | Al2O3-7wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 20.0 | 1.0 | 94 | powder | 0.57 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 23 | honeycomb | sintered | 38.9 | 57.0 | 40.0 | 17.0 | 0.0 | 211.0 | 0.0 | 0.0 |
Choi, H. J., Lee, J. H., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). The microstructure and properties of porous alumina/zirconia composites fabricated by a TBA-based freeze casting route. J. Ceram, 13, 762-6. | 2012 | 53 | 0 | 400 | ceramic | Al2O3-7wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 94 | powder | 0.57 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 22 | honeycomb | sintered | 29.4 | 50.0 | 30.0 | 20.0 | 0.0 | 314.1 | 0.0 | 0.0 |
Choi, H. J., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16-20. | 2012 | 54 | 10.1016/j.matchemphys.2011.12.055 | 417 | ceramic | Al2O3-7wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 94 | powder | 0.57 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 34.0 | 0.0 | 0.0 | 0.0 | 0.0 | 310.0 | 0.0 | 0.0 |
Choi, H. J., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16-20. | 2012 | 54 | 10.1016/j.matchemphys.2011.12.055 | 418 | ceramic | Al2O3-7wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 94 | powder | 0.57 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 310.0 | 0.0 | 0.0 |
Choi, H. J., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16-20. | 2012 | 54 | 10.1016/j.matchemphys.2011.12.055 | 419 | ceramic | Al2O3-7wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 20.0 | 1.0 | 94 | powder | 0.57 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 42.0 | 0.0 | 0.0 | 0.0 | 0.0 | 200.0 | 0.0 | 0.0 |
Choi, H. J., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16-20. | 2012 | 54 | 10.1016/j.matchemphys.2011.12.055 | 420 | ceramic | Al2O3-7wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 20.0 | 1.0 | 94 | powder | 0.57 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 39.0 | 0.0 | 0.0 | 0.0 | 0.0 | 200.0 | 0.0 | 0.0 |
Choi, H. J., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16-20. | 2012 | 54 | 10.1016/j.matchemphys.2011.12.055 | 421 | ceramic | Al2O3-7wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 15.0 | 1.0 | 94 | powder | 0.57 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 80.0 | 0.0 | 0.0 |
Choi, H. J., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16-20. | 2012 | 54 | 10.1016/j.matchemphys.2011.12.055 | 422 | ceramic | Al2O3-7wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 15.0 | 1.0 | 94 | powder | 0.57 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 49.0 | 0.0 | 0.0 | 0.0 | 0.0 | 90.0 | 0.0 | 0.0 |
Choi, H. J., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16-20. | 2012 | 54 | 10.1016/j.matchemphys.2011.12.055 | 423 | ceramic | Al2O3-7wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 10.0 | 1.0 | 94 | powder | 0.57 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 64.0 | 0.0 | 0.0 | 0.0 | 0.0 | 50.0 | 0.0 | 0.0 |
Choi, H. J., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16-20. | 2012 | 54 | 10.1016/j.matchemphys.2011.12.055 | 424 | ceramic | Al2O3-7wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 10.0 | 1.0 | 94 | powder | 0.57 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 58.0 | 0.0 | 0.0 | 0.0 | 0.0 | 75.0 | 0.0 | 0.0 |
Choi, H. J., Lee, J. H., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). The microstructure and properties of porous alumina/zirconia composites fabricated by a TBA-based freeze casting route. J. Ceram, 13, 762-6. | 2012 | 53 | 0 | 393 | ceramic | Al2O3-0.2wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 10.0 | 1.0 | 85 | powder | 0.57 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 28 | honeycomb | sintered | 61.1 | 0.0 | 0.0 | 0.0 | 0.0 | 48.5 | 0.0 | 0.0 |
Choi, H. J., Lee, J. H., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). The microstructure and properties of porous alumina/zirconia composites fabricated by a TBA-based freeze casting route. J. Ceram, 13, 762-6. | 2012 | 53 | 0 | 394 | ceramic | Al2O3-0.2wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 15.0 | 1.0 | 85 | powder | 0.57 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 22 | honeycomb | sintered | 49.4 | 0.0 | 0.0 | 0.0 | 0.0 | 113.3 | 0.0 | 0.0 |
Choi, H. J., Lee, J. H., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). The microstructure and properties of porous alumina/zirconia composites fabricated by a TBA-based freeze casting route. J. Ceram, 13, 762-6. | 2012 | 53 | 0 | 395 | ceramic | Al2O3-0.2wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 20.0 | 1.0 | 85 | powder | 0.57 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 22 | honeycomb | sintered | 40.9 | 0.0 | 0.0 | 0.0 | 0.0 | 237.8 | 0.0 | 0.0 |
Choi, H. J., Lee, J. H., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). The microstructure and properties of porous alumina/zirconia composites fabricated by a TBA-based freeze casting route. J. Ceram, 13, 762-6. | 2012 | 53 | 0 | 396 | ceramic | Al2O3-0.2wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 85 | powder | 0.57 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 18 | honeycomb | sintered | 31.6 | 0.0 | 0.0 | 0.0 | 0.0 | 320.9 | 0.0 | 0.0 |
Choi, H. J., Lee, J. H., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). The microstructure and properties of porous alumina/zirconia composites fabricated by a TBA-based freeze casting route. J. Ceram, 13, 762-6. | 2012 | 53 | 0 | 401 | ceramic | Al2O3-0.2wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 10.0 | 1.0 | 85 | powder | 0.57 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 30 | honeycomb | sintered | 57.8 | 0.0 | 0.0 | 0.0 | 0.0 | 77.6 | 0.0 | 0.0 |
Choi, H. J., Lee, J. H., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). The microstructure and properties of porous alumina/zirconia composites fabricated by a TBA-based freeze casting route. J. Ceram, 13, 762-6. | 2012 | 53 | 0 | 402 | ceramic | Al2O3-0.2wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 15.0 | 1.0 | 85 | powder | 0.57 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 26 | honeycomb | sintered | 48.1 | 0.0 | 0.0 | 0.0 | 0.0 | 128.2 | 0.0 | 0.0 |
Choi, H. J., Lee, J. H., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). The microstructure and properties of porous alumina/zirconia composites fabricated by a TBA-based freeze casting route. J. Ceram, 13, 762-6. | 2012 | 53 | 0 | 403 | ceramic | Al2O3-0.2wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 20.0 | 1.0 | 85 | powder | 0.57 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 25 | honeycomb | sintered | 38.4 | 0.0 | 0.0 | 0.0 | 0.0 | 312.5 | 0.0 | 0.0 |
Choi, H. J., Lee, J. H., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). The microstructure and properties of porous alumina/zirconia composites fabricated by a TBA-based freeze casting route. J. Ceram, 13, 762-6. | 2012 | 53 | 0 | 404 | ceramic | Al2O3-0.2wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 85 | powder | 0.57 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 24 | honeycomb | sintered | 28.8 | 0.0 | 0.0 | 0.0 | 0.0 | 341.3 | 0.0 | 0.0 |
Choi, H. J., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16-20. | 2012 | 54 | 10.1016/j.matchemphys.2011.12.055 | 409 | ceramic | Al2O3-0.2wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 85 | powder | 0.57 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 32.0 | 0.0 | 0.0 | 0.0 | 0.0 | 325.0 | 0.0 | 0.0 |
Choi, H. J., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16-20. | 2012 | 54 | 10.1016/j.matchemphys.2011.12.055 | 410 | ceramic | Al2O3-0.2wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 25.0 | 1.0 | 85 | powder | 0.57 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 28.0 | 0.0 | 0.0 | 0.0 | 0.0 | 327.0 | 0.0 | 0.0 |
Choi, H. J., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16-20. | 2012 | 54 | 10.1016/j.matchemphys.2011.12.055 | 411 | ceramic | Al2O3-0.2wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 20.0 | 1.0 | 85 | powder | 0.57 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 42.0 | 0.0 | 0.0 | 0.0 | 0.0 | 230.0 | 0.0 | 0.0 |
Choi, H. J., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16-20. | 2012 | 54 | 10.1016/j.matchemphys.2011.12.055 | 412 | ceramic | Al2O3-0.2wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 20.0 | 1.0 | 85 | powder | 0.57 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 300.0 | 0.0 | 0.0 |
Choi, H. J., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16-20. | 2012 | 54 | 10.1016/j.matchemphys.2011.12.055 | 413 | ceramic | Al2O3-0.2wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 15.0 | 1.0 | 85 | powder | 0.57 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 110.0 | 0.0 | 0.0 |
Choi, H. J., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16-20. | 2012 | 54 | 10.1016/j.matchemphys.2011.12.055 | 414 | ceramic | Al2O3-0.2wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 15.0 | 1.0 | 85 | powder | 0.57 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 48.0 | 0.0 | 0.0 | 0.0 | 0.0 | 125.0 | 0.0 | 0.0 |
Choi, H. J., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16-20. | 2012 | 54 | 10.1016/j.matchemphys.2011.12.055 | 415 | ceramic | Al2O3-0.2wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 10.0 | 1.0 | 85 | powder | 0.57 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 62.0 | 0.0 | 0.0 | 0.0 | 0.0 | 50.0 | 0.0 | 0.0 |
Choi, H. J., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16-20. | 2012 | 54 | 10.1016/j.matchemphys.2011.12.055 | 416 | ceramic | Al2O3-0.2wt.% ZrO2 (mixed) | TBA | 100 | 0.0 | 0 | 10.0 | 1.0 | 85 | powder | 0.57 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 58.0 | 0.0 | 0.0 | 0.0 | 0.0 | 80.0 | 0.0 | 0.0 |
Choi, H., Kim, O. H., Kim, M., Choe, H., Cho, Y. H., & Sung, Y. E. (2014). Next-generation polymer-electrolyte-membrane fuel cells using titanium foam as gas diffusion layer. ACS applied materials & interfaces, 6(10), 7665-7671. | 2014 | 55 | 10.1021/am500962h | 425 | metal | Ti, grade 1 | water | 100 | 0.0 | 0 | 0.0 | 29.0 | 100 | powder | 44.0 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 66.0 | 0.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fife, J. L., Li, J. C., Dunand, D. C., & Voorhees, P. W. (2009). Morphological analysis of pores in directionally freeze-cast titanium foams. Journal of Materials Research, 24(1), 117-124. | 2009 | 118 | 10.1557/jmr.2009.0023 | 667 | metal | Ti, grade 1 | water | 100 | 0.0 | 0 | 22.0 | 29.0 | 100 | powder | 20.0 | 1 | 0 | 0 | 268.0 | 0.0 | 0.0 | one-sided | constant | 3.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 63.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fife, J. L., Li, J. C., Dunand, D. C., & Voorhees, P. W. (2009). Morphological analysis of pores in directionally freeze-cast titanium foams. Journal of Materials Research, 24(1), 117-124. | 2009 | 118 | 10.1557/jmr.2009.0023 | 668 | metal | Ti, grade 1 | water | 100 | 0.0 | 0 | 22.0 | 29.0 | 100 | powder | 10.0 | 1 | 0 | 0 | 268.0 | 0.0 | 0.0 | one-sided | constant | 3.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Christoph, S., Kwiatoszynski, J., Coradin, T., & Fernandes, F. M. (2016). Cellularized Cellular Solids via Freeze?Casting. Macromolecular bioscience, 16(2), 182-187. | 2015 | 57 | 10.1002/mabi.201500319 | 426 | polymer | alginate | water | 100 | 0.0 | 0 | 1.55 | 35.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 213.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 35.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Christoph, S., Kwiatoszynski, J., Coradin, T., & Fernandes, F. M. (2016). Cellularized Cellular Solids via Freeze?Casting. Macromolecular bioscience, 16(2), 182-187. | 2015 | 57 | 10.1002/mabi.201500319 | 427 | polymer | alginate | water | 100 | 0.0 | 0 | 1.55 | 35.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 213.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Christoph, S., Kwiatoszynski, J., Coradin, T., & Fernandes, F. M. (2016). Cellularized Cellular Solids via Freeze?Casting. Macromolecular bioscience, 16(2), 182-187. | 2015 | 57 | 10.1002/mabi.201500319 | 428 | polymer | alginate | water | 100 | 0.0 | 0 | 1.55 | 35.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 213.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ho, M. H., Kuo, P. Y., Hsieh, H. J., Hsien, T. Y., Hou, L. T., Lai, J. Y., & Wang, D. M. (2004). Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials, 25(1), 129-138. | 2004 | 204 | 10.1016/s0142-9612(03)00483-6 | 5231 | polymer | alginate | dioxane | 100 | 0.0 | 0 | 2.0 | 39.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 85.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Parks, W. M., & Guo, Y. B. (2008). A casting based process to fabricate 3D alginate scaffolds and to investigate the influence of heat transfer on pore architecture during fabrication. Materials Science and Engineering: C, 28(8), 1435-1440. | 2008 | 462 | 10.1016/j.msec.2008.03.013 | 4788 | polymer | alginate | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 124.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yuan, N. Y., Lin, Y. A., Ho, M. H., Wang, D. M., Lai, J. Y., & Hsieh, H. J. (2009). Effects of the cooling mode on the structure and strength of porous scaffolds made of chitosan, alginate, and carboxymethyl cellulose by the freeze-gelation method. Carbohydrate polymers, 78(2), 349-356. | 2009 | 743 | 10.1016/j.carbpol.2009.04.021 | 2112 | polymer | alginate | water | 100 | 0.0 | 0 | 0.0 | 35.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 26.7 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | green | 96.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yuan, N. Y., Lin, Y. A., Ho, M. H., Wang, D. M., Lai, J. Y., & Hsieh, H. J. (2009). Effects of the cooling mode on the structure and strength of porous scaffolds made of chitosan, alginate, and carboxymethyl cellulose by the freeze-gelation method. Carbohydrate polymers, 78(2), 349-356. | 2009 | 743 | 10.1016/j.carbpol.2009.04.021 | 2113 | polymer | alginate | water | 100 | 0.0 | 0 | 0.0 | 35.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 233.0 | 35.8 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | green | 96.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yuan, N. Y., Lin, Y. A., Ho, M. H., Wang, D. M., Lai, J. Y., & Hsieh, H. J. (2009). Effects of the cooling mode on the structure and strength of porous scaffolds made of chitosan, alginate, and carboxymethyl cellulose by the freeze-gelation method. Carbohydrate polymers, 78(2), 349-356. | 2009 | 743 | 10.1016/j.carbpol.2009.04.021 | 2114 | polymer | alginate | water | 100 | 0.0 | 0 | 0.0 | 35.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 213.0 | 49.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | green | 96.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yuan, N. Y., Lin, Y. A., Ho, M. H., Wang, D. M., Lai, J. Y., & Hsieh, H. J. (2009). Effects of the cooling mode on the structure and strength of porous scaffolds made of chitosan, alginate, and carboxymethyl cellulose by the freeze-gelation method. Carbohydrate polymers, 78(2), 349-356. | 2009 | 743 | 10.1016/j.carbpol.2009.04.021 | 2115 | polymer | alginate | water | 100 | 0.0 | 0 | 0.0 | 35.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 193.0 | 58.8 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | green | 96.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chu, Y., Lu, Z., Li, J., Zhu, Y., Zhang, S., & Chen, J. (2015). Preparation of poly (L?lactic acid) with aligned structures by unidirectional freezing. Polymers for Advanced Technologies, 26(6), 606-612. | 2015 | 58 | 10.1002/pat.3493 | 429 | polymer | PLLA | DMSO | 100 | 0.0 | 0 | 4.0 | 82.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 94.7 | 28.6 | 27.0 | 2.6 | 0.0 | 7.0 | 0.0 | 0.0 |
Chu, Y., Lu, Z., Li, J., Zhu, Y., Zhang, S., & Chen, J. (2015). Preparation of poly (L?lactic acid) with aligned structures by unidirectional freezing. Polymers for Advanced Technologies, 26(6), 606-612. | 2015 | 58 | 10.1002/pat.3493 | 430 | polymer | PLLA | DMSO | 100 | 0.0 | 0 | 8.0 | 82.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 5 | honeycomb | green | 87.2 | 21.5 | 20.0 | 1.5 | 0.0 | 5.0 | 0.0 | 0.0 |
Chu, Y., Lu, Z., Li, J., Zhu, Y., Zhang, S., & Chen, J. (2015). Preparation of poly (L?lactic acid) with aligned structures by unidirectional freezing. Polymers for Advanced Technologies, 26(6), 606-612. | 2015 | 58 | 10.1002/pat.3493 | 431 | polymer | PLLA | DMSO | 100 | 0.0 | 0 | 8.0 | 82.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 86.9 | 42.0 | 40.0 | 2.0 | 0.0 | 4.0 | 0.0 | 0.0 |
Chu, Y., Lu, Z., Li, J., Zhu, Y., Zhang, S., & Chen, J. (2015). Preparation of poly (L?lactic acid) with aligned structures by unidirectional freezing. Polymers for Advanced Technologies, 26(6), 606-612. | 2015 | 58 | 10.1002/pat.3493 | 432 | polymer | PLLA | DMSO | 100 | 0.0 | 0 | 8.0 | 82.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 86.7 | 59.0 | 55.0 | 4.0 | 0.0 | 1.8 | 0.0 | 0.0 |
Chu, Y., Lu, Z., Li, J., Zhu, Y., Zhang, S., & Chen, J. (2015). Preparation of poly (L?lactic acid) with aligned structures by unidirectional freezing. Polymers for Advanced Technologies, 26(6), 606-612. | 2015 | 58 | 10.1002/pat.3493 | 433 | polymer | PLLA | DMSO | 100 | 0.0 | 0 | 8.0 | 82.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 87.3 | 84.5 | 76.0 | 8.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Chu, Y., Lu, Z., Li, J., Zhu, Y., Zhang, S., & Chen, J. (2015). Preparation of poly (L?lactic acid) with aligned structures by unidirectional freezing. Polymers for Advanced Technologies, 26(6), 606-612. | 2015 | 58 | 10.1002/pat.3493 | 434 | polymer | PLLA | DMSO | 100 | 0.0 | 0 | 12.0 | 82.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 82.6 | 20.0 | 18.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chu, Y., Lu, Z., Li, J., Zhu, Y., Zhang, S., & Chen, J. (2015). Preparation of poly (L?lactic acid) with aligned structures by unidirectional freezing. Polymers for Advanced Technologies, 26(6), 606-612. | 2015 | 58 | 10.1002/pat.3493 | 435 | polymer | PLLA | DMSO | 100 | 0.0 | 0 | 17.0 | 82.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 75.0 | 15.5 | 14.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Chu, Y., Lu, Z., Li, J., Zhu, Y., Zhang, S., & Chen, J. (2015). Preparation of poly (L?lactic acid) with aligned structures by unidirectional freezing. Polymers for Advanced Technologies, 26(6), 606-612. | 2015 | 58 | 10.1002/pat.3493 | 436 | polymer | PLLA | DMSO | 100 | 0.0 | 0 | 8.0 | 82.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 87.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chu, Y., Lu, Z., Li, J., Zhu, Y., Zhang, S., & Chen, J. (2015). Preparation of poly (L?lactic acid) with aligned structures by unidirectional freezing. Polymers for Advanced Technologies, 26(6), 606-612. | 2015 | 58 | 10.1002/pat.3493 | 437 | polymer | PLLA | DMSO | 100 | 0.0 | 0 | 8.0 | 82.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 88.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ho, M. H., Kuo, P. Y., Hsieh, H. J., Hsien, T. Y., Hou, L. T., Lai, J. Y., & Wang, D. M. (2004). Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials, 25(1), 129-138. | 2004 | 204 | 10.1016/s0142-9612(03)00483-6 | 5228 | polymer | PLLA | dioxane | 100 | 0.0 | 0 | 2.0 | 82.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 98.0 | 0.0 | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K., & Winnett, J. (2012). Preparation and characterization of porous Bioglass® and PLLA scaffolds for tissue engineering applications. Journal of the American Ceramic Society, 95(9), 2680-2686. | 2012 | 378 | 10.1111/j.1551-2916.2012.05071.x | 3741 | polymer | PLLA | water | 50 | dioxane | 25 | 5.0 | 82.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 273.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 90.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K., & Winnett, J. (2012). Preparation and characterization of porous Bioglass® and PLLA scaffolds for tissue engineering applications. Journal of the American Ceramic Society, 95(9), 2680-2686. | 2012 | 378 | 10.1111/j.1551-2916.2012.05071.x | 3742 | polymer | PLLA | water | 50 | dioxane | 25 | 5.0 | 82.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 273.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 89.0 | 0.0 | 160.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K., & Winnett, J. (2012). Preparation and characterization of porous Bioglass® and PLLA scaffolds for tissue engineering applications. Journal of the American Ceramic Society, 95(9), 2680-2686. | 2012 | 378 | 10.1111/j.1551-2916.2012.05071.x | 3743 | polymer | PLLA | water | 50 | dioxane | 25 | 5.0 | 82.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 263.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 88.0 | 0.0 | 200.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K., & Winnett, J. (2012). Preparation and characterization of porous Bioglass® and PLLA scaffolds for tissue engineering applications. Journal of the American Ceramic Society, 95(9), 2680-2686. | 2012 | 378 | 10.1111/j.1551-2916.2012.05071.x | 3744 | polymer | PLLA | water | 50 | dioxane | 25 | 5.0 | 82.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 87.0 | 0.0 | 300.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K., & Winnett, J. (2012). Preparation and characterization of porous Bioglass® and PLLA scaffolds for tissue engineering applications. Journal of the American Ceramic Society, 95(9), 2680-2686. | 2012 | 378 | 10.1111/j.1551-2916.2012.05071.x | 3745 | polymer | PLLA | water | 50 | dioxane | 25 | 5.0 | 82.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 85.0 | 0.0 | 400.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K., & Winnett, J. (2012). Preparation and characterization of porous Bioglass® and PLLA scaffolds for tissue engineering applications. Journal of the American Ceramic Society, 95(9), 2680-2686. | 2012 | 378 | 10.1111/j.1551-2916.2012.05071.x | 3746 | polymer | PLLA | water | 50 | dioxane | 25 | 5.0 | 82.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 73.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 82.0 | 0.0 | 450.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K., & Winnett, J. (2012). Preparation and characterization of porous Bioglass® and PLLA scaffolds for tissue engineering applications. Journal of the American Ceramic Society, 95(9), 2680-2686. | 2012 | 378 | 10.1111/j.1551-2916.2012.05071.x | 3747 | polymer | PLLA | dioxane | 100 | 0.0 | 0 | 5.0 | 82.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 273.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 95.0 | 0.0 | 150.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K., & Winnett, J. (2012). Preparation and characterization of porous Bioglass® and PLLA scaffolds for tissue engineering applications. Journal of the American Ceramic Society, 95(9), 2680-2686. | 2012 | 378 | 10.1111/j.1551-2916.2012.05071.x | 3748 | polymer | PLLA | dioxane | 100 | 0.0 | 0 | 5.0 | 82.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 273.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 92.0 | 0.0 | 240.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K., & Winnett, J. (2012). Preparation and characterization of porous Bioglass® and PLLA scaffolds for tissue engineering applications. Journal of the American Ceramic Society, 95(9), 2680-2686. | 2012 | 378 | 10.1111/j.1551-2916.2012.05071.x | 3749 | polymer | PLLA | dioxane | 100 | 0.0 | 0 | 5.0 | 82.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 263.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 91.0 | 0.0 | 300.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K., & Winnett, J. (2012). Preparation and characterization of porous Bioglass® and PLLA scaffolds for tissue engineering applications. Journal of the American Ceramic Society, 95(9), 2680-2686. | 2012 | 378 | 10.1111/j.1551-2916.2012.05071.x | 3750 | polymer | PLLA | dioxane | 100 | 0.0 | 0 | 5.0 | 82.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 90.0 | 0.0 | 400.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K., & Winnett, J. (2012). Preparation and characterization of porous Bioglass® and PLLA scaffolds for tissue engineering applications. Journal of the American Ceramic Society, 95(9), 2680-2686. | 2012 | 378 | 10.1111/j.1551-2916.2012.05071.x | 3751 | polymer | PLLA | dioxane | 100 | 0.0 | 0 | 5.0 | 82.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 87.0 | 0.0 | 500.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K., & Winnett, J. (2012). Preparation and characterization of porous Bioglass® and PLLA scaffolds for tissue engineering applications. Journal of the American Ceramic Society, 95(9), 2680-2686. | 2012 | 378 | 10.1111/j.1551-2916.2012.05071.x | 3752 | polymer | PLLA | dioxane | 100 | 0.0 | 0 | 5.0 | 82.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 73.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 85.0 | 0.0 | 570.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yao, X., Yao, H., & Li, Y. (2009). Hierarchically aligned porous scaffold by ice-segregation-induced self-assembly and thermally triggered electrostatic self-assembly of oppositely charged thermosensitive microgels. Journal of Materials Chemistry, 19(36), 6516-6520. | 2009 | 717 | 10.1039/b909059b | 4807 | polymer | PLLA | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, H., Hussain, I., Brust, M., Butler, M. F., Rannard, S. P., & Cooper, A. I. (2005). Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature materials, 4(10), 787. | 2005 | 758 | 10.1038/nmat1487 | 2204 | polymer | PLLA | water | 100 | 0.0 | 0 | 45.66 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 10.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, H., Hussain, I., Brust, M., Butler, M. F., Rannard, S. P., & Cooper, A. I. (2005). Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature materials, 4(10), 787. | 2005 | 758 | 10.1038/nmat1487 | 2205 | polymer | PLLA | water | 100 | 0.0 | 0 | 45.66 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 20.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 35.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, H., Hussain, I., Brust, M., Butler, M. F., Rannard, S. P., & Cooper, A. I. (2005). Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature materials, 4(10), 787. | 2005 | 758 | 10.1038/nmat1487 | 2206 | polymer | PLLA | water | 100 | 0.0 | 0 | 45.66 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 24.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, H., Hussain, I., Brust, M., Butler, M. F., Rannard, S. P., & Cooper, A. I. (2005). Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature materials, 4(10), 787. | 2005 | 758 | 10.1038/nmat1487 | 2207 | polymer | PLLA | water | 100 | 0.0 | 0 | 45.66 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 50.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 18.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, H., Hussain, I., Brust, M., Butler, M. F., Rannard, S. P., & Cooper, A. I. (2005). Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature materials, 4(10), 787. | 2005 | 758 | 10.1038/nmat1487 | 2208 | polymer | PLLA | water | 100 | 0.0 | 0 | 45.66 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 70.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, H., Hussain, I., Brust, M., Butler, M. F., Rannard, S. P., & Cooper, A. I. (2005). Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature materials, 4(10), 787. | 2005 | 758 | 10.1038/nmat1487 | 2209 | polymer | PLLA | water | 100 | 0.0 | 0 | 45.66 | 68.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 100.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, H., Oh, H. H., Kawazoe, N., Yamagishi, K., & Chen, G. (2012). PLLA?collagen and PLLA?gelatin hybrid scaffolds with funnel-like porous structure for skin tissue engineering. Science and technology of advanced materials, 13(6), 064210. | 2012 | 917 | 10.1088/1468-6996/13/6/064210 | 5294 | polymer | PLLA | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 400.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Cilla, M. S., de Melo Cartaxo, J., Menezes, R. R., deLima Santana, L. N., & de Araujo Neves, G. (2016). Production of fire clay porous structure with no aligned macro porosity from water-based slurry by freeze casting process: A new approach. Ceramics International, 42(7), 9278-9282. | 2016 | 59 | 0.1016/j.ceramint.2016.02.053 | 438 | ceramic | fireclay | water | 100 | 0.0 | 0 | 17.51 | 47.0 | 100 | powder | 3.62 | 5 | 0 | 0 | 267.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 69.28 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.56 | 0.0 |
Cilla, M. S., de Melo Cartaxo, J., Menezes, R. R., deLima Santana, L. N., & de Araujo Neves, G. (2016). Production of fire clay porous structure with no aligned macro porosity from water-based slurry by freeze casting process: A new approach. Ceramics International, 42(7), 9278-9282. | 2016 | 59 | 0.1016/j.ceramint.2016.02.053 | 439 | ceramic | fireclay | water | 100 | 0.0 | 0 | 17.51 | 47.0 | 100 | powder | 6.39 | 5 | 0 | 0 | 267.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 73.98 | 0.0 | 155.0 | 0.0 | 0.0 | 0.0 | 1.17 | 0.0 |
Cilla, M. S., de Melo Cartaxo, J., Menezes, R. R., deLima Santana, L. N., & de Araujo Neves, G. (2016). Production of fire clay porous structure with no aligned macro porosity from water-based slurry by freeze casting process: A new approach. Ceramics International, 42(7), 9278-9282. | 2016 | 59 | 0.1016/j.ceramint.2016.02.053 | 440 | ceramic | fireclay | water | 100 | 0.0 | 0 | 20.0 | 47.0 | 100 | powder | 6.39 | 11 | 0 | 0 | 267.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 73.11 | 0.0 | 174.0 | 0.0 | 0.0 | 0.0 | 2.34 | 0.0 |
Cilla, M. S., de Melo Cartaxo, J., Menezes, R. R., deLima Santana, L. N., & de Araujo Neves, G. (2016). Production of fire clay porous structure with no aligned macro porosity from water-based slurry by freeze casting process: A new approach. Ceramics International, 42(7), 9278-9282. | 2016 | 59 | 0.1016/j.ceramint.2016.02.053 | 441 | ceramic | fireclay | water | 100 | 0.0 | 0 | 17.51 | 47.0 | 100 | powder | 4.1 | 5 | 0 | 0 | 267.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 73.12 | 0.0 | 48.0 | 0.0 | 0.0 | 0.0 | 2.02 | 0.0 |
Cilla, M. S., de Melo Cartaxo, J., Menezes, R. R., deLima Santana, L. N., & de Araujo Neves, G. (2016). Production of fire clay porous structure with no aligned macro porosity from water-based slurry by freeze casting process: A new approach. Ceramics International, 42(7), 9278-9282. | 2016 | 59 | 0.1016/j.ceramint.2016.02.053 | 442 | ceramic | fireclay | water | 100 | 0.0 | 0 | 20.0 | 47.0 | 100 | powder | 4.1 | 11 | 0 | 0 | 267.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 68.1 | 0.0 | 146.0 | 0.0 | 0.0 | 0.0 | 3.05 | 0.0 |
Clearfield, D., & Wei, M. (2016). Investigation of structural collapse in unidirectionally freeze cast collagen scaffolds. Journal of Materials Science: Materials in Medicine, 27(1), 15. | 2016 | 60 | 10.1007/s10856-015-5632-y | 443 | polymer | collagen | acetic acid | 100 | 0.0 | 0 | 0.38 | 41.0 | 100 | 0 | 0.0 | 0 | 5 | 0 | 248.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Clearfield, D., & Wei, M. (2016). Investigation of structural collapse in unidirectionally freeze cast collagen scaffolds. Journal of Materials Science: Materials in Medicine, 27(1), 15. | 2016 | 60 | 10.1007/s10856-015-5632-y | 444 | polymer | collagen | acetic acid | 100 | 0.0 | 0 | 0.38 | 41.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 248.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Clearfield, D., & Wei, M. (2016). Investigation of structural collapse in unidirectionally freeze cast collagen scaffolds. Journal of Materials Science: Materials in Medicine, 27(1), 15. | 2016 | 60 | 10.1007/s10856-015-5632-y | 445 | polymer | collagen | acetic acid | 100 | 0.0 | 0 | 0.38 | 41.0 | 100 | 0 | 0.0 | 0 | 5 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Clearfield, D., & Wei, M. (2016). Investigation of structural collapse in unidirectionally freeze cast collagen scaffolds. Journal of Materials Science: Materials in Medicine, 27(1), 15. | 2016 | 60 | 10.1007/s10856-015-5632-y | 446 | polymer | collagen | acetic acid | 100 | 0.0 | 0 | 0.38 | 41.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., Husmann, A., Best, S. M., & Cameron, R. E. (2015). Altering crystal growth and annealing in ice-templated scaffolds. Journal of materials science, 50(23), 7537-7543. | 2015 | 463 | 10.1007/s10853-015-9343-z | 5684 | polymer | collagen | acetic acid | 100 | 0.0 | 0 | 0.67 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 243.0 | 0.9 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 113.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., Husmann, A., Best, S. M., & Cameron, R. E. (2015). Altering crystal growth and annealing in ice-templated scaffolds. Journal of materials science, 50(23), 7537-7543. | 2015 | 463 | 10.1007/s10853-015-9343-z | 5685 | polymer | collagen | acetic acid | 100 | 0.0 | 0 | 0.67 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 243.0 | 0.9 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 139.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., Husmann, A., Best, S. M., & Cameron, R. E. (2015). Altering crystal growth and annealing in ice-templated scaffolds. Journal of materials science, 50(23), 7537-7543. | 2015 | 463 | 10.1007/s10853-015-9343-z | 5686 | polymer | collagen | acetic acid | 100 | 0.0 | 0 | 0.67 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 243.0 | 0.9 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 94.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., Husmann, A., Best, S. M., & Cameron, R. E. (2015). Altering crystal growth and annealing in ice-templated scaffolds. Journal of materials science, 50(23), 7537-7543. | 2015 | 463 | 10.1007/s10853-015-9343-z | 5687 | polymer | collagen | acetic acid | 100 | 0.0 | 0 | 0.67 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 243.0 | 0.9 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 112.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., Husmann, A., Best, S. M., & Cameron, R. E. (2014). A design protocol for tailoring ice-templated scaffold structure. Journal of the Royal Society Interface, 11(92), 20130958. | 2014 | 464 | 10.1098/rsif.2013.0958 | 4087 | polymer | collagen | water | 100 | 0.0 | 0 | 0.67 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.5 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | green | 0.0 | 0.0 | 130.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., Husmann, A., Best, S. M., & Cameron, R. E. (2014). A design protocol for tailoring ice-templated scaffold structure. Journal of the Royal Society Interface, 11(92), 20130958. | 2014 | 464 | 10.1098/rsif.2013.0958 | 4088 | polymer | collagen | water | 100 | 0.0 | 0 | 0.67 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.55 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | green | 0.0 | 0.0 | 125.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., Husmann, A., Best, S. M., & Cameron, R. E. (2014). A design protocol for tailoring ice-templated scaffold structure. Journal of the Royal Society Interface, 11(92), 20130958. | 2014 | 464 | 10.1098/rsif.2013.0958 | 4089 | polymer | collagen | water | 100 | 0.0 | 0 | 0.67 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.65 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | green | 0.0 | 0.0 | 125.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., Husmann, A., Wardale, R. J., Best, S. M., & Cameron, R. E. (2015). Ionic solutes impact collagen scaffold bioactivity. Journal of Materials Science: Materials in Medicine, 26(2), 91. | 2015 | 467 | 10.1007/s10856-015-5457-8 | 4789 | polymer | collagen | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., Husmann, A., Wardale, R. J., Best, S. M., & Cameron, R. E. (2015). Ionic solutes impact collagen scaffold bioactivity. Journal of Materials Science: Materials in Medicine, 26(2), 91. | 2015 | 467 | 10.1007/s10856-015-5457-8 | 5827 | polymer | collagen | acetic acid | 100 | 0.0 | 0 | 0.2 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.9 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 85.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., Husmann, A., Wardale, R. J., Best, S. M., & Cameron, R. E. (2015). Ionic solutes impact collagen scaffold bioactivity. Journal of Materials Science: Materials in Medicine, 26(2), 91. | 2015 | 467 | 10.1007/s10856-015-5457-8 | 5828 | polymer | collagen | acetic acid | 100 | 0.0 | 0 | 0.2 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.9 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 102.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., Husmann, A., Wardale, R. J., Best, S. M., & Cameron, R. E. (2015). Ionic solutes impact collagen scaffold bioactivity. Journal of Materials Science: Materials in Medicine, 26(2), 91. | 2015 | 467 | 10.1007/s10856-015-5457-8 | 5829 | polymer | collagen | acetic acid | 100 | 0.0 | 0 | 0.2 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.9 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pot, M. W., Faraj, K. A., Adawy, A., van Enckevort, W. J., van Moerkerk, H. T., Vlieg, E., ... & van Kuppevelt, T. H. (2015). Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations. ACS applied materials & interfaces, 7(16), 8495-8505. | 2015 | 493 | 0 | 4638 | polymer | collagen | water | 100 | 0.0 | 0 | 0.27 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 195.0 | 0.3 | 0.3 | wedge | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pot, M. W., Faraj, K. A., Adawy, A., van Enckevort, W. J., van Moerkerk, H. T., Vlieg, E., ... & van Kuppevelt, T. H. (2015). Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations. ACS applied materials & interfaces, 7(16), 8495-8505. | 2015 | 493 | 0 | 4639 | polymer | collagen | water | 100 | 0.0 | 0 | 0.47 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 195.0 | 0.3 | 0.3 | wedge | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 146.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pot, M. W., Faraj, K. A., Adawy, A., van Enckevort, W. J., van Moerkerk, H. T., Vlieg, E., ... & van Kuppevelt, T. H. (2015). Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations. ACS applied materials & interfaces, 7(16), 8495-8505. | 2015 | 493 | 0 | 4640 | polymer | collagen | water | 100 | 0.0 | 0 | 0.62 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 195.0 | 0.3 | 0.3 | wedge | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pot, M. W., Faraj, K. A., Adawy, A., van Enckevort, W. J., van Moerkerk, H. T., Vlieg, E., ... & van Kuppevelt, T. H. (2015). Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations. ACS applied materials & interfaces, 7(16), 8495-8505. | 2015 | 493 | 0 | 4641 | polymer | collagen | water | 100 | 0.0 | 0 | 1.34 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 195.0 | 0.3 | 0.3 | wedge | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pot, M. W., Faraj, K. A., Adawy, A., van Enckevort, W. J., van Moerkerk, H. T., Vlieg, E., ... & van Kuppevelt, T. H. (2015). Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations. ACS applied materials & interfaces, 7(16), 8495-8505. | 2015 | 493 | 0 | 4642 | polymer | collagen | water | 100 | 0.0 | 0 | 0.27 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 6.4 | 6.4 | wedge | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 74.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pot, M. W., Faraj, K. A., Adawy, A., van Enckevort, W. J., van Moerkerk, H. T., Vlieg, E., ... & van Kuppevelt, T. H. (2015). Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations. ACS applied materials & interfaces, 7(16), 8495-8505. | 2015 | 493 | 0 | 4643 | polymer | collagen | water | 100 | 0.0 | 0 | 0.47 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 6.4 | 6.4 | wedge | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pot, M. W., Faraj, K. A., Adawy, A., van Enckevort, W. J., van Moerkerk, H. T., Vlieg, E., ... & van Kuppevelt, T. H. (2015). Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations. ACS applied materials & interfaces, 7(16), 8495-8505. | 2015 | 493 | 0 | 4644 | polymer | collagen | water | 100 | 0.0 | 0 | 0.62 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 6.4 | 6.4 | wedge | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 63.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pot, M. W., Faraj, K. A., Adawy, A., van Enckevort, W. J., van Moerkerk, H. T., Vlieg, E., ... & van Kuppevelt, T. H. (2015). Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations. ACS applied materials & interfaces, 7(16), 8495-8505. | 2015 | 493 | 0 | 4645 | polymer | collagen | water | 100 | 0.0 | 0 | 1.34 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 6.4 | 6.4 | wedge | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pot, M. W., Faraj, K. A., Adawy, A., van Enckevort, W. J., van Moerkerk, H. T., Vlieg, E., ... & van Kuppevelt, T. H. (2015). Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations. ACS applied materials & interfaces, 7(16), 8495-8505. | 2015 | 493 | 0 | 4646 | polymer | collagen | water | 100 | 0.0 | 0 | 0.45 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 32.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pot, M. W., Faraj, K. A., Adawy, A., van Enckevort, W. J., van Moerkerk, H. T., Vlieg, E., ... & van Kuppevelt, T. H. (2015). Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations. ACS applied materials & interfaces, 7(16), 8495-8505. | 2015 | 493 | 0 | 4647 | polymer | collagen | water | 100 | 0.0 | 0 | 0.45 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 49.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pot, M. W., Faraj, K. A., Adawy, A., van Enckevort, W. J., van Moerkerk, H. T., Vlieg, E., ... & van Kuppevelt, T. H. (2015). Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations. ACS applied materials & interfaces, 7(16), 8495-8505. | 2015 | 493 | 0 | 4648 | polymer | collagen | water | 100 | 0.0 | 0 | 0.45 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Apel, J., Heschel, I., & Rau, G. (2001). Control of pore structure and size in freeze?dried collagen sponges. Journal of Biomedical Materials Research Part A, 58(4), 352-357. | 2001 | 548 | 10.1002/jbm.1028 | 3053 | polymer | collagen | water | 100 | 0.0 | 0 | 1.72 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 9.0 | 0.0 | one-sided | linear | 30.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 23.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Apel, J., Heschel, I., & Rau, G. (2001). Control of pore structure and size in freeze?dried collagen sponges. Journal of Biomedical Materials Research Part A, 58(4), 352-357. | 2001 | 548 | 10.1002/jbm.1028 | 3054 | polymer | collagen | water | 100 | 0.0 | 0 | 1.72 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 9.0 | 0.0 | one-sided | linear | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Apel, J., Heschel, I., & Rau, G. (2001). Control of pore structure and size in freeze?dried collagen sponges. Journal of Biomedical Materials Research Part A, 58(4), 352-357. | 2001 | 548 | 10.1002/jbm.1028 | 3055 | polymer | collagen | water | 100 | 0.0 | 0 | 1.72 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 9.0 | 0.0 | one-sided | linear | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3056 | polymer | collagen | water | 100 | 0.0 | 0 | 1.43 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 20.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 57.0 | 52.5 | 4.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3057 | polymer | collagen | water | 100 | 0.0 | 0 | 1.43 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 52.5 | 50.0 | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3058 | polymer | collagen | water | 100 | 0.0 | 0 | 1.43 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 40.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 58.0 | 49.0 | 9.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3059 | polymer | collagen | water | 100 | 0.0 | 0 | 1.43 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 50.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 55.0 | 44.0 | 11.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3060 | polymer | collagen | water | 100 | 0.0 | 0 | 1.43 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 60.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 53.0 | 45.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3061 | polymer | collagen | water | 100 | 0.0 | 0 | 2.38 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 20.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 55.0 | 47.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3062 | polymer | collagen | water | 100 | 0.0 | 0 | 2.38 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 52.5 | 44.0 | 8.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3063 | polymer | collagen | water | 100 | 0.0 | 0 | 2.38 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 40.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 57.5 | 47.0 | 10.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3064 | polymer | collagen | water | 100 | 0.0 | 0 | 2.38 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 50.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 55.0 | 43.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3065 | polymer | collagen | water | 100 | 0.0 | 0 | 2.38 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 60.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 54.0 | 47.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3066 | polymer | collagen | water | 100 | 0.0 | 0 | 2.19 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 20.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 50.0 | 45.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3067 | polymer | collagen | water | 100 | 0.0 | 0 | 2.19 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 50.0 | 47.5 | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3068 | polymer | collagen | water | 100 | 0.0 | 0 | 2.19 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 40.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 52.5 | 45.0 | 7.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3069 | polymer | collagen | water | 100 | 0.0 | 0 | 2.19 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 50.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 47.5 | 45.0 | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3070 | polymer | collagen | water | 100 | 0.0 | 0 | 2.19 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 60.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 46.0 | 42.5 | 3.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3071 | polymer | collagen | water | 100 | 0.0 | 0 | 1.2 | 41.0 | 100 | fibrillar | 20.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 20.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 53.0 | 47.5 | 5.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3072 | polymer | collagen | water | 100 | 0.0 | 0 | 1.2 | 41.0 | 100 | fibrillar | 20.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 56.0 | 50.0 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3073 | polymer | collagen | water | 100 | 0.0 | 0 | 1.2 | 41.0 | 100 | fibrillar | 20.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 40.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 55.0 | 45.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3074 | polymer | collagen | water | 100 | 0.0 | 0 | 1.2 | 41.0 | 100 | fibrillar | 20.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 50.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 52.5 | 47.5 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3075 | polymer | collagen | water | 100 | 0.0 | 0 | 1.2 | 41.0 | 100 | fibrillar | 20.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 60.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 47.5 | 45.0 | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3076 | polymer | collagen | water | 100 | 0.0 | 0 | 1.2 | 41.0 | 100 | fibrillar | 20.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 20.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 47.5 | 40.0 | 7.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3077 | polymer | collagen | water | 100 | 0.0 | 0 | 1.2 | 41.0 | 100 | fibrillar | 20.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 47.5 | 43.0 | 4.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3078 | polymer | collagen | water | 100 | 0.0 | 0 | 1.2 | 41.0 | 100 | fibrillar | 20.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 40.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 47.5 | 40.0 | 7.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3079 | polymer | collagen | water | 100 | 0.0 | 0 | 1.2 | 41.0 | 100 | fibrillar | 20.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 50.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 45.0 | 40.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3080 | polymer | collagen | water | 100 | 0.0 | 0 | 1.2 | 41.0 | 100 | fibrillar | 20.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 60.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 44.0 | 37.5 | 6.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3081 | polymer | collagen | water | 100 | 0.0 | 0 | 1.2 | 41.0 | 100 | fibrillar | 20.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 20.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 40.0 | 32.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3082 | polymer | collagen | water | 100 | 0.0 | 0 | 1.2 | 41.0 | 100 | fibrillar | 20.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 30.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 42.5 | 32.5 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3083 | polymer | collagen | water | 100 | 0.0 | 0 | 1.2 | 41.0 | 100 | fibrillar | 20.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 40.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 42.0 | 35.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3084 | polymer | collagen | water | 100 | 0.0 | 0 | 1.2 | 41.0 | 100 | fibrillar | 20.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 50.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 37.5 | 35.0 | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3085 | polymer | collagen | water | 100 | 0.0 | 0 | 1.2 | 41.0 | 100 | fibrillar | 20.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 60.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 41.0 | 35.0 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3086 | polymer | collagen | water | 100 | 0.0 | 0 | 1.72 | 41.0 | 100 | fibrillar | 20.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 20.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 51.0 | 45.0 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3087 | polymer | collagen | water | 100 | 0.0 | 0 | 1.72 | 41.0 | 100 | fibrillar | 20.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 20.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 51.0 | 46.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3088 | polymer | collagen | water | 100 | 0.0 | 0 | 1.72 | 41.0 | 100 | fibrillar | 20.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 20.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 47.5 | 50.0 | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3089 | polymer | collagen | water | 100 | 0.0 | 0 | 1.72 | 41.0 | 100 | fibrillar | 20.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 20.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 62.5 | 51.0 | 11.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3090 | polymer | collagen | water | 100 | 0.0 | 0 | 1.72 | 41.0 | 100 | fibrillar | 20.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 20.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 60.0 | 48.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3091 | polymer | collagen | water | 100 | 0.0 | 0 | 1.72 | 41.0 | 100 | fibrillar | 20.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 20.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 60.0 | 49.0 | 11.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3092 | polymer | collagen | water | 100 | 0.0 | 0 | 1.72 | 41.0 | 100 | fibrillar | 20.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 20.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 60.0 | 48.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3093 | polymer | collagen | water | 100 | 0.0 | 0 | 1.72 | 41.0 | 100 | fibrillar | 20.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 20.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 57.8 | 50.8 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of crystal growth, 209(1), 122-129. | 2000 | 549 | 10.1016/s0022-0248(99)00519-9 | 3094 | polymer | collagen | water | 100 | 0.0 | 0 | 1.72 | 41.0 | 100 | fibrillar | 20.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 20.0 | 0.0 | 0 | 0 | 0 | dendritic | solidification | 0.0 | 55.8 | 51.2 | 4.6 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Z., Yu, X., Jiang, X., Brody, H. D., Rowe, D. W., & Wei, M. (2013). Fabrication and characterization of biomimetic collagen?apatite scaffolds with tunable structures for bone tissue engineering. Acta biomaterialia, 9(7), 7308-7319. | 2013 | 676 | 10.1016/j.actbio.2013.03.038 | 2494 | polymer | collagen | water | 100 | 0.0 | 0 | 2.0 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 95.9 | 0.0 | 118.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, J., Zhou, A., Deng, A., Yang, Y., Gao, L., Zhong, Z., & Yang, S. (2015). Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)?chitosan scaffolds. Materials Science and Engineering: C, 49, 174-182. | 2015 | 761 | 10.1016/j.msec.2014.12.076 | 2214 | polymer | collagen | acetic acid | 100 | 0.0 | 0 | 11.0 | 41.0 | 50 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 119.66 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, J., Zhou, A., Deng, A., Yang, Y., Gao, L., Zhong, Z., & Yang, S. (2015). Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)?chitosan scaffolds. Materials Science and Engineering: C, 49, 174-182. | 2015 | 761 | 10.1016/j.msec.2014.12.076 | 2215 | polymer | collagen | acetic acid | 100 | 0.0 | 0 | 11.0 | 41.0 | 50 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 116.43 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, J., Zhou, A., Deng, A., Yang, Y., Gao, L., Zhong, Z., & Yang, S. (2015). Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)?chitosan scaffolds. Materials Science and Engineering: C, 49, 174-182. | 2015 | 761 | 10.1016/j.msec.2014.12.076 | 2216 | polymer | collagen | acetic acid | 100 | 0.0 | 0 | 11.0 | 41.0 | 50 | 0 | 0.0 | 0 | 0 | 0 | 213.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 111.97 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, J., Zhou, A., Deng, A., Yang, Y., Gao, L., Zhong, Z., & Yang, S. (2015). Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)?chitosan scaffolds. Materials Science and Engineering: C, 49, 174-182. | 2015 | 761 | 10.1016/j.msec.2014.12.076 | 2217 | polymer | collagen | acetic acid | 100 | 0.0 | 0 | 11.0 | 41.0 | 50 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 109.39 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, J., Zhou, A., Deng, A., Yang, Y., Gao, L., Zhong, Z., & Yang, S. (2015). Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)?chitosan scaffolds. Materials Science and Engineering: C, 49, 174-182. | 2015 | 761 | 10.1016/j.msec.2014.12.076 | 2218 | polymer | collagen | acetic acid | 100 | 0.0 | 0 | 11.0 | 41.0 | 50 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 110.78 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, J., Zhou, A., Deng, A., Yang, Y., Gao, L., Zhong, Z., & Yang, S. (2015). Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)?chitosan scaffolds. Materials Science and Engineering: C, 49, 174-182. | 2015 | 761 | 10.1016/j.msec.2014.12.076 | 2219 | polymer | collagen | acetic acid | 100 | 0.0 | 0 | 11.0 | 41.0 | 50 | 0 | 0.0 | 0 | 0 | 0 | 213.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 104.59 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, J., Zhou, A., Deng, A., Yang, Y., Gao, L., Zhong, Z., & Yang, S. (2015). Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)?chitosan scaffolds. Materials Science and Engineering: C, 49, 174-182. | 2015 | 761 | 10.1016/j.msec.2014.12.076 | 2220 | polymer | collagen | acetic acid | 100 | 0.0 | 0 | 7.0 | 41.0 | 50 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 120.02 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, J., Zhou, A., Deng, A., Yang, Y., Gao, L., Zhong, Z., & Yang, S. (2015). Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)?chitosan scaffolds. Materials Science and Engineering: C, 49, 174-182. | 2015 | 761 | 10.1016/j.msec.2014.12.076 | 2221 | polymer | collagen | acetic acid | 100 | 0.0 | 0 | 14.0 | 41.0 | 50 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 104.52 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, J., Zhou, A., Deng, A., Yang, Y., Gao, L., Zhong, Z., & Yang, S. (2015). Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)?chitosan scaffolds. Materials Science and Engineering: C, 49, 174-182. | 2015 | 761 | 10.1016/j.msec.2014.12.076 | 2222 | polymer | collagen | acetic acid | 100 | 0.0 | 0 | 11.0 | 41.0 | 50 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 105.79 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, J., Zhou, A., Deng, A., Yang, Y., Gao, L., Zhong, Z., & Yang, S. (2015). Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)?chitosan scaffolds. Materials Science and Engineering: C, 49, 174-182. | 2015 | 761 | 10.1016/j.msec.2014.12.076 | 2223 | polymer | collagen | acetic acid | 100 | 0.0 | 0 | 11.0 | 41.0 | 50 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 113.84 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, H., Oh, H. H., Kawazoe, N., Yamagishi, K., & Chen, G. (2012). PLLA?collagen and PLLA?gelatin hybrid scaffolds with funnel-like porous structure for skin tissue engineering. Science and technology of advanced materials, 13(6), 064210. | 2012 | 917 | 10.1088/1468-6996/13/6/064210 | 5297 | polymer | collagen | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6091 | polymer | collagen | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 550.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6092 | polymer | collagen | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.1 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 425.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6093 | polymer | collagen | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.1 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 225.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6094 | polymer | collagen | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 150.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6095 | polymer | collagen | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6096 | polymer | collagen | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6097 | polymer | collagen | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 240.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6114 | polymer | collagen | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 3.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 110.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6115 | polymer | collagen | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 3.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 200.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6116 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 3.5 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 200.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6117 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 4.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 105.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6118 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 4.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 220.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6119 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 20.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6120 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 20.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6121 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 19.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6122 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 15.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 77.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6123 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 15.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 72.0 | 0.0 | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6124 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 13.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 110.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6125 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 13.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 112.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6126 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 13.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 73.0 | 0.0 | 140.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6127 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 13.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 160.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6128 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 13.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 150.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6129 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 13.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 145.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6130 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.5 | 0.0 | one-sided | linear | 9.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 190.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6131 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.5 | 0.0 | one-sided | linear | 9.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 84.0 | 0.0 | 195.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6132 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.5 | 0.0 | one-sided | linear | 8.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 75.0 | 0.0 | 202.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6133 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.5 | 0.0 | one-sided | linear | 8.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 205.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6134 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.5 | 0.0 | one-sided | linear | 8.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 199.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6135 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.5 | 0.0 | one-sided | linear | 7.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 250.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6136 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.5 | 0.0 | one-sided | linear | 7.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 300.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6137 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 6.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 200.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6138 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 6.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 300.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6139 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 5.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 150.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6140 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 5.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 200.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6141 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 3.5 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 378.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6142 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 3.5 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 380.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6143 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 3.5 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 382.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6144 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 3.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 87.0 | 0.0 | 500.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6145 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 3.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 490.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6146 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 3.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 495.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6147 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 2.5 | 0.0 | 0 | 0 | 0 | honeycomb | green | 86.0 | 0.0 | 400.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6148 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 2.5 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 700.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6149 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 2.25 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 410.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6150 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 2.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 400.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6151 | polymer | collagen | 0.0 | 0 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 2.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 720.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Colard, C. A., Cave, R. A., Grossiord, N., Covington, J. A., & Bon, S. A. (2009). Conducting Nanocomposite Polymer Foams from Ice?Crystal?Templated Assembly of Mixtures of Colloids. Advanced Materials, 21(28), 2894-2898. | 2009 | 61 | 10.1002/adma.200803007 | 458 | polymer | PS | water | 100 | 0.0 | 0 | 10.0 | 65.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5022 | polymer | PS | water | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5023 | polymer | PS | water | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 1.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5024 | polymer | PS | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 1.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5025 | polymer | PS | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5026 | polymer | PS | water | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5027 | polymer | PS | water | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5028 | polymer | PS | water | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5029 | polymer | PS | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 1.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5030 | polymer | PS | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5031 | polymer | PS | water | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5032 | polymer | PS | water | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5033 | polymer | PS | water | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5034 | polymer | PS | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 1.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5035 | polymer | PS | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5036 | polymer | PS | water | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5037 | polymer | PS | water | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5038 | polymer | PS | water | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5039 | polymer | PS | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 1.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5040 | polymer | PS | dioxane | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5041 | polymer | PS | dioxane | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5042 | polymer | PS | dioxane | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5043 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5044 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5045 | polymer | PS | dioxane | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5046 | polymer | PS | dioxane | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5047 | polymer | PS | dioxane | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5048 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5049 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5050 | polymer | PS | dioxane | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5051 | polymer | PS | dioxane | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5052 | polymer | PS | dioxane | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5053 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5054 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5055 | polymer | PS | dioxane | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5056 | polymer | PS | dioxane | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5057 | polymer | PS | dioxane | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5058 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5059 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5060 | polymer | PS | dioxane | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5061 | polymer | PS | dioxane | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5062 | polymer | PS | dioxane | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5063 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5064 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5065 | polymer | PS | dioxane | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5066 | polymer | PS | dioxane | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5067 | polymer | PS | dioxane | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5068 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5069 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5070 | polymer | PS | dioxane | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5071 | polymer | PS | dioxane | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5072 | polymer | PS | dioxane | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5073 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5074 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5075 | polymer | PS | dioxane | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5076 | polymer | PS | dioxane | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5077 | polymer | PS | dioxane | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5078 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5079 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5080 | polymer | PS | dioxane | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5081 | polymer | PS | dioxane | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5082 | polymer | PS | dioxane | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5083 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5084 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5085 | polymer | PS | dioxane | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5086 | polymer | PS | dioxane | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5087 | polymer | PS | dioxane | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5088 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5089 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5090 | polymer | PS | dioxane | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Formation mechanism of interconnected pores in the microtube walls in | 2013 | 447 | 10.1007/s10853-012-6973-2 | 5091 | polymer | PS | dioxane | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5092 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5093 | polymer | PS | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5094 | polymer | PS | dioxane | 100 | 0.0 | 0 | 6.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5095 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5096 | polymer | PS | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 1.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5097 | polymer | PS | dioxane | 100 | 0.0 | 0 | 6.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5098 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5099 | polymer | PS | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5100 | polymer | PS | dioxane | 100 | 0.0 | 0 | 6.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5101 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5102 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5103 | polymer | PS | dioxane | 100 | 0.0 | 0 | 6.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5104 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5105 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5106 | polymer | PS | dioxane | 100 | 0.0 | 0 | 6.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5107 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5108 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5109 | polymer | PS | dioxane | 100 | 0.0 | 0 | 6.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5110 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5111 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5112 | polymer | PS | dioxane | 100 | 0.0 | 0 | 6.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5113 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5114 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5115 | polymer | PS | dioxane | 100 | 0.0 | 0 | 6.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5116 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5117 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5118 | polymer | PS | dioxane | 100 | 0.0 | 0 | 6.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5119 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5120 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5121 | polymer | PS | dioxane | 100 | 0.0 | 0 | 6.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5122 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5123 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5124 | polymer | PS | dioxane | 100 | 0.0 | 0 | 6.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5125 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5126 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5127 | polymer | PS | dioxane | 100 | 0.0 | 0 | 6.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5128 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5129 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5130 | polymer | PS | dioxane | 100 | 0.0 | 0 | 6.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5131 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5132 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5133 | polymer | PS | dioxane | 100 | 0.0 | 0 | 6.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5134 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5135 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5136 | polymer | PS | dioxane | 100 | 0.0 | 0 | 6.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5137 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5138 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5139 | polymer | PS | dioxane | 100 | 0.0 | 0 | 6.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5140 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5141 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5142 | polymer | PS | dioxane | 100 | 0.0 | 0 | 6.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5143 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5144 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5145 | polymer | PS | dioxane | 100 | 0.0 | 0 | 6.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5146 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5147 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5148 | polymer | PS | dioxane | 100 | 0.0 | 0 | 6.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5149 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5150 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5151 | polymer | PS | dioxane | 100 | 0.0 | 0 | 6.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5152 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5153 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5154 | polymer | PS | dioxane | 100 | 0.0 | 0 | 6.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5155 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5156 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5157 | polymer | PS | dioxane | 100 | 0.0 | 0 | 6.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5158 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5159 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5160 | polymer | PS | 0.0 | 0 | 0.0 | 0 | 6.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5161 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5162 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5163 | polymer | PS | dioxane | 100 | 0.0 | 0 | 6.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5164 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5165 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5166 | polymer | PS | dioxane | 100 | 0.0 | 0 | 6.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5167 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5168 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5169 | polymer | PS | dioxane | 100 | 0.0 | 0 | 6.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5170 | polymer | PS | dioxane | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5171 | polymer | PS | dioxane | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Sakashita, S., Tazumi, K., Taki, K., Nagamine, S., & Ohshima, M. (2013). Interconnected pores on the walls of a polymeric honeycomb monolith structure created by the unidirectional freezing of a binary polymer solution. Journal of Materials Science, 48(5), 2038-2045. | 2013 | 448 | 10.1007/s10853-012-6973-2 | 5172 | polymer | PS | dioxane | 100 | 0.0 | 0 | 6.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wan, A. M. D., Inal, S., Williams, T., Wang, K., Leleux, P., Estevez, L., ... & Gourdon, D. (2015). 3D conducting polymer platforms for electrical control of protein conformation and cellular functions. Journal of Materials Chemistry B, 3(25), 5040-5048. | 2015 | 641 | 10.1039/c5tb00390c | 4801 | polymer | PS | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yan, J., Wu, Z., & Tan, L. (2009, July). Self-assembly of polystyrene nanoparticles induced by ice templating. In Proceedings of SPIE (p. 749375). | 2009 | 699 | 10.1117/12.843444 | 2590 | polymer | PS | water | 100 | 0.0 | 0 | 7.0 | 65.0 | 100 | spherical | 0.08 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 |
You, J., Wang, J., Wang, L., Wang, Z., Wang, Z., Li, J., & Lin, X. (2017). Dynamic particle packing in freezing colloidal suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects. | 2016 | 814 | 82.70.Dd, 81.30.Fb, 64.75.Yz, 05.40.Jc | 2066 | polymer | PS | water | 100 | 0.0 | 0 | 0.0 | 65.0 | 100 | powder | 1.73 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 1.6 | 0.0 | 0 | 0 | 0 | 0 | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
You, J., Wang, J., Wang, L., Wang, Z., Wang, Z., Li, J., & Lin, X. (2017). Dynamic particle packing in freezing colloidal suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects. | 2016 | 814 | 82.70.Dd, 81.30.Fb, 64.75.Yz, 05.40.Jc | 2067 | polymer | PS | water | 100 | 0.0 | 0 | 0.0 | 65.0 | 100 | powder | 1.73 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.4 | 0.0 | 0 | 0 | 0 | 0 | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
You, J., Wang, J., Wang, L., Wang, Z., Wang, Z., Li, J., & Lin, X. (2017). Dynamic particle packing in freezing colloidal suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects. | 2016 | 814 | 82.70.Dd, 81.30.Fb, 64.75.Yz, 05.40.Jc | 2068 | polymer | PS | water | 100 | 0.0 | 0 | 0.0 | 65.0 | 100 | powder | 1.73 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.2 | 0.0 | 0 | 0 | 0 | 0 | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, B. S., Kim, H. J., An, S., Chi, S., Kim, J., & Lee, J. (2017). Micro-and nano-porous surface patterns prepared by surface-confined directional melt crystallization of solvent. Journal of Crystal Growth, 469, 184-190. | 2016 | 863 | 10.1016/j.jcrysgro.2016.08.065 | 4637 | polymer | PS | cyclohexane | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 150.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kumaraswamy, G., Biswas, B., & Choudhury, C. K. (2016). Colloidal assembly by ice templating. Faraday discussions, 186, 61-76. | 2016 | 865 | 10.1039/c5fd00125k | 5733 | polymer | PS | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Czapski, M., Stora, T., Tardivat, C., Deville, S., Augusto, R. S., Leloup, J., ... & Luis, R. F. (2013). Porous silicon carbide and aluminum oxide with unidirectional open porosity as model target materials for radioisotope beam production. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 317, 385-388. | 2013 | 62 | 10.1016/j.nimb.2013.08.022 | 462 | ceramic | SiC | water | 100 | 0.0 | 0 | 0.0 | 24.0 | 100 | powder | 65.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 50.0 | 0.0 | 19.0 | 0.0 | 0.0 | 276.0 | 0.0 | 0.0 |
Czapski, M., Stora, T., Tardivat, C., Deville, S., Augusto, R. S., Leloup, J., ... & Luis, R. F. (2013). Porous silicon carbide and aluminum oxide with unidirectional open porosity as model target materials for radioisotope beam production. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 317, 385-388. | 2013 | 62 | 10.1016/j.nimb.2013.08.022 | 463 | ceramic | SiC | water | 100 | 0.0 | 0 | 0.0 | 24.0 | 100 | powder | 20.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 50.0 | 0.0 | 74.0 | 0.0 | 0.0 | 60.0 | 0.0 | 0.0 |
Czapski, M., Stora, T., Tardivat, C., Deville, S., Augusto, R. S., Leloup, J., ... & Luis, R. F. (2013). Porous silicon carbide and aluminum oxide with unidirectional open porosity as model target materials for radioisotope beam production. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 317, 385-388. | 2013 | 62 | 10.1016/j.nimb.2013.08.022 | 5550 | ceramic | SiC | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M. (2013). Microstructural control of macroporous silicon carbide. Journal of the Ceramic Society of Japan, 121(1410), 162-168. | 2013 | 138 | 10.2109/jcersj2.121.162 | 806 | ceramic | SiC | water | 100 | 0.0 | 0 | 10.0 | 24.0 | 95 | powder | 0.3 | 0 | 0 | 0 | 263.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 147.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M. (2013). Microstructural control of macroporous silicon carbide. Journal of the Ceramic Society of Japan, 121(1410), 162-168. | 2013 | 138 | 10.2109/jcersj2.121.162 | 807 | ceramic | SiC | water | 100 | 0.0 | 0 | 10.0 | 24.0 | 95 | powder | 0.3 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 0.0 | 62.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M. (2013). Microstructural control of macroporous silicon carbide. Journal of the Ceramic Society of Japan, 121(1410), 162-168. | 2013 | 138 | 10.2109/jcersj2.121.162 | 808 | ceramic | SiC | water | 100 | 0.0 | 0 | 10.0 | 24.0 | 95 | powder | 0.3 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 0.0 | 54.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M. (2013). Microstructural control of macroporous silicon carbide. Journal of the Ceramic Society of Japan, 121(1410), 162-168. | 2013 | 138 | 10.2109/jcersj2.121.162 | 809 | ceramic | SiC | water | 100 | 0.0 | 0 | 10.0 | 24.0 | 95 | powder | 0.3 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 0.0 | 54.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M. (2013). Microstructural control of macroporous silicon carbide. Journal of the Ceramic Society of Japan, 121(1410), 162-168. | 2013 | 138 | 10.2109/jcersj2.121.162 | 810 | ceramic | SiC | water | 100 | 0.0 | 0 | 10.0 | 24.0 | 95 | powder | 0.3 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 0.0 | 34.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., Nakata, M., Zhou, Y., Ohji, T., & Yoshizawa, Y. I. (2010). Fabrication and properties of ultra highly porous silicon carbide by the gelation?freezing method. Journal of the European Ceramic Society, 30(14), 2889-2896. | 2010 | 142 | 10.1016/j.jeurceramsoc.2010.03.018 | 830 | ceramic | SiC | water | 100 | 0.0 | 0 | 0.0 | 24.0 | 95 | powder | 0.4 | 2 | 0 | 0 | 263.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 87.0 | 170.0 | 150.0 | 20.0 | 0.0 | 5.2 | 0.0 | 0.0 |
Fukushima, M., Nakata, M., Zhou, Y., Ohji, T., & Yoshizawa, Y. I. (2010). Fabrication and properties of ultra highly porous silicon carbide by the gelation?freezing method. Journal of the European Ceramic Society, 30(14), 2889-2896. | 2010 | 142 | 10.1016/j.jeurceramsoc.2010.03.018 | 831 | ceramic | SiC | water | 100 | 0.0 | 0 | 0.0 | 24.0 | 95 | powder | 0.4 | 2 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 87.0 | 0.0 | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., Nakata, M., Zhou, Y., Ohji, T., & Yoshizawa, Y. I. (2010). Fabrication and properties of ultra highly porous silicon carbide by the gelation?freezing method. Journal of the European Ceramic Society, 30(14), 2889-2896. | 2010 | 142 | 10.1016/j.jeurceramsoc.2010.03.018 | 832 | ceramic | SiC | water | 100 | 0.0 | 0 | 0.0 | 24.0 | 95 | powder | 0.4 | 2 | 0 | 0 | 243.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 87.0 | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., Nakata, M., Zhou, Y., Ohji, T., & Yoshizawa, Y. I. (2010). Fabrication and properties of ultra highly porous silicon carbide by the gelation?freezing method. Journal of the European Ceramic Society, 30(14), 2889-2896. | 2010 | 142 | 10.1016/j.jeurceramsoc.2010.03.018 | 833 | ceramic | SiC | water | 100 | 0.0 | 0 | 0.0 | 24.0 | 95 | powder | 0.4 | 2 | 0 | 0 | 233.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 85.0 | 0.0 | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., Nakata, M., Zhou, Y., Ohji, T., & Yoshizawa, Y. I. (2010). Fabrication and properties of ultra highly porous silicon carbide by the gelation?freezing method. Journal of the European Ceramic Society, 30(14), 2889-2896. | 2010 | 142 | 10.1016/j.jeurceramsoc.2010.03.018 | 834 | ceramic | SiC | water | 100 | 0.0 | 0 | 0.0 | 24.0 | 95 | powder | 0.4 | 2 | 0 | 0 | 203.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 86.0 | 36.0 | 30.0 | 6.0 | 0.0 | 16.6 | 0.0 | 0.0 |
Liu, Q., Ye, F., Gao, Y., Liu, S., Yang, H., & Zhou, Z. (2014). Fabrication of a new SiC/2024Al co-continuous composite with lamellar microstructure and high mechanical properties. Journal of Alloys and Compounds, 585, 146-153. | 2014 | 340 | 10.1016/j.jallcom.2013.09.140 | 4502 | ceramic | SiC | water | 100 | 0.0 | 0 | 10.0 | 24.0 | 100 | powder | 3.2 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 84.0 | 0.0 | 15.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, Q., Ye, F., Gao, Y., Liu, S., Yang, H., & Zhou, Z. (2014). Fabrication of a new SiC/2024Al co-continuous composite with lamellar microstructure and high mechanical properties. Journal of Alloys and Compounds, 585, 146-153. | 2014 | 340 | 10.1016/j.jallcom.2013.09.140 | 4503 | ceramic | SiC | water | 100 | 0.0 | 0 | 20.0 | 24.0 | 100 | powder | 3.2 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 72.0 | 0.0 | 15.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, Q., Ye, F., Gao, Y., Liu, S., Yang, H., & Zhou, Z. (2014). Fabrication of a new SiC/2024Al co-continuous composite with lamellar microstructure and high mechanical properties. Journal of Alloys and Compounds, 585, 146-153. | 2014 | 340 | 10.1016/j.jallcom.2013.09.140 | 4504 | ceramic | SiC | water | 100 | 0.0 | 0 | 30.0 | 24.0 | 100 | powder | 3.2 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 63.0 | 0.0 | 15.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, Q., Ye, F., Gao, Y., Liu, S., Yang, H., & Zhou, Z. (2014). Fabrication of a new SiC/2024Al co-continuous composite with lamellar microstructure and high mechanical properties. Journal of Alloys and Compounds, 585, 146-153. | 2014 | 340 | 10.1016/j.jallcom.2013.09.140 | 4508 | ceramic | SiC | water | 100 | 0.0 | 0 | 10.0 | 24.0 | 100 | powder | 3.2 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 84.0 | 0.0 | 8.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, Q., Ye, F., Gao, Y., Liu, S., Yang, H., & Zhou, Z. (2014). Fabrication of a new SiC/2024Al co-continuous composite with lamellar microstructure and high mechanical properties. Journal of Alloys and Compounds, 585, 146-153. | 2014 | 340 | 10.1016/j.jallcom.2013.09.140 | 4509 | ceramic | SiC | water | 100 | 0.0 | 0 | 10.0 | 24.0 | 100 | powder | 3.2 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 84.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, Q., Ye, F., Gao, Y., Liu, S., Yang, H., & Zhou, Z. (2014). Fabrication of a new SiC/2024Al co-continuous composite with lamellar microstructure and high mechanical properties. Journal of Alloys and Compounds, 585, 146-153. | 2014 | 340 | 10.1016/j.jallcom.2013.09.140 | 4510 | ceramic | SiC | water | 100 | 0.0 | 0 | 10.0 | 24.0 | 100 | powder | 3.2 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 84.0 | 0.0 | 33.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naglieri, V., Gludovatz, B., Tomsia, A. P., & Ritchie, R. O. (2015). Developing strength and toughness in bio-inspired silicon carbide hybrid materials containing a compliant phase. Acta Materialia, 98, 141-151. | 2015 | 416 | 10.1016/j.actamat.2015.07.022 | 4490 | ceramic | SiC | water | 100 | 0.0 | 0 | 17.0 | 24.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 40.0 | 0.0 | 7.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naglieri, V., Gludovatz, B., Tomsia, A. P., & Ritchie, R. O. (2015). Developing strength and toughness in bio-inspired silicon carbide hybrid materials containing a compliant phase. Acta Materialia, 98, 141-151. | 2015 | 416 | 10.1016/j.actamat.2015.07.022 | 4491 | ceramic | SiC | water | 100 | 0.0 | 0 | 25.0 | 24.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 15.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.0 | 0.0 | 9.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naglieri, V., Gludovatz, B., Tomsia, A. P., & Ritchie, R. O. (2015). Developing strength and toughness in bio-inspired silicon carbide hybrid materials containing a compliant phase. Acta Materialia, 98, 141-151. | 2015 | 416 | 10.1016/j.actamat.2015.07.022 | 4492 | ceramic | SiC | water | 100 | 0.0 | 0 | 30.0 | 24.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 50.0 | 0.0 | 35.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naglieri, V., Gludovatz, B., Tomsia, A. P., & Ritchie, R. O. (2015). Developing strength and toughness in bio-inspired silicon carbide hybrid materials containing a compliant phase. Acta Materialia, 98, 141-151. | 2015 | 416 | 10.1016/j.actamat.2015.07.022 | 4493 | ceramic | SiC | water | 100 | 0.0 | 0 | 25.0 | 24.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 50.0 | 0.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naglieri, V., Gludovatz, B., Tomsia, A. P., & Ritchie, R. O. (2015). Developing strength and toughness in bio-inspired silicon carbide hybrid materials containing a compliant phase. Acta Materialia, 98, 141-151. | 2015 | 416 | 10.1016/j.actamat.2015.07.022 | 4494 | ceramic | SiC | water | 100 | 0.0 | 0 | 25.0 | 24.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 50.0 | 0.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naglieri, V., Gludovatz, B., Tomsia, A. P., & Ritchie, R. O. (2015). Developing strength and toughness in bio-inspired silicon carbide hybrid materials containing a compliant phase. Acta Materialia, 98, 141-151. | 2015 | 416 | 10.1016/j.actamat.2015.07.022 | 4495 | ceramic | SiC | water | 100 | 0.0 | 0 | 17.0 | 24.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 50.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naglieri, V., Bale, H. A., Gludovatz, B., Tomsia, A. P., & Ritchie, R. O. (2013). On the development of ice-templated silicon carbide scaffolds for nature-inspired structural materials. Acta Materialia, 61(18), 6948-6957. | 2013 | 417 | 10.1016/j.actamat.2013.08.006 | 3880 | ceramic | SiC | water | 100 | 0.0 | 0 | 17.0 | 24.0 | 17 | 0 | 0.5 | 5 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 15.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 27.0 | 21.0 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naglieri, V., Bale, H. A., Gludovatz, B., Tomsia, A. P., & Ritchie, R. O. (2013). On the development of ice-templated silicon carbide scaffolds for nature-inspired structural materials. Acta Materialia, 61(18), 6948-6957. | 2013 | 417 | 10.1016/j.actamat.2013.08.006 | 3881 | ceramic | SiC | water | 100 | 0.0 | 0 | 17.0 | 24.0 | 17 | 0 | 0.5 | 5 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 24.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 19.0 | 14.0 | 5.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Naglieri, V., Bale, H. A., Gludovatz, B., Tomsia, A. P., & Ritchie, R. O. (2013). On the development of ice-templated silicon carbide scaffolds for nature-inspired structural materials. Acta Materialia, 61(18), 6948-6957. | 2013 | 417 | 10.1016/j.actamat.2013.08.006 | 3882 | ceramic | SiC | water | 100 | 0.0 | 0 | 17.0 | 24.0 | 17 | 0 | 0.5 | 5 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 33.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 12.5 | 7.5 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naglieri, V., Bale, H. A., Gludovatz, B., Tomsia, A. P., & Ritchie, R. O. (2013). On the development of ice-templated silicon carbide scaffolds for nature-inspired structural materials. Acta Materialia, 61(18), 6948-6957. | 2013 | 417 | 10.1016/j.actamat.2013.08.006 | 3883 | ceramic | SiC | water | 100 | 0.0 | 0 | 17.0 | 24.0 | 17 | 0 | 0.5 | 5 | 0 | 0 | 0.0 | 15.0 | 0.0 | one-sided | linear | 45.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 12.0 | 7.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naglieri, V., Bale, H. A., Gludovatz, B., Tomsia, A. P., & Ritchie, R. O. (2013). On the development of ice-templated silicon carbide scaffolds for nature-inspired structural materials. Acta Materialia, 61(18), 6948-6957. | 2013 | 417 | 10.1016/j.actamat.2013.08.006 | 3884 | ceramic | SiC | water | 100 | 0.0 | 0 | 23.0 | 24.0 | 23 | 0 | 0.5 | 5 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 34.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 10.0 | 6.5 | 3.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Naglieri, V., Bale, H. A., Gludovatz, B., Tomsia, A. P., & Ritchie, R. O. (2013). On the development of ice-templated silicon carbide scaffolds for nature-inspired structural materials. Acta Materialia, 61(18), 6948-6957. | 2013 | 417 | 10.1016/j.actamat.2013.08.006 | 3885 | ceramic | SiC | water | 100 | 0.0 | 0 | 23.0 | 24.0 | 23 | 0 | 0.5 | 5 | 0 | 0 | 0.0 | 15.0 | 0.0 | one-sided | linear | 50.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 13.0 | 8.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naglieri, V., Bale, H. A., Gludovatz, B., Tomsia, A. P., & Ritchie, R. O. (2013). On the development of ice-templated silicon carbide scaffolds for nature-inspired structural materials. Acta Materialia, 61(18), 6948-6957. | 2013 | 417 | 10.1016/j.actamat.2013.08.006 | 3886 | ceramic | SiC | water | 100 | 0.0 | 0 | 25.0 | 24.0 | 25 | 0 | 0.5 | 5 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 2.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naglieri, V., Bale, H. A., Gludovatz, B., Tomsia, A. P., & Ritchie, R. O. (2013). On the development of ice-templated silicon carbide scaffolds for nature-inspired structural materials. Acta Materialia, 61(18), 6948-6957. | 2013 | 417 | 10.1016/j.actamat.2013.08.006 | 3887 | ceramic | SiC | water | 100 | 0.0 | 0 | 25.0 | 24.0 | 25 | 0 | 0.5 | 5 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 25.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naglieri, V., Bale, H. A., Gludovatz, B., Tomsia, A. P., & Ritchie, R. O. (2013). On the development of ice-templated silicon carbide scaffolds for nature-inspired structural materials. Acta Materialia, 61(18), 6948-6957. | 2013 | 417 | 10.1016/j.actamat.2013.08.006 | 3888 | ceramic | SiC | water | 100 | 0.0 | 0 | 25.0 | 24.0 | 25 | 0 | 0.5 | 5 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 35.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naglieri, V., Bale, H. A., Gludovatz, B., Tomsia, A. P., & Ritchie, R. O. (2013). On the development of ice-templated silicon carbide scaffolds for nature-inspired structural materials. Acta Materialia, 61(18), 6948-6957. | 2013 | 417 | 10.1016/j.actamat.2013.08.006 | 3889 | ceramic | SiC | water | 100 | 0.0 | 0 | 30.0 | 24.0 | 30 | 0 | 0.5 | 5 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 4.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naglieri, V., Bale, H. A., Gludovatz, B., Tomsia, A. P., & Ritchie, R. O. (2013). On the development of ice-templated silicon carbide scaffolds for nature-inspired structural materials. Acta Materialia, 61(18), 6948-6957. | 2013 | 417 | 10.1016/j.actamat.2013.08.006 | 3890 | ceramic | SiC | water | 100 | 0.0 | 0 | 30.0 | 24.0 | 30 | 0 | 0.5 | 5 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 28.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naglieri, V., Bale, H. A., Gludovatz, B., Tomsia, A. P., & Ritchie, R. O. (2013). On the development of ice-templated silicon carbide scaffolds for nature-inspired structural materials. Acta Materialia, 61(18), 6948-6957. | 2013 | 417 | 10.1016/j.actamat.2013.08.006 | 3891 | ceramic | SiC | water | 100 | 0.0 | 0 | 30.0 | 24.0 | 30 | 0 | 0.5 | 5 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 33.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shaga, A., Shen, P., Guo, R. F., & Jiang, Q. C. (2016). Effects of oxide addition on the microstructure and mechanical properties of lamellar SiC scaffolds and Al?Si?Mg/SiC composites prepared by freeze casting and pressureless infiltration. Ceramics International, 42(8), 9653-9659. | 2016 | 558 | 10.1016/j.ceramint.2016.03.052 | 2723 | ceramic | SiC | water | 100 | 0.0 | 0 | 30.0 | 24.0 | 100 | 0 | 5.0 | 0 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shaga, A., Shen, P., Guo, R. F., & Jiang, Q. C. (2016). Effects of oxide addition on the microstructure and mechanical properties of lamellar SiC scaffolds and Al?Si?Mg/SiC composites prepared by freeze casting and pressureless infiltration. Ceramics International, 42(8), 9653-9659. | 2016 | 558 | 10.1016/j.ceramint.2016.03.052 | 2724 | ceramic | SiC | water | 100 | 0.0 | 0 | 30.0 | 24.0 | 89 | 0 | 5.0 | 0 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 69.0 | 0.0 | 0.0 | 0.0 | 0.0 | 25.0 | 0.0 | 145000.0 |
Shaga, A., Shen, P., Guo, R. F., & Jiang, Q. C. (2016). Effects of oxide addition on the microstructure and mechanical properties of lamellar SiC scaffolds and Al?Si?Mg/SiC composites prepared by freeze casting and pressureless infiltration. Ceramics International, 42(8), 9653-9659. | 2016 | 558 | 10.1016/j.ceramint.2016.03.052 | 2725 | ceramic | SiC | water | 100 | 0.0 | 0 | 30.0 | 24.0 | 80 | 0 | 5.0 | 0 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 40.0 | 0.0 | 150000.0 |
Tang, J., Chen, Y. F., Sun, J. G., Wang, H., & Liu, H. L. (2008). Transpirational Performance of Oriented Porous SiC Transpiration Cooling Materials. In Key Engineering Materials (Vol. 368, pp. 837-839). Trans Tech Publications. | 2008 | 609 | 10.4028/www.scientific.net/KEM.368-372.837 | 2913 | ceramic | SiC | water | 100 | 0.0 | 0 | 45.0 | 24.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 13.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, J., Chen, Y. F., Sun, J. G., Wang, H., & Liu, H. L. (2008). Transpirational Performance of Oriented Porous SiC Transpiration Cooling Materials. In Key Engineering Materials (Vol. 368, pp. 837-839). Trans Tech Publications. | 2008 | 609 | 10.4028/www.scientific.net/KEM.368-372.837 | 2914 | ceramic | SiC | water | 100 | 0.0 | 0 | 45.0 | 24.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 13.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, J., Chen, Y. F., Sun, J. G., Wang, H., & Liu, H. L. (2008). Transpirational Performance of Oriented Porous SiC Transpiration Cooling Materials. In Key Engineering Materials (Vol. 368, pp. 837-839). Trans Tech Publications. | 2008 | 609 | 10.4028/www.scientific.net/KEM.368-372.837 | 2915 | ceramic | SiC | water | 100 | 0.0 | 0 | 45.0 | 24.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 10.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, J., Chen, Y. F., Sun, J. G., Wang, H., & Liu, H. L. (2008). Transpirational Performance of Oriented Porous SiC Transpiration Cooling Materials. In Key Engineering Materials (Vol. 368, pp. 837-839). Trans Tech Publications. | 2008 | 609 | 10.4028/www.scientific.net/KEM.368-372.837 | 2916 | ceramic | SiC | water | 100 | 0.0 | 0 | 47.0 | 24.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 10.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, J., Chen, Y. F., Sun, J. G., Wang, H., & Liu, H. L. (2008). Transpirational Performance of Oriented Porous SiC Transpiration Cooling Materials. In Key Engineering Materials (Vol. 368, pp. 837-839). Trans Tech Publications. | 2008 | 609 | 10.4028/www.scientific.net/KEM.368-372.837 | 2917 | ceramic | SiC | water | 100 | 0.0 | 0 | 47.0 | 24.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, J., Chen, Y. F., Wang, H., Liu, H. L., & Fan, Q. S. (2005). Preparation of oriented porous silicon carbide bodies by freeze-casting process. In Key Engineering Materials (Vol. 280, pp. 1287-1290). Trans Tech Publications. | 2004 | 611 | 10.4028/www.scientific.net/KEM.280-283.1287 | 2922 | ceramic | SiC | water | 100 | 0.0 | 0 | 25.0 | 24.0 | 0 | 0 | 16.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, J., Chen, Y. F., Wang, H., Liu, H. L., & Fan, Q. S. (2005). Preparation of oriented porous silicon carbide bodies by freeze-casting process. In Key Engineering Materials (Vol. 280, pp. 1287-1290). Trans Tech Publications. | 2004 | 611 | 10.4028/www.scientific.net/KEM.280-283.1287 | 2923 | ceramic | SiC | water | 100 | 0.0 | 0 | 35.0 | 24.0 | 0 | 0 | 16.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, J., Chen, Y. F., Wang, H., Liu, H. L., & Fan, Q. S. (2005). Preparation of oriented porous silicon carbide bodies by freeze-casting process. In Key Engineering Materials (Vol. 280, pp. 1287-1290). Trans Tech Publications. | 2004 | 611 | 10.4028/www.scientific.net/KEM.280-283.1287 | 2924 | ceramic | SiC | water | 100 | 0.0 | 0 | 40.0 | 24.0 | 0 | 0 | 16.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, J., Chen, Y. F., Wang, H., Liu, H. L., & Fan, Q. S. (2005). Preparation of oriented porous silicon carbide bodies by freeze-casting process. In Key Engineering Materials (Vol. 280, pp. 1287-1290). Trans Tech Publications. | 2004 | 611 | 10.4028/www.scientific.net/KEM.280-283.1287 | 2925 | ceramic | SiC | water | 100 | 0.0 | 0 | 45.0 | 24.0 | 0 | 0 | 16.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, J., Chen, Y. F., Wang, H., Liu, H. L., & Fan, Q. S. (2005). Preparation of oriented porous silicon carbide bodies by freeze-casting process. In Key Engineering Materials (Vol. 280, pp. 1287-1290). Trans Tech Publications. | 2004 | 611 | 10.4028/www.scientific.net/KEM.280-283.1287 | 2926 | ceramic | SiC | water | 100 | 0.0 | 0 | 50.0 | 24.0 | 0 | 0 | 16.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, J., Chen, Y. F., Wang, H., Liu, H. L., & Fan, Q. S. (2005). Preparation of oriented porous silicon carbide bodies by freeze-casting process. In Key Engineering Materi | 2005 | 613 | 0 | 2927 | ceramic | SiC | water | 100 | 0.0 | 0 | 25.0 | 24.0 | 89 | powder | 16.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, J., Chen, Y. F., Wang, H., Liu, H. L., & Fan, Q. S. (2005). Preparation of oriented porous silicon carbide bodies by freeze-casting process. In Key Engineering Materi | 2005 | 613 | 0 | 2928 | ceramic | SiC | water | 100 | 0.0 | 0 | 35.0 | 24.0 | 89 | powder | 16.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, J., Chen, Y. F., Wang, H., Liu, H. L., & Fan, Q. S. (2005). Preparation of oriented porous silicon carbide bodies by freeze-casting process. In Key Engineering Materi | 2005 | 613 | 0 | 2929 | ceramic | SiC | water | 100 | 0.0 | 0 | 40.0 | 24.0 | 89 | powder | 16.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, J., Chen, Y. F., Wang, H., Liu, H. L., & Fan, Q. S. (2005). Preparation of oriented porous silicon carbide bodies by freeze-casting process. In Key Engineering Materi | 2005 | 613 | 0 | 2930 | ceramic | SiC | water | 100 | 0.0 | 0 | 45.0 | 24.0 | 89 | powder | 16.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, J., Chen, Y. F., Wang, H., Liu, H. L., & Fan, Q. S. (2005). Preparation of oriented porous silicon carbide bodies by freeze-casting process. In Key Engineering Materi | 2005 | 613 | 0 | 2931 | ceramic | SiC | water | 100 | 0.0 | 0 | 50.0 | 24.0 | 89 | powder | 16.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, F., Yao, D., Xia, Y., Zuo, K., Xu, J., & Zeng, Y. (2016). Porous SiC ceramics prepared via freeze-casting and solid state sintering. Ceramics International, 42(3), 4526-4531. | 2016 | 645 | 10.1016/j.ceramint.2015.11.143 | 3016 | ceramic | SiC | water | 100 | 0.0 | 0 | 23.0 | 24.0 | 99 | 0 | 0.5 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 7 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.34 | 0.0 |
Wang, F., Yao, D., Xia, Y., Zuo, K., Xu, J., & Zeng, Y. (2016). Porous SiC ceramics prepared via freeze-casting and solid state sintering. Ceramics International, 42(3), 4526-4531. | 2016 | 645 | 10.1016/j.ceramint.2015.11.143 | 3017 | ceramic | SiC | water | 100 | 0.0 | 0 | 23.0 | 24.0 | 99 | 0 | 0.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, F., Yao, D., Xia, Y., Zuo, K., Xu, J., & Zeng, Y. (2016). Porous SiC ceramics prepared via freeze-casting and solid state sintering. Ceramics International, 42(3), 4526-4531. | 2016 | 645 | 10.1016/j.ceramint.2015.11.143 | 3018 | ceramic | SiC | water | 100 | 0.0 | 0 | 23.0 | 24.0 | 99 | 0 | 0.5 | 7 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, F., Yao, D., Xia, Y., Zuo, K., Xu, J., & Zeng, Y. (2016). Porous SiC ceramics prepared via freeze-casting and solid state sintering. Ceramics International, 42(3), 4526-4531. | 2016 | 645 | 10.1016/j.ceramint.2015.11.143 | 3019 | ceramic | SiC | water | 100 | 0.0 | 0 | 23.0 | 24.0 | 99 | 0 | 0.5 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, F., Yao, D., Xia, Y., Zuo, K., Xu, J., & Zeng, Y. (2016). Porous SiC ceramics prepared via freeze-casting and solid state sintering. Ceramics International, 42(3), 4526-4531. | 2016 | 645 | 10.1016/j.ceramint.2015.11.143 | 3020 | ceramic | SiC | water | 100 | 0.0 | 0 | 23.0 | 24.0 | 99 | 0 | 0.5 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 9 | lamellar | sintered | 0.0 | 0.0 | 215.9 | 0.0 | 0.0 | 0.0 | 6.54 | 0.0 |
Wang, F., Yao, D., Xia, Y., Zuo, K., Xu, J., & Zeng, Y. (2016). Porous SiC ceramics prepared via freeze-casting and solid state sintering. Ceramics International, 42(3), 4526-4531. | 2016 | 645 | 10.1016/j.ceramint.2015.11.143 | 3021 | ceramic | SiC | water | 100 | 0.0 | 0 | 23.0 | 24.0 | 99 | 0 | 0.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.5 | 0.0 |
Wang, F., Yao, D., Xia, Y., Zuo, K., Xu, J., & Zeng, Y. (2016). Porous SiC ceramics prepared via freeze-casting and solid state sintering. Ceramics International, 42(3), 4526-4531. | 2016 | 645 | 10.1016/j.ceramint.2015.11.143 | 3022 | ceramic | SiC | water | 100 | 0.0 | 0 | 23.0 | 24.0 | 99 | 0 | 0.5 | 7 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.2 | 0.0 |
Wang, F., Yao, D., Xia, Y., Zuo, K., Xu, J., & Zeng, Y. (2016). Porous SiC ceramics prepared via freeze-casting and solid state sintering. Ceramics International, 42(3), 4526-4531. | 2016 | 645 | 10.1016/j.ceramint.2015.11.143 | 3023 | ceramic | SiC | water | 100 | 0.0 | 0 | 23.0 | 24.0 | 99 | 0 | 0.5 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 |
Wang, F., Yao, D., Xia, Y., Zuo, K., Xu, J., & Zeng, Y. (2016). Porous SiC ceramics prepared via freeze-casting and solid state sintering. Ceramics International, 42(3), 4526-4531. | 2016 | 645 | 10.1016/j.ceramint.2015.11.143 | 3024 | ceramic | SiC | water | 100 | 0.0 | 0 | 23.0 | 24.0 | 99 | 0 | 0.5 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 13 | lamellar | sintered | 0.0 | 0.0 | 216.0 | 0.0 | 0.0 | 0.0 | 11.25 | 0.0 |
Wang, F., Yao, D., Xia, Y., Zuo, K., Xu, J., & Zeng, Y. (2016). Porous SiC ceramics prepared via freeze-casting and solid state sintering. Ceramics International, 42(3), 4526-4531. | 2016 | 645 | 10.1016/j.ceramint.2015.11.143 | 3025 | ceramic | SiC | water | 100 | 0.0 | 0 | 23.0 | 24.0 | 99 | 0 | 0.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, F., Yao, D., Xia, Y., Zuo, K., Xu, J., & Zeng, Y. (2016). Porous SiC ceramics prepared via freeze-casting and solid state sintering. Ceramics International, 42(3), 4526-4531. | 2016 | 645 | 10.1016/j.ceramint.2015.11.143 | 3026 | ceramic | SiC | water | 100 | 0.0 | 0 | 23.0 | 24.0 | 99 | 0 | 0.5 | 7 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, F., Yao, D., Xia, Y., Zuo, K., Xu, J., & Zeng, Y. (2016). Porous SiC ceramics prepared via freeze-casting and solid state sintering. Ceramics International, 42(3), 4526-4531. | 2016 | 645 | 10.1016/j.ceramint.2015.11.143 | 3027 | ceramic | SiC | water | 100 | 0.0 | 0 | 23.0 | 24.0 | 99 | 0 | 0.5 | 10 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yoon, B. H., Lee, E. J., Kim, H. E., & Koh, Y. H. (2007). Highly aligned porous silicon carbide ceramics by freezing polycarbosilane/camphene solution. Journal of the American Ceramic Society, 90(6), 1753-1759. | 2007 | 727 | 10.1111/j.1551-2916.2007.01703.x | 1256 | ceramic | SiC | camphene | 100 | 0.0 | 0 | 1.5 | 65.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yoon, B. H., Lee, E. J., Kim, H. E., & Koh, Y. H. (2007). Highly aligned porous silicon carbide ceramics by freezing polycarbosilane/camphene solution. Journal of the American Ceramic Society, 90(6), 1753-1759. | 2007 | 727 | 10.1111/j.1551-2916.2007.01703.x | 1257 | ceramic | SiC | camphene | 100 | 0.0 | 0 | 3.0 | 65.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yoon, B. H., Lee, E. J., Kim, H. E., & Koh, Y. H. (2007). Highly aligned porous silicon carbide ceramics by freezing polycarbosilane/camphene solution. Journal of the American Ceramic Society, 90(6), 1753-1759. | 2007 | 727 | 10.1111/j.1551-2916.2007.01703.x | 1258 | ceramic | SiC | camphene | 100 | 0.0 | 0 | 5.0 | 65.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yoon, B. H., Lee, E. J., Kim, H. E., & Koh, Y. H. (2007). Highly aligned porous silicon carbide ceramics by freezing polycarbosilane/camphene solution. Journal of the American Ceramic Society, 90(6), 1753-1759. | 2007 | 727 | 10.1111/j.1551-2916.2007.01703.x | 1259 | ceramic | SiC | camphene | 100 | 0.0 | 0 | 7.0 | 65.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yoon, B. H., Lee, E. J., Kim, H. E., & Koh, Y. H. (2007). Highly aligned porous silicon carbide ceramics by freezing polycarbosilane/camphene solution. Journal of the American Ceramic Society, 90(6), 1753-1759. | 2007 | 727 | 10.1111/j.1551-2916.2007.01703.x | 1260 | ceramic | SiC | camphene | 100 | 0.0 | 0 | 9.0 | 65.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yoon, B. H., Lee, E. J., Kim, H. E., & Koh, Y. H. (2007). Highly aligned porous silicon carbide ceramics by freezing polycarbosilane/camphene solution. Journal of the American Ceramic Society, 90(6), 1753-1759. | 2007 | 727 | 10.1111/j.1551-2916.2007.01703.x | 1261 | ceramic | SiC | camphene | 100 | 0.0 | 0 | 1.5 | 65.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 273.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yoon, B. H., Lee, E. J., Kim, H. E., & Koh, Y. H. (2007). Highly aligned porous silicon carbide ceramics by freezing polycarbosilane/camphene solution. Journal of the American Ceramic Society, 90(6), 1753-1759. | 2007 | 727 | 10.1111/j.1551-2916.2007.01703.x | 1262 | ceramic | SiC | camphene | 100 | 0.0 | 0 | 3.0 | 65.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 273.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 11.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yoon, B. H., Lee, E. J., Kim, H. E., & Koh, Y. H. (2007). Highly aligned porous silicon carbide ceramics by freezing polycarbosilane/camphene solution. Journal of the American Ceramic Society, 90(6), 1753-1759. | 2007 | 727 | 10.1111/j.1551-2916.2007.01703.x | 1263 | ceramic | SiC | camphene | 100 | 0.0 | 0 | 3.0 | 65.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yoon, B. H., Lee, E. J., Kim, H. E., & Koh, Y. H. (2007). Highly aligned porous silicon carbide ceramics by freezing polycarbosilane/camphene solution. Journal of the American Ceramic Society, 90(6), 1753-1759. | 2007 | 727 | 10.1111/j.1551-2916.2007.01703.x | 1264 | ceramic | SiC | camphene | 100 | 0.0 | 0 | 3.0 | 65.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 7.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yoon, B. H., Lee, E. J., Kim, H. E., & Koh, Y. H. (2007). Highly aligned porous silicon carbide ceramics by freezing polycarbosilane/camphene solution. Journal of the American Ceramic Society, 90(6), 1753-1759. | 2007 | 727 | 10.1111/j.1551-2916.2007.01703.x | 1265 | ceramic | SiC | camphene | 100 | 0.0 | 0 | 3.0 | 65.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 73.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yoon, B. H., Park, C. S., Kim, H. E., & Koh, Y. H. (2007). In situ synthesis of porous silicon carbide (SiC) ceramics decorated with SiC nanowires. Journal of the American Ceramic Society, 90(12), 3759-3766. | 2007 | 728 | 10.1111/j.1551-2916.2007.02037.x | 2082 | ceramic | SiC | camphene | 100 | 0.0 | 0 | 10.0 | 24.0 | 100 | powder | 0.3 | 5 | 2 | 0 | 276.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 86.0 | 0.0 | 14.0 | 0.0 | 0.0 | 1.6 | 0.0 | 0.0 |
Yoon, B. H., Park, C. S., Kim, H. E., & Koh, Y. H. (2007). In situ synthesis of porous silicon carbide (SiC) ceramics decorated with SiC nanowires. Journal of the American Ceramic Society, 90(12), 3759-3766. | 2007 | 728 | 10.1111/j.1551-2916.2007.02037.x | 2083 | ceramic | SiC | camphene | 100 | 0.0 | 0 | 10.0 | 24.0 | 100 | powder | 0.3 | 10 | 2 | 0 | 276.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 74.0 | 0.0 | 12.0 | 0.0 | 0.0 | 2.3 | 0.0 | 0.0 |
Yoon, B. H., Park, C. S., Kim, H. E., & Koh, Y. H. (2007). In situ synthesis of porous silicon carbide (SiC) ceramics decorated with SiC nanowires. Journal of the American Ceramic Society, 90(12), 3759-3766. | 2007 | 728 | 10.1111/j.1551-2916.2007.02037.x | 2084 | ceramic | SiC | camphene | 100 | 0.0 | 0 | 10.0 | 24.0 | 100 | powder | 0.3 | 20 | 2 | 0 | 276.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 78.0 | 0.0 | 14.0 | 0.0 | 0.0 | 4.76 | 0.0 | 0.0 |
Zhao, J., Ru, H., Wang, W., Yue, X., Xu, Y., & Zhang, C. (2015). Fabrication of three-dimensional interconnected hierarchically macroporous SiC by a modified freeze-gelcasting method. Materials Letters, 148, 147-150. | 2015 | 785 | 10.1016/j.matlet.2015.02.083 | 2360 | ceramic | SiC | water | 100 | 0.0 | 0 | 12.0 | 24.0 | 100 | 0 | 1.0 | 8 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 68.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.5 | 0.0 | 0.0 |
Zhao, J., Ru, H., Wang, W., Yue, X., Xu, Y., & Zhang, C. (2015). Fabrication of three-dimensional interconnected hierarchically macroporous SiC by a modified freeze-gelcasting method. Materials Letters, 148, 147-150. | 2015 | 785 | 10.1016/j.matlet.2015.02.083 | 2361 | ceramic | SiC | water | 100 | 0.0 | 0 | 12.0 | 24.0 | 100 | 0 | 1.0 | 8 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 71.5 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 |
Zhao, J., Ru, H., Wang, W., Yue, X., Xu, Y., & Zhang, C. (2015). Fabrication of three-dimensional interconnected hierarchically macroporous SiC by a modified freeze-gelcasting method. Materials Letters, 148, 147-150. | 2015 | 785 | 10.1016/j.matlet.2015.02.083 | 2362 | ceramic | SiC | water | 100 | 0.0 | 0 | 12.0 | 24.0 | 100 | 0 | 1.0 | 8 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 74.5 | 0.0 | 0.0 | 0.0 | 0.0 | 2.7 | 0.0 | 0.0 |
Zhao, J., Ru, H., Wang, W., Yue, X., Xu, Y., & Zhang, C. (2015). Fabrication of three-dimensional interconnected hierarchically macroporous SiC by a modified freeze-gelcasting method. Materials Letters, 148, 147-150. | 2015 | 785 | 10.1016/j.matlet.2015.02.083 | 2363 | ceramic | SiC | water | 100 | 0.0 | 0 | 12.0 | 24.0 | 100 | 0 | 1.0 | 8 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 73.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.8 | 0.0 | 0.0 |
Zhao, J., Ru, H., Wang, W., Yue, X., Xu, Y., & Zhang, C. (2015). Fabrication of three-dimensional interconnected hierarchically macroporous SiC by a modified freeze-gelcasting method. Materials Letters, 148, 147-150. | 2015 | 785 | 10.1016/j.matlet.2015.02.083 | 2364 | ceramic | SiC | water | 100 | 0.0 | 0 | 12.0 | 24.0 | 100 | 0 | 1.0 | 8 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 70.5 | 0.0 | 0.0 | 0.0 | 0.0 | 3.2 | 0.0 | 0.0 |
Zhao, J., Ru, H., Wang, W., Yue, X., Xu, Y., & Zhang, C. (2015). Fabrication of three-dimensional interconnected hierarchically macroporous SiC by a modified freeze-gelcasting method. Materials Letters, 148, 147-150. | 2015 | 785 | 10.1016/j.matlet.2015.02.083 | 2365 | ceramic | SiC | water | 100 | 0.0 | 0 | 12.0 | 24.0 | 100 | 0 | 1.0 | 8 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.25 | 0.0 | 0.0 |
Zhao, J., Ru, H., Wang, W., Yue, X., Xu, Y., & Zhang, C. (2015). Fabrication of three-dimensional interconnected hierarchically macroporous SiC by a modified freeze-gelcasting method. Materials Letters, 148, 147-150. | 2015 | 785 | 10.1016/j.matlet.2015.02.083 | 2366 | ceramic | SiC | water | 100 | 0.0 | 0 | 12.0 | 24.0 | 100 | 0 | 1.0 | 8 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 67.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.25 | 0.0 | 0.0 |
Zhao, J., Ru, H., Wang, W., Yue, X., Xu, Y., & Zhang, C. (2015). Fabrication of three-dimensional interconnected hierarchically macroporous SiC by a modified freeze-gelcasting method. Materials Letters, 148, 147-150. | 2015 | 785 | 10.1016/j.matlet.2015.02.083 | 2367 | ceramic | SiC | water | 100 | 0.0 | 0 | 12.0 | 24.0 | 100 | 0 | 1.0 | 8 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 72.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 |
Zhao, J., Ru, H., Wang, W., Yue, X., Xu, Y., & Zhang, C. (2015). Fabrication of three-dimensional interconnected hierarchically macroporous SiC by a modified freeze-gelcasting method. Materials Letters, 148, 147-150. | 2015 | 785 | 10.1016/j.matlet.2015.02.083 | 2368 | ceramic | SiC | water | 100 | 0.0 | 0 | 12.0 | 24.0 | 100 | 0 | 1.0 | 8 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.5 | 0.0 | 0.0 |
Zhao, J., Ru, H., Wang, W., Yue, X., Xu, Y., & Zhang, C. (2015). Fabrication of three-dimensional interconnected hierarchically macroporous SiC by a modified freeze-gelcasting method. Materials Letters, 148, 147-150. | 2015 | 785 | 10.1016/j.matlet.2015.02.083 | 2369 | ceramic | SiC | water | 100 | 0.0 | 0 | 12.0 | 24.0 | 100 | 0 | 1.0 | 8 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 61.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.75 | 0.0 | 0.0 |
Han, D., Mei, H., Xiao, S., Xia, J., Gu, J., & Cheng, L. (2017). Porous SiC nw/SiC ceramics with unidirectionally aligned channels produced by freeze-drying and chemical vapor infiltration. Journal of the European Ceramic Society, 37(3), 915-921. | 2017 | 822 | 10.1016/j.jeurceramsoc.2016.10.015 | 4566 | ceramic | SiC | water | 100 | 0.0 | 0 | 50.0 | 24.0 | 100 | nanowires | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 32.0 | 0.0 | 50.0 | 0.0 | 0.0 | 249.0 | 122.0 | 0.0 |
Han, D., Mei, H., Xiao, S., Xia, J., Gu, J., & Cheng, L. (2017). Porous SiC nw/SiC ceramics with unidirectionally aligned channels produced by freeze-drying and chemical vapor infiltration. Journal of the European Ceramic Society, 37(3), 915-921. | 2017 | 822 | 10.1016/j.jeurceramsoc.2016.10.015 | 4567 | ceramic | SiC | water | 100 | 0.0 | 0 | 50.0 | 24.0 | 100 | nanowires | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 23.0 | 0.0 | 50.0 | 0.0 | 0.0 | 401.0 | 180.0 | 0.0 |
Han, D., Mei, H., Xiao, S., Xia, J., Gu, J., & Cheng, L. (2017). Porous SiC nw/SiC ceramics with unidirectionally aligned channels produced by freeze-drying and chemical vapor infiltration. Journal of the European Ceramic Society, 37(3), 915-921. | 2017 | 822 | 10.1016/j.jeurceramsoc.2016.10.015 | 4568 | ceramic | SiC | water | 100 | 0.0 | 0 | 50.0 | 24.0 | 100 | nanowires | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 9.0 | 0.0 | 50.0 | 0.0 | 0.0 | 496.0 | 270.0 | 0.0 |
Marcellini, M., Noirjean, C., Dedovets, D., Maria, J., & Deville, S. (2016). Time-Lapse, in Situ Imaging of Ice Crystal Growth Using Confocal Microscopy. ACS omega, 1(5), 1019-1026. | 2016 | 853 | 10.1021/acsomega.6b00217 | 5536 | ceramic | SiC | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Marcellini, M., Noirjean, C., Dedovets, D., Maria, J., & Deville, S. (2016). Time-Lapse, in Situ Imaging of Ice Crystal Growth Using Confocal Microscopy. ACS omega, 1(5), 1019-1026. | 2016 | 853 | 10.1021/acsomega.6b00217 | 5537 | ceramic | SiC | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Marcellini, M., Noirjean, C., Dedovets, D., Maria, J., & Deville, S. (2016). Time-Lapse, in Situ Imaging of Ice Crystal Growth Using Confocal Microscopy. ACS omega, 1(5), 1019-1026. | 2016 | 853 | 10.1021/acsomega.6b00217 | 5538 | ceramic | SiC | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Marcellini, M., Noirjean, C., Dedovets, D., Maria, J., & Deville, S. (2016). Time-Lapse, in Situ Imaging of Ice Crystal Growth Using Confocal Microscopy. ACS omega, 1(5), 1019-1026. | 2016 | 853 | 10.1021/acsomega.6b00217 | 5539 | ceramic | SiC | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
da Silva, L. L., & Galembeck, F. (2015). Morphology of latex and nanocomposite adsorbents prepared by freeze-casting. Journal of Materials Chemistry A, 3(14), 7263-7272. | 2015 | 63 | 10.1039/c4ta05743k | 465 | polymer | latex | water | 100 | 0.0 | 0 | 3.0 | 98.0 | 100 | powder | 0.06 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 183.0 | 0.0 | 0 | 0 | 0 | cellular | green | 66.2 | 0.0 | 2.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
da Silva, L. L., & Galembeck, F. (2015). Morphology of latex and nanocomposite adsorbents prepared by freeze-casting. Journal of Materials Chemistry A, 3(14), 7263-7272. | 2015 | 63 | 10.1039/c4ta05743k | 466 | polymer | latex | water | 100 | 0.0 | 0 | 3.0 | 98.0 | 100 | powder | 0.06 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 183.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 66.2 | 0.0 | 7.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
da Silva, L. L., & Galembeck, F. (2015). Morphology of latex and nanocomposite adsorbents prepared by freeze-casting. Journal of Materials Chemistry A, 3(14), 7263-7272. | 2015 | 63 | 10.1039/c4ta05743k | 467 | polymer | latex | water | 100 | 0.0 | 0 | 3.0 | 98.0 | 100 | powder | 0.06 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 183.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 66.2 | 7.0 | 4.5 | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 |
da Silva, L. L., & Galembeck, F. (2015). Morphology of latex and nanocomposite adsorbents prepared by freeze-casting. Journal of Materials Chemistry A, 3(14), 7263-7272. | 2015 | 63 | 10.1039/c4ta05743k | 468 | polymer | latex | water | 100 | 0.0 | 0 | 3.0 | 98.0 | 100 | powder | 0.06 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 183.0 | 0.0 | 0 | 0 | 0 | fishbone | green | 66.2 | 0.0 | 3.0 | 0.0 | 2.73 | 0.0 | 0.0 | 0.0 |
da Silva, L. L., & Galembeck, F. (2015). Morphology of latex and nanocomposite adsorbents prepared by freeze-casting. Journal of Materials Chemistry A, 3(14), 7263-7272. | 2015 | 63 | 10.1039/c4ta05743k | 471 | polymer | latex | water | 100 | 0.0 | 0 | 3.0 | 98.0 | 100 | powder | 0.06 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 183.0 | 0.0 | 0 | 0 | 0 | cellular | green | 81.4 | 0.0 | 6.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
da Silva, L. L., & Galembeck, F. (2015). Morphology of latex and nanocomposite adsorbents prepared by freeze-casting. Journal of Materials Chemistry A, 3(14), 7263-7272. | 2015 | 63 | 10.1039/c4ta05743k | 472 | polymer | latex | water | 100 | 0.0 | 0 | 3.0 | 98.0 | 100 | powder | 0.06 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 183.0 | 0.0 | 0 | 0 | 0 | fishbone | green | 81.4 | 0.0 | 2.0 | 0.0 | 2.1 | 0.0 | 0.0 | 0.0 |
Xu, Z., Sun, Q., Huang, F., Pu, Y., Pan, S., & Ragauskas, A. J. (2014). Preparation and characteristics of cellulose nanowhisker reinforced acrylic foams synthesized by freeze-casting. RSC Advances, 4(24), 12148-12153. | 2014 | 697 | 10.1039/c3ra47621a | 4911 | polymer | latex | water | 100 | 0.0 | 0 | 11.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 44 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
da Silva, L. L., & Galembeck, F. (2015). Morphology of latex and nanocomposite adsorbents prepared by freeze-casting. Journal of Materials Chemistry A, 3(14), 7263-7272. | 2015 | 63 | 10.1039/c4ta05743k | 469 | polymer | Latex-NaMMT (mixed) | water | 100 | 0.0 | 0 | 3.0 | 98.0 | 41 | powder | 0.06 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 78.5 | 67.4 | 54.2 | 13.2 | 0.0 | 0.0 | 0.0 | 0.0 |
da Silva, L. L., & Galembeck, F. (2015). Morphology of latex and nanocomposite adsorbents prepared by freeze-casting. Journal of Materials Chemistry A, 3(14), 7263-7272. | 2015 | 63 | 10.1039/c4ta05743k | 470 | polymer | Latex-NaMMT (mixed) | water | 100 | 0.0 | 0 | 3.0 | 98.0 | 41 | powder | 0.06 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 183.0 | 0.0 | 0 | 0 | 0 | cellular | green | 78.5 | 0.0 | 4.3 | 0.0 | 1.63 | 0.0 | 0.0 | 0.0 |
da Silva, L. L., & Galembeck, F. (2015). Morphology of latex and nanocomposite adsorbents prepared by freeze-casting. Journal of Materials Chemistry A, 3(14), 7263-7272. | 2015 | 63 | 10.1039/c4ta05743k | 473 | polymer | Latex-NaMMT (mixed) | water | 100 | 0.0 | 0 | 3.0 | 98.0 | 41 | powder | 0.06 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 183.0 | 0.0 | 0 | 0 | 0 | cellular | green | 89.9 | 0.0 | 9.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
da Silva, L. L., & Galembeck, F. (2015). Morphology of latex and nanocomposite adsorbents prepared by freeze-casting. Journal of Materials Chemistry A, 3(14), 7263-7272. | 2015 | 63 | 10.1039/c4ta05743k | 474 | polymer | Latex-NaMMT (mixed) | water | 100 | 0.0 | 0 | 3.0 | 98.0 | 41 | powder | 0.06 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 183.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 89.9 | 3.8 | 1.5 | 2.3 | 0.0 | 0.0 | 0.0 | 0.0 |
Hazan, Y. (2012). Porous ceramics, ceramic/polymer, and metal?doped ceramic/polymer nanocomposites via freeze casting of photo?curable colloidal fluids. Journal of the American Ceramic Society, 95(1), 177-187. | 2012 | 67 | 10.1111/j.1551-2916.2011.04870.x | 4842 | metal/ceramic | Ag-TiO2 (coated) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
De Marcos, A., Naït-Ali, B., Tessier-Doyen, N., Alzina, A., Pagnoux, C., & Peyratout, C. S. (2014). Influence of the ice front velocity and of the composition of suspensions on thermal properties of bentonite materials prepared using freeze?casting process. Journal of the European Ceramic Society, 34(16), 4433-4441. | 2014 | 68 | 10.1016/j.jeurceramsoc.2014.07.007 | 488 | ceramic | Bentonite | water | 100 | 0.0 | 0 | 2.35 | 9.0 | 100 | powder | 0.45 | 0 | 7 | 0 | 249.0 | 0.0 | 0.0 | magnetic | constant | 27.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 97.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
De Marcos, A., Naït-Ali, B., Tessier-Doyen, N., Alzina, A., Pagnoux, C., & Peyratout, C. S. (2014). Influence of the ice front velocity and of the composition of suspensions on thermal properties of bentonite materials prepared using freeze?casting process. Journal of the European Ceramic Society, 34(16), 4433-4441. | 2014 | 68 | 10.1016/j.jeurceramsoc.2014.07.007 | 489 | ceramic | Bentonite | water | 100 | 0.0 | 0 | 2.35 | 9.0 | 100 | powder | 0.45 | 0 | 7 | 0 | 208.0 | 0.0 | 0.0 | one-sided | constant | 98.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 97.0 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
De Marcos, A., Naït-Ali, B., Tessier-Doyen, N., Alzina, A., Pagnoux, C., & Peyratout, C. S. (2014). Influence of the ice front velocity and of the composition of suspensions on thermal properties of bentonite materials prepared using freeze?casting process. Journal of the European Ceramic Society, 34(16), 4433-4441. | 2014 | 68 | 10.1016/j.jeurceramsoc.2014.07.007 | 490 | ceramic | Bentonite | water | 100 | 0.0 | 0 | 2.35 | 9.0 | 100 | powder | 0.45 | 0 | 7 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 795.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 97.0 | 0.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Klotz, M., Amirouche, I., Guizard, C., Viazzi, C., & Deville, S. (2012). Ice templating?An alternative technology to produce micromonoliths. Advanced Engineering Materials, 14(12), 1123-1127. | 2012 | 268 | 10.1002/adem.201100347 | 3190 | ceramic | Bentonite | water | 100 | 0.0 | 0 | 18.0 | 9.0 | 100 | 0 | 0.03 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Klotz, M., Amirouche, I., Guizard, C., Viazzi, C., & Deville, S. (2012). Ice templating?An alternative technology to produce micromonoliths. Advanced Engineering Materials, 14(12), 1123-1127. | 2012 | 268 | 10.1002/adem.201100347 | 3191 | ceramic | Bentonite | water | 100 | 0.0 | 0 | 18.0 | 9.0 | 100 | 0 | 0.03 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Klotz, M., Amirouche, I., Guizard, C., Viazzi, C., & Deville, S. (2012). Ice templating?An alternative technology to produce micromonoliths. Advanced Engineering Materials, 14(12), 1123-1127. | 2012 | 268 | 10.1002/adem.201100347 | 3192 | ceramic | Bentonite | water | 100 | 0.0 | 0 | 18.0 | 9.0 | 100 | 0 | 0.08 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Klotz, M., Amirouche, I., Guizard, C., Viazzi, C., & Deville, S. (2012). Ice templating?An alternative technology to produce micromonoliths. Advanced Engineering Materials, 14(12), 1123-1127. | 2012 | 268 | 10.1002/adem.201100347 | 3193 | ceramic | Bentonite | water | 100 | 0.0 | 0 | 18.0 | 9.0 | 100 | 0 | 0.1 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
D'Elia, E., Barg, S., Ni, N., Rocha, V. G., & Saiz, E. (2015). Self?Healing Graphene?Based Composites with Sensing Capabilities. Advanced Materials, 27(32), 4788-4794. | 2015 | 70 | 10.1002/adma.201501653 | 4549 | carbon | graphene | water | 100 | 0.0 | 0 | 1.0 | 101.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 99.8 | 0.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hou, C., Wang, H., Zhang, Q., Li, Y., & Zhu, M. (2014). Highly Conductive, Flexible, and Compressible All?Graphene Passive Electronic Skin for Sensing Human Touch. Advanced Materials, 26(29), 5018-5024. | 2014 | 210 | 10.1002/adma.201401367 | 4551 | carbon | graphene | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ji, C. C., Xu, M. W., Bao, S. J., Cai, C. J., Lu, Z. J., Chai, H., ... & Wei, H. (2013). Self-assembly of three-dimensional interconnected graphene-based aerogels and its application in supercapacitors. Journal of colloid and interface science, 407, 416-424. | 2013 | 238 | 10.1016/j.jcis.2013.06.054 | 4552 | carbon | graphene | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kuang, J., Liu, L., Gao, Y., Zhou, D., Chen, Z., Han, B., & Zhang, Z. (2013). A hierarchically structured graphene foam and its potential as a large-scale strain-gauge sensor. Nanoscale, 5(24), 12171-12177. | 2013 | 280 | 10.1039/c3nr03379a | 5257 | carbon | graphene | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lei, S., Chen, Y., & Jia, L. (2015). Directional Solidification of Graphene/Paraffin nanofluids assisted by electromagnetic field. Energy Procedia, 75, 3290-3294. | 2015 | 306 | 0 | 3382 | carbon | graphene | paraffin | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, T., Huang, M., Li, X., Wang, C., Gui, C. X., & Yu, Z. Z. (2016). Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids. Carbon, 100, 456-464. | 2016 | 345 | 10.1016/j.carbon.2016.01.038 | 4999 | carbon | graphene | water | 100 | 0.0 | 0 | 1.67 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, T., Huang, M., Li, X., Wang, C., Gui, C. X., & Yu, Z. Z. (2016). Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids. Carbon, 100, 456-464. | 2016 | 345 | 10.1016/j.carbon.2016.01.038 | 5000 | carbon | graphene | water | 100 | 0.0 | 0 | 3.52 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, T., Huang, M., Li, X., Wang, C., Gui, C. X., & Yu, Z. Z. (2016). Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids. Carbon, 100, 456-464. | 2016 | 345 | 10.1016/j.carbon.2016.01.038 | 5001 | carbon | graphene | water | 100 | 0.0 | 0 | 5.42 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, T., Huang, M., Li, X., Wang, C., Gui, C. X., & Yu, Z. Z. (2016). Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids. Carbon, 100, 456-464. | 2016 | 345 | 10.1016/j.carbon.2016.01.038 | 5002 | carbon | graphene | water | 100 | 0.0 | 0 | 7.41 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, H., Li, C., Zhang, B., Qiao, X., & Liu, C. Y. (2016). Toward highly compressible graphene aerogels of enhanced mechanical performance with polymer. RSC Advances, 6(49), 43007-43015. | 2016 | 353 | 10.1039/c6ra04995h | 5287 | carbon | graphene | water | 100 | 0.0 | 0 | 0.2 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 99.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, H., Li, C., Zhang, B., Qiao, X., & Liu, C. Y. (2016). Toward highly compressible graphene aerogels of enhanced mechanical performance with polymer. RSC Advances, 6(49), 43007-43015. | 2016 | 353 | 10.1039/c6ra04995h | 5288 | carbon | graphene | 0.0 | 0 | 0.0 | 0 | 0.2 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 99.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, H., Li, C., Zhang, B., Qiao, X., & Liu, C. Y. (2016). Toward highly compressible graphene aerogels of enhanced mechanical performance with polymer. RSC Advances, 6(49), 43007-43015. | 2016 | 353 | 10.1039/c6ra04995h | 5289 | carbon | graphene | water | 100 | 0.0 | 0 | 0.2 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 99.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, H., Li, C., Zhang, B., Qiao, X., & Liu, C. Y. (2016). Toward highly compressible graphene aerogels of enhanced mechanical performance with polymer. RSC Advances, 6(49), 43007-43015. | 2016 | 353 | 10.1039/c6ra04995h | 5290 | carbon | graphene | water | 100 | 0.0 | 0 | 0.2 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 99.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, H., Li, C., Zhang, B., Qiao, X., & Liu, C. Y. (2016). Toward highly compressible graphene aerogels of enhanced mechanical performance with polymer. RSC Advances, 6(49), 43007-43015. | 2016 | 353 | 10.1039/c6ra04995h | 5291 | carbon | graphene | water | 100 | 0.0 | 0 | 0.2 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 99.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, H., Li, C., Zhang, B., Qiao, X., & Liu, C. Y. (2016). Toward highly compressible graphene aerogels of enhanced mechanical performance with polymer. RSC Advances, 6(49), 43007-43015. | 2016 | 353 | 10.1039/c6ra04995h | 5292 | carbon | graphene | water | 100 | 0.0 | 0 | 0.2 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 99.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, H., Li, C., Zhang, B., Qiao, X., & Liu, C. Y. (2016). Toward highly compressible graphene aerogels of enhanced mechanical performance with polymer. RSC Advances, 6(49), 43007-43015. | 2016 | 353 | 10.1039/c6ra04995h | 5293 | carbon | graphene | water | 100 | 0.0 | 0 | 0.2 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 99.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ni, N., Barg, S., Garcia-Tunon, E., Perez, F. M., Miranda, M., Lu, C., ... & Saiz, E. (2015). Understanding mechanical response of elastomeric graphene networks. Scientific reports, 5. | 2015 | 430 | 10.1038/srep13712 | 6031 | carbon | graphene | water | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 99.88 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ni, N., Barg, S., Garcia-Tunon, E., Perez, F. M., Miranda, M., Lu, C., ... & Saiz, E. (2015). Understanding mechanical response of elastomeric graphene networks. Scientific reports, 5. | 2015 | 430 | 10.1038/srep13712 | 6032 | carbon | graphene | water | 100 | 0.0 | 0 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 99.32 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ni, N., Barg, S., Garcia-Tunon, E., Perez, F. M., Miranda, M., Lu, C., ... & Saiz, E. (2015). Understanding mechanical response of elastomeric graphene networks. Scientific reports, 5. | 2015 | 430 | 10.1038/srep13712 | 6033 | carbon | graphene | water | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 99.32 | 0.0 | 13.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ni, N., Barg, S., Garcia-Tunon, E., Perez, F. M., Miranda, M., Lu, C., ... & Saiz, E. (2015). Understanding mechanical response of elastomeric graphene networks. Scientific reports, 5. | 2015 | 430 | 10.1038/srep13712 | 6034 | carbon | graphene | water | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 99.32 | 0.0 | 46.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Schiffres, S. N., Harish, S., Maruyama, S., Shiomi, J., & Malen, J. A. (2013). Tunable electrical and thermal transport in ice-templated multilayer graphene nanocomposites through freezing rate control. ACS nano, 7(12), 11183-11189. | 2013 | 546 | 10.1021/nn404935m | 4793 | carbon | graphene | hexadecane | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Serrano, M. C., Patiño, J., García-Rama, C., Ferrer, M. L., Fierro, J. L. G., Tamayo, A., ... & Gutierrez, M. C. (2014). 3D free-standing porous scaffolds made of graphene oxide as substrates for neural cell growth. Journal of Materials Chemistry B, 2(34), 5698-5706. | 2014 | 554 | 10.1039/c4tb00652f | 5349 | carbon | graphene | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 80.3 | 0.0 | 182.0 | 110.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Serrano, M. C., Patiño, J., García-Rama, C., Ferrer, M. L., Fierro, J. L. G., Tamayo, A., ... & Gutierrez, M. C. (2014). 3D free-standing porous scaffolds made of graphene oxide as substrates for neural cell growth. Journal of Materials Chemistry B, 2(34), 5698-5706. | 2014 | 554 | 10.1039/c4tb00652f | 5350 | carbon | graphene | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 81.6 | 0.0 | 154.0 | 45.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shao, Y., El?Kady, M. F., Lin, C. W., Zhu, G., Marsh, K. L., Hwang, J. Y., ... & Kaner, R. B. (2016). 3D Freeze?Casting of Cellular Graphene Films for Ultrahigh?Power?Density Supercapacitors. Advanced Materials, 28(31), 6719-6726. | 2016 | 563 | 10.1002/adma.201506157 | 4795 | carbon | graphene | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shin, Y. E., Sa, Y. J., Park, S., Lee, J., Shin, K. H., Joo, S. H., & Ko, H. (2014). An ice-templated, pH-tunable self-assembly route to hierarchically porous graphene nanoscroll networks. Nanoscale, 6(16), 9734-9741. | 2014 | 572 | 10.1039/c4nr01988a | 4798 | carbon | graphene | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xie, X., Zhou, Y., Bi, H., Yin, K., Wan, S., & Sun, L. (2013). Large-range control of the microstructures and properties of three-dimensional porous graphene. Scientific reports, 3. | 2013 | 679 | 10.1038/srep02117 | 4285 | carbon | graphene | water | 100 | 0.0 | 0 | 2.0 | 101.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 113.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 10.03 | 10.0 | 0.03 | 0.0 | 0.0 | 0.0 | 0.0 |
Xie, X., Zhou, Y., Bi, H., Yin, K., Wan, S., & Sun, L. (2013). Large-range control of the microstructures and properties of three-dimensional porous graphene. Scientific reports, 3. | 2013 | 679 | 10.1038/srep02117 | 4286 | carbon | graphene | water | 100 | 0.0 | 0 | 2.0 | 101.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 248.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 140.1 | 140.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 |
Xie, X., Zhou, Y., Bi, H., Yin, K., Wan, S., & Sun, L. (2013). Large-range control of the microstructures and properties of three-dimensional porous graphene. Scientific reports, 3. | 2013 | 679 | 10.1038/srep02117 | 4287 | carbon | graphene | water | 100 | 0.0 | 0 | 2.0 | 101.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 198.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 151.0 | 150.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xie, X., Zhou, Y., Bi, H., Yin, K., Wan, S., & Sun, L. (2013). Large-range control of the microstructures and properties of three-dimensional porous graphene. Scientific reports, 3. | 2013 | 679 | 10.1038/srep02117 | 4288 | carbon | graphene | water | 100 | 0.0 | 0 | 2.0 | 101.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 162.0 | 160.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xie, X., Zhou, Y., Bi, H., Yin, K., Wan, S., & Sun, L. (2013). Large-range control of the microstructures and properties of three-dimensional porous graphene. Scientific reports, 3. | 2013 | 679 | 10.1038/srep02117 | 4289 | carbon | graphene | water | 100 | 0.0 | 0 | 2.0 | 101.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 270.0 | 170.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xie, X., Zhou, Y., Bi, H., Yin, K., Wan, S., & Sun, L. (2013). Large-range control of the microstructures and properties of three-dimensional porous graphene. Scientific reports, 3. | 2013 | 679 | 10.1038/srep02117 | 4290 | carbon | graphene | water | 100 | 0.0 | 0 | 2.0 | 101.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 248.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 440.0 | 290.0 | 150.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xie, X., Zhou, Y., Bi, H., Yin, K., Wan, S., & Sun, L. (2013). Large-range control of the microstructures and properties of three-dimensional porous graphene. Scientific reports, 3. | 2013 | 679 | 10.1038/srep02117 | 4291 | carbon | graphene | water | 100 | 0.0 | 0 | 2.0 | 101.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 810.0 | 660.0 | 150.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xie, Y., Xu, S., Xu, Z., Wu, H., Deng, C., & Wang, X. (2016). Interface-mediated extremely low thermal conductivity of graphene aerogel. Carbon, 98, 381-390. | 2016 | 680 | 10.1016/j.carbon.2015.11.033 | 4803 | carbon | graphene | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Q., Xu, X., Lin, D., Chen, W., Xiong, G., Yu, Y., ... & Li, H. (2016). Hyperbolically patterned 3D graphene metamaterial with negative Poisson's ratio and superelasticity. Advanced Materials, 28(11), 2229-2237. | 2016 | 762 | 10.1002/adma.201505409 | 5739 | carbon | graphene | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zuo, P., Zhang, W., Hua, J., Ma, Y., Du, C., Cheng, X., ... & Yin, G. (2016). A Novel One-dimensional Reduced Graphene Oxide/Sulfur Nanoscroll Material and its Application in Lithium Sulfur Batteries. Electrochimica Acta, 222, 1861-1869. | 2016 | 849 | 10.1016/j.electacta.2016.11.179 | 4810 | carbon | graphene | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kota, M., Yu, X., Yeon, S. H., Cheong, H. W., & Park, H. S. (2016). Ice-templated three dimensional nitrogen doped graphene for enhanced supercapacitor performance. Journal of Power Sources, 303, 372-378. | 2016 | 864 | 10.1016/j.powsour.2015.11.006 | 2420 | carbon | graphene | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, C., Qiu, L., Zhang, B., Li, D., & Liu, C. Y. (2016). Robust Vacuum?/Air?Dried Graphene Aerogels and Fast Recoverable Shape?Memory Hybrid Foams. Advanced Materials, 28(7), 1510-1516. | 2016 | 866 | 10.1002/adma.201504317 | 5266 | carbon | graphene | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, C., Qiu, L., Zhang, B., Li, D., & Liu, C. Y. (2016). Robust Vacuum?/Air?Dried Graphene Aerogels and Fast Recoverable Shape?Memory Hybrid Foams. Advanced Materials, 28(7), 1510-1516. | 2016 | 866 | 10.1002/adma.201504317 | 5267 | carbon | graphene | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, C., Qiu, L., Zhang, B., Li, D., & Liu, C. Y. (2016). Robust Vacuum?/Air?Dried Graphene Aerogels and Fast Recoverable Shape?Memory Hybrid Foams. Advanced Materials, 28(7), 1510-1516. | 2016 | 866 | 10.1002/adma.201504317 | 5268 | carbon | graphene | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, C., Qiu, L., Zhang, B., Li, D., & Liu, C. Y. (2016). Robust Vacuum?/Air?Dried Graphene Aerogels and Fast Recoverable Shape?Memory Hybrid Foams. Advanced Materials, 28(7), 1510-1516. | 2016 | 866 | 10.1002/adma.201504317 | 5269 | carbon | graphene | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lian, G., Tuan, C. C., Li, L., Jiao, S., Wang, Q., Moon, K. S., ... & Wong, C. P. (2016). Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chemistry of Materials, 28(17), 6096-6104. | 2016 | 870 | 10.1021/acs.chemmater.6b01595 | 4766 | carbon | graphene | water | 100 | 0.0 | 0 | 0.2 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lian, G., Tuan, C. C., Li, L., Jiao, S., Wang, Q., Moon, K. S., ... & Wong, C. P. (2016). Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chemistry of Materials, 28(17), 6096-6104. | 2016 | 870 | 10.1021/acs.chemmater.6b01595 | 4767 | carbon | graphene | water | 100 | 0.0 | 0 | 0.5 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lian, G., Tuan, C. C., Li, L., Jiao, S., Wang, Q., Moon, K. S., ... & Wong, C. P. (2016). Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chemistry of Materials, 28(17), 6096-6104. | 2016 | 870 | 10.1021/acs.chemmater.6b01595 | 4768 | carbon | graphene | water | 100 | 0.0 | 0 | 0.55 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lian, G., Tuan, C. C., Li, L., Jiao, S., Wang, Q., Moon, K. S., ... & Wong, C. P. (2016). Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chemistry of Materials, 28(17), 6096-6104. | 2016 | 870 | 10.1021/acs.chemmater.6b01595 | 4769 | carbon | graphene | water | 100 | 0.0 | 0 | 0.7 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lian, G., Tuan, C. C., Li, L., Jiao, S., Wang, Q., Moon, K. S., ... & Wong, C. P. (2016). Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chemistry of Materials, 28(17), 6096-6104. | 2016 | 870 | 10.1021/acs.chemmater.6b01595 | 4770 | carbon | graphene | water | 100 | 0.0 | 0 | 0.8 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lian, G., Tuan, C. C., Li, L., Jiao, S., Wang, Q., Moon, K. S., ... & Wong, C. P. (2016). Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chemistry of Materials, 28(17), 6096-6104. | 2016 | 870 | 10.1021/acs.chemmater.6b01595 | 4771 | carbon | graphene | water | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lin, Y., Liu, F., Casano, G., Bhavsar, R., Kinloch, I. A., & Derby, B. (2016). Pristine Graphene Aerogels by Room?Temperature Freeze Gelation. Advanced Materials, 28(36), 7993-8000. | 2016 | 871 | 10.1002/adma.201602393 | 5270 | carbon | graphene | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lin, Y., Liu, F., Casano, G., Bhavsar, R., Kinloch, I. A., & Derby, B. (2016). Pristine Graphene Aerogels by Room?Temperature Freeze Gelation. Advanced Materials, 28(36), 7993-8000. | 2016 | 871 | 10.1002/adma.201602393 | 5271 | carbon | graphene | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lin, Y., Liu, F., Casano, G., Bhavsar, R., Kinloch, I. A., & Derby, B. (2016). Pristine Graphene Aerogels by Room?Temperature Freeze Gelation. Advanced Materials, 28(36), 7993-8000. | 2016 | 871 | 10.1002/adma.201602393 | 5272 | carbon | graphene | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lin, Y., Liu, F., Casano, G., Bhavsar, R., Kinloch, I. A., & Derby, B. (2016). Pristine Graphene Aerogels by Room?Temperature Freeze Gelation. Advanced Materials, 28(36), 7993-8000. | 2016 | 871 | 10.1002/adma.201602393 | 5273 | carbon | graphene | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lin, Y., Liu, F., Casano, G., Bhavsar, R., Kinloch, I. A., & Derby, B. (2016). Pristine Graphene Aerogels by Room?Temperature Freeze Gelation. Advanced Materials, 28(36), 7993-8000. | 2016 | 871 | 10.1002/adma.201602393 | 5274 | carbon | graphene | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 22.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lin, Y., Liu, F., Casano, G., Bhavsar, R., Kinloch, I. A., & Derby, B. (2016). Pristine Graphene Aerogels by Room?Temperature Freeze Gelation. Advanced Materials, 28(36), 7993-8000. | 2016 | 871 | 10.1002/adma.201602393 | 5275 | carbon | graphene | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 11.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ma, Y., Younesi, R., Pan, R., Liu, C., Zhu, J., Wei, B., & Edström, K. (2016). Constraining Si Particles within Graphene Foam Monolith: Interfacial Modification for High?Performance Li+ Storage and Flexible Integrated Configuration. Advanced Functional Materials, 26(37), 6797-6806. | 2016 | 875 | 10.1002/adfm.201602324 | 4775 | carbon | graphene | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 11.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, F., Yang, F., Lin, D., & Zhou, C. (2016, June). Parameter Study on 3D-Printing Graphene Oxidize Based on Directional Freezing. In ASME 2016 11th International Manufacturing Science and Engineering Conference (pp. V003T08A010-V003T08A010). American Society of Mechanical Engineers. | 2016 | 904 | 10.1115/1.4034669 | 5727 | carbon | graphene | 0.0 | 0 | 0.0 | 0 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, J., Tang, L. S., Bao, R. Y., Bai, L., Liu, Z. Y., Yang, W., ... & Yang, M. B. (2016). An ice-templated assembly strategy to construct graphene oxide/boron nitride hybrid porous scaffolds in phase change materials with enhanced thermal conductivity and shape stability for light?thermal?electric energy conversion. Journal of Materials Chemistry A, 4(48), 18841-18851. | 2016 | 905 | 10.1039/C6TA08454K | 4805 | carbon | graphene | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
D'Elia, E., Barg, S., Ni, N., Rocha, V. G., & Saiz, E. (2015). Self?Healing Graphene?Based Composites with Sensing Capabilities. Advanced Materials, 27(32), 4788-4794. | 2015 | 70 | 10.1002/adma.201501653 | 4550 | carbon/ceramic/polymer | graphene-98wt.% PDMS-B2O3 (impregnation) | water | 100 | 0.0 | 0 | 0.0 | 101.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deng, Z. Y., Fernandes, H. R., Ventura, J. M., Kannan, S., & Ferreira, J. M. (2007). Nano?TiO2?Coated Unidirectional Porous Glass Structure Prepared by Freeze Drying and Solution Infiltration. Journal of the American Ceramic Society, 90(4), 1265-1268. | 2007 | 71 | 10.1111/j.1551-2916.2007.01602.x | 514 | ceramic | glass | water | 100 | 0.0 | 0 | 25.0 | 49.0 | 100 | powder | 6.5 | 0 | 0 | 0 | 218.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 69.0 | 0.0 | 125.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dong, S., Zhu, W., Gao, X., Wang, Z., Wang, L., Wang, X., & Gao, C. (2016). Preparation of tubular hierarchically porous silicate cement compacts via a tert-butyl alcohol (TBA)-based freeze casting method. Chemical Engineering Journal, 295, 530-541. | 2016 | 95 | 10.1016/j.cej.2016.03.023 | 585 | ceramic | glass | TBA | 100 | 0.0 | 0 | 20.0 | 99.0 | 100 | powder | 5.1 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | radial-out | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 68.0 | 0.0 | 9.05 | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 |
Dong, S., Zhu, W., Gao, X., Wang, Z., Wang, L., Wang, X., & Gao, C. (2016). Preparation of tubular hierarchically porous silicate cement compacts via a tert-butyl alcohol (TBA)-based freeze casting method. Chemical Engineering Journal, 295, 530-541. | 2016 | 95 | 10.1016/j.cej.2016.03.023 | 586 | ceramic | glass | TBA | 100 | 0.0 | 0 | 27.4 | 99.0 | 100 | powder | 5.1 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 65.0 | 0.0 | 6.03 | 0.0 | 0.0 | 11.5 | 0.0 | 0.0 |
Dong, S., Zhu, W., Gao, X., Wang, Z., Wang, L., Wang, X., & Gao, C. (2016). Preparation of tubular hierarchically porous silicate cement compacts via a tert-butyl alcohol (TBA)-based freeze casting method. Chemical Engineering Journal, 295, 530-541. | 2016 | 95 | 10.1016/j.cej.2016.03.023 | 587 | ceramic | glass | TBA | 100 | 0.0 | 0 | 36.14 | 99.0 | 100 | powder | 5.1 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 57.0 | 0.0 | 6.03 | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 |
Dong, S., Zhu, W., Gao, X., Wang, Z., Wang, L., Wang, X., & Gao, C. (2016). Preparation of tubular hierarchically porous silicate cement compacts via a tert-butyl alcohol (TBA)-based freeze casting method. Chemical Engineering Journal, 295, 530-541. | 2016 | 95 | 10.1016/j.cej.2016.03.023 | 588 | ceramic | glass | TBA | 100 | 0.0 | 0 | 36.14 | 99.0 | 100 | powder | 5.1 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 70.0 | 0.0 | 9.05 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 |
Dong, S., Zhu, W., Gao, X., Wang, Z., Wang, L., Wang, X., & Gao, C. (2016). Preparation of tubular hierarchically porous silicate cement compacts via a tert-butyl alcohol (TBA)-based freeze casting method. Chemical Engineering Journal, 295, 530-541. | 2016 | 95 | 10.1016/j.cej.2016.03.023 | 589 | ceramic | glass | TBA | 100 | 0.0 | 0 | 36.14 | 99.0 | 100 | powder | 5.1 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 72.0 | 0.0 | 11.34 | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 |
Dong, S., Zhu, W., Gao, X., Wang, Z., Wang, L., Wang, X., & Gao, C. (2016). Preparation of tubular hierarchically porous silicate cement compacts via a tert-butyl alcohol (TBA)-based freeze casting method. Chemical Engineering Journal, 295, 530-541. | 2016 | 95 | 10.1016/j.cej.2016.03.023 | 590 | ceramic | glass | TBA | 100 | 0.0 | 0 | 36.14 | 99.0 | 100 | powder | 5.1 | 0 | 0 | 0 | 273.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 73.0 | 0.0 | 17.28 | 0.0 | 0.0 | 5.5 | 0.0 | 0.0 |
Deng, Z. Y., Fernandes, H. R., Ventura, J. M., Kannan, S., & Ferreira, J. M. (2007). Nano?TiO2?Coated Unidirectional Porous Glass Structure Prepared by Freeze Drying and Solution Infiltration. Journal of the American Ceramic Society, 90(4), 1265-1268. | 2007 | 71 | 10.1111/j.1551-2916.2007.01602.x | 515 | ceramic | Glass-TiO2 (deposition) | water | 100 | 0.0 | 0 | 25.0 | 49.0 | 100 | powder | 6.5 | 0 | 0 | 0 | 218.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., Nalla, R. K., & Tomsia, A. P. (2006). Freezing as a path to build complex composites. Science, 311(5760), 515-518. | 2006 | 85 | 10.1126/science.1120937 | 562 | ceramic/polymer | HAP-epoxy (impregnation) | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 150.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., Nalla, R. K., & Tomsia, A. P. (2006). Freezing as a path to build complex composites. Science, 311(5760), 515-518. | 2006 | 85 | 10.1126/science.1120937 | 563 | ceramic/polymer | HAP-epoxy (impregnation) | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 56.0 | 0.0 | 0.0 | 0.0 | 0.0 | 70.0 | 0.0 | 0.0 |
Deville, S., Saiz, E., Nalla, R. K., & Tomsia, A. P. (2006). Freezing as a path to build complex composites. Science, 311(5760), 515-518. | 2006 | 85 | 10.1126/science.1120937 | 564 | ceramic/polymer | HAP-epoxy (impregnation) | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 68.0 | 0.0 | 0.0 | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 |
Deville, S., Viazzi, C., Leloup, J., Lasalle, A., Guizard, C., Maire, E., ... & Gremillard, L. (2011). Ice shaping properties, similar to that of antifreeze proteins, of a zirconium acetate complex. PloS one, 6(10), e26474. | 2011 | 87 | 10.1371/journal.pone.0026474 | 4843 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Viazzi, C., Leloup, J., Lasalle, A., Guizard, C., Maire, E., ... & Gremillard, L. (2011). Ice shaping properties, similar to that of antifreeze proteins, of a zirconium acetate complex. PloS one, 6(10), e26474. | 2011 | 87 | 10.1371/journal.pone.0026474 | 5554 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 20.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 0.0 | 4.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Deville, S., Viazzi, C., Leloup, J., Lasalle, A., Guizard, C., Maire, E., ... & Gremillard, L. (2011). Ice shaping properties, similar to that of antifreeze proteins, of a zirconium acetate complex. PloS one, 6(10), e26474. | 2011 | 87 | 10.1371/journal.pone.0026474 | 5555 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hautcoeur, D., Lorgouilloux, Y., Leriche, A., Gonon, M., Nait-Ali, B., Smith, D. S., ... & Cambier, F. (2016). Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceramics International, 42(12), 14077-14085. | 2016 | 190 | 10.1016/j.ceramint.2016.06.016 | 1846 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 20.0 | 19.0 | 100 | powder | 0.3 | 0 | 0 | 2 | 233.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.2 | 0.0 | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hong, C. Q., Han, J. C., Zhang, X. H., & Du, J. C. (2013). Novel nanoporous silica aerogel impregnated highly porous ceramics with low thermal conductivity and enhanced mechanical properties. Scripta Materialia, 68(8), 599-602. | 2013 | 206 | 10.1016/j.scriptamat.2012.12.015 | 4307 | ceramic | ZrO2 | camphene | 100 | 0.0 | 0 | 8.0 | 20.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 81.5 | 0.0 | 0.0 | 0.0 | 0.0 | 9.2 | 0.0 | 0.0 |
Hong, C. Q., Han, J. C., Zhang, X. H., & Du, J. C. (2013). Novel nanoporous silica aerogel impregnated highly porous ceramics with low thermal conductivity and enhanced mechanical properties. Scripta Materialia, 68(8), 599-602. | 2013 | 206 | 10.1016/j.scriptamat.2012.12.015 | 4308 | ceramic | ZrO2 | camphene | 100 | 0.0 | 0 | 10.0 | 20.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 77.8 | 0.0 | 0.0 | 0.0 | 0.0 | 11.9 | 0.0 | 0.0 |
Hong, C. Q., Han, J. C., Zhang, X. H., & Du, J. C. (2013). Novel nanoporous silica aerogel impregnated highly porous ceramics with low thermal conductivity and enhanced mechanical properties. Scripta Materialia, 68(8), 599-602. | 2013 | 206 | 10.1016/j.scriptamat.2012.12.015 | 4309 | ceramic | ZrO2 | camphene | 100 | 0.0 | 0 | 12.0 | 20.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 73.2 | 0.0 | 0.0 | 0.0 | 0.0 | 16.4 | 0.0 | 0.0 |
Hong, C. Q., Han, J. C., Zhang, X. H., & Du, J. C. (2013). Novel nanoporous silica aerogel impregnated highly porous ceramics with low thermal conductivity and enhanced mechanical properties. Scripta Materialia, 68(8), 599-602. | 2013 | 206 | 10.1016/j.scriptamat.2012.12.015 | 4310 | ceramic | ZrO2 | camphene | 100 | 0.0 | 0 | 15.0 | 20.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 68.5 | 0.0 | 0.0 | 0.0 | 0.0 | 25.5 | 0.0 | 0.0 |
Hu, L., Zhang, Y., Zhang, S., & Zhou, Y. (2012). A novel decompress-freezing process for ultra-high porosity ZrO 2 ceramics. Materials Letters, 82, 152-155. | 2012 | 223 | 10.1016/j.matlet.2012.05.081 | 1938 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.5 | 2 | 1 | 10 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 93.2 | 0.0 | 920.0 | 0.0 | 0.0 | 0.51 | 0.0 | 0.0 |
Hu, L., Zhang, Y., Zhang, S., & Zhou, Y. (2012). A novel decompress-freezing process for ultra-high porosity ZrO 2 ceramics. Materials Letters, 82, 152-155. | 2012 | 223 | 10.1016/j.matlet.2012.05.081 | 1939 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 23.0 | 19.0 | 100 | powder | 0.5 | 2 | 1 | 0 | 243.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 93.4 | 0.0 | 1200.0 | 0.0 | 0.0 | 0.39 | 0.0 | 0.0 |
Liu, G., & Button, T. W. (2013). The effect of particle size in freeze casting of porous alumina?zirconia composite. Ceramics International, 39(7), 8507-8512. | 2013 | 332 | 10.1016/j.ceramint.2013.02.101 | 3502 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 11.0 | 19.0 | 100 | 0 | 0.1 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 110.0 | 0.0 | 0 | 22 | 22 | lamellar | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.3 | 0.0 | 0.0 |
Liu, G., & Button, T. W. (2013). The effect of particle size in freeze casting of porous alumina?zirconia composite. Ceramics International, 39(7), 8507-8512. | 2013 | 332 | 10.1016/j.ceramint.2013.02.101 | 3503 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 11.0 | 19.0 | 100 | 0 | 0.7 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 110.0 | 0.0 | 0 | 13 | 21 | lamellar | sintered | 76.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.7 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Hsiong, R. L., Sengupta, A., Iovine, P. M., Hildebrand, J. A., ... & McKittrick, J. (2016). Bioinspired intrinsic control of freeze cast composites: Harnessing hydrophobic hydration and clathrate hydrates. Acta Materialia, 114, 67-79. | 2016 | 421 | 10.1016/j.actamat.2016.05.019 | 3906 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 10.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 84.9 | 0.0 | 0.0 | 0.0 | 106.1 | 0.0 |
Naleway, S. E., Christopher, F. Y., Hsiong, R. L., Sengupta, A., Iovine, P. M., Hildebrand, J. A., ... & McKittrick, J. (2016). Bioinspired intrinsic control of freeze cast composites: Harnessing hydrophobic hydration and clathrate hydrates. Acta Materialia, 114, 67-79. | 2016 | 421 | 10.1016/j.actamat.2016.05.019 | 3907 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 15.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 55.2 | 0.0 | 0.0 | 0.0 | 124.9 | 0.0 |
Naleway, S. E., Christopher, F. Y., Hsiong, R. L., Sengupta, A., Iovine, P. M., Hildebrand, J. A., ... & McKittrick, J. (2016). Bioinspired intrinsic control of freeze cast composites: Harnessing hydrophobic hydration and clathrate hydrates. Acta Materialia, 114, 67-79. | 2016 | 421 | 10.1016/j.actamat.2016.05.019 | 3908 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 20.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 56.4 | 0.0 | 0.0 | 0.0 | 125.1 | 0.0 |
Naleway, S. E., Christopher, F. Y., Hsiong, R. L., Sengupta, A., Iovine, P. M., Hildebrand, J. A., ... & McKittrick, J. (2016). Bioinspired intrinsic control of freeze cast composites: Harnessing hydrophobic hydration and clathrate hydrates. Acta Materialia, 114, 67-79. | 2016 | 421 | 10.1016/j.actamat.2016.05.019 | 5841 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 15.0 | 20.0 | 100 | powder | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 21.9 | 15.4 | 6.3 | 3.9 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Hsiong, R. L., Sengupta, A., Iovine, P. M., Hildebrand, J. A., ... & McKittrick, J. (2016). Bioinspired intrinsic control of freeze cast composites: Harnessing hydrophobic hydration and clathrate hydrates. Acta Materialia, 114, 67-79. | 2016 | 421 | 10.1016/j.actamat.2016.05.019 | 5842 | ceramic | ZrO2 | water | 99 | ethanol | 0 | 15.0 | 20.0 | 100 | powder | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 32.2 | 21.2 | 11.0 | 6.1 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Hsiong, R. L., Sengupta, A., Iovine, P. M., Hildebrand, J. A., ... & McKittrick, J. (2016). Bioinspired intrinsic control of freeze cast composites: Harnessing hydrophobic hydration and clathrate hydrates. Acta Materialia, 114, 67-79. | 2016 | 421 | 10.1016/j.actamat.2016.05.019 | 5843 | ceramic | ZrO2 | water | 97 | ethanol | 2 | 15.0 | 20.0 | 100 | powder | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 34.2 | 23.5 | 10.7 | 5.6 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Hsiong, R. L., Sengupta, A., Iovine, P. M., Hildebrand, J. A., ... & McKittrick, J. (2016). Bioinspired intrinsic control of freeze cast composites: Harnessing hydrophobic hydration and clathrate hydrates. Acta Materialia, 114, 67-79. | 2016 | 421 | 10.1016/j.actamat.2016.05.019 | 5844 | ceramic | ZrO2 | water | 94 | ethanol | 5 | 15.0 | 20.0 | 100 | powder | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 39.5 | 26.2 | 13.3 | 6.3 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Hsiong, R. L., Sengupta, A., Iovine, P. M., Hildebrand, J. A., ... & McKittrick, J. (2016). Bioinspired intrinsic control of freeze cast composites: Harnessing hydrophobic hydration and clathrate hydrates. Acta Materialia, 114, 67-79. | 2016 | 421 | 10.1016/j.actamat.2016.05.019 | 5845 | ceramic | ZrO2 | water | 93 | ethanol | 7 | 15.0 | 20.0 | 100 | powder | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 58.0 | 24.1 | 13.9 | 7.3 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Hsiong, R. L., Sengupta, A., Iovine, P. M., Hildebrand, J. A., ... & McKittrick, J. (2016). Bioinspired intrinsic control of freeze cast composites: Harnessing hydrophobic hydration and clathrate hydrates. Acta Materialia, 114, 67-79. | 2016 | 421 | 10.1016/j.actamat.2016.05.019 | 5846 | ceramic | ZrO2 | water | 89 | ethanol | 10 | 15.0 | 20.0 | 100 | powder | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 45.5 | 27.9 | 17.6 | 9.2 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Hsiong, R. L., Sengupta, A., Iovine, P. M., Hildebrand, J. A., ... & McKittrick, J. (2016). Bioinspired intrinsic control of freeze cast composites: Harnessing hydrophobic hydration and clathrate hydrates. Acta Materialia, 114, 67-79. | 2016 | 421 | 10.1016/j.actamat.2016.05.019 | 5847 | ceramic | ZrO2 | water | 85 | ethanol | 15 | 15.0 | 20.0 | 100 | powder | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 24.7 | 11.8 | 12.9 | 6.3 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Hsiong, R. L., Sengupta, A., Iovine, P. M., Hildebrand, J. A., ... & McKittrick, J. (2016). Bioinspired intrinsic control of freeze cast composites: Harnessing hydrophobic hydration and clathrate hydrates. Acta Materialia, 114, 67-79. | 2016 | 421 | 10.1016/j.actamat.2016.05.019 | 5848 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 15.0 | 20.0 | 100 | powder | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 21.2 | 13.0 | 8.2 | 4.0 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Hsiong, R. L., Sengupta, A., Iovine, P. M., Hildebrand, J. A., ... & McKittrick, J. (2016). Bioinspired intrinsic control of freeze cast composites: Harnessing hydrophobic hydration and clathrate hydrates. Acta Materialia, 114, 67-79. | 2016 | 421 | 10.1016/j.actamat.2016.05.019 | 5849 | ceramic | ZrO2 | water | 99 | n-propanol | 0 | 15.0 | 20.0 | 100 | powder | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 31.2 | 21.2 | 10.0 | 5.4 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Hsiong, R. L., Sengupta, A., Iovine, P. M., Hildebrand, J. A., ... & McKittrick, J. (2016). Bioinspired intrinsic control of freeze cast composites: Harnessing hydrophobic hydration and clathrate hydrates. Acta Materialia, 114, 67-79. | 2016 | 421 | 10.1016/j.actamat.2016.05.019 | 5850 | ceramic | ZrO2 | water | 97 | n-propanol | 2 | 15.0 | 20.0 | 100 | powder | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 41.7 | 28.8 | 12.9 | 6.5 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Hsiong, R. L., Sengupta, A., Iovine, P. M., Hildebrand, J. A., ... & McKittrick, J. (2016). Bioinspired intrinsic control of freeze cast composites: Harnessing hydrophobic hydration and clathrate hydrates. Acta Materialia, 114, 67-79. | 2016 | 421 | 10.1016/j.actamat.2016.05.019 | 5851 | ceramic | ZrO2 | water | 94 | n-propanol | 5 | 15.0 | 20.0 | 100 | powder | 0.35 | 100 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 55.5 | 35.3 | 20.2 | 10.1 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Hsiong, R. L., Sengupta, A., Iovine, P. M., Hildebrand, J. A., ... & McKittrick, J. (2016). Bioinspired intrinsic control of freeze cast composites: Harnessing hydrophobic hydration and clathrate hydrates. Acta Materialia, 114, 67-79. | 2016 | 421 | 10.1016/j.actamat.2016.05.019 | 5852 | ceramic | ZrO2 | water | 93 | n-propanol | 7 | 15.0 | 20.0 | 100 | powder | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 54.1 | 34.3 | 19.8 | 9.9 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Hsiong, R. L., Sengupta, A., Iovine, P. M., Hildebrand, J. A., ... & McKittrick, J. (2016). Bioinspired intrinsic control of freeze cast composites: Harnessing hydrophobic hydration and clathrate hydrates. Acta Materialia, 114, 67-79. | 2016 | 421 | 10.1016/j.actamat.2016.05.019 | 5853 | ceramic | ZrO2 | water | 89 | n-propanol | 10 | 15.0 | 20.0 | 100 | powder | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 40.3 | 26.5 | 13.8 | 8.6 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Hsiong, R. L., Sengupta, A., Iovine, P. M., Hildebrand, J. A., ... & McKittrick, J. (2016). Bioinspired intrinsic control of freeze cast composites: Harnessing hydrophobic hydration and clathrate hydrates. Acta Materialia, 114, 67-79. | 2016 | 421 | 10.1016/j.actamat.2016.05.019 | 5854 | ceramic | ZrO2 | water | 85 | n-propanol | 15 | 15.0 | 20.0 | 100 | powder | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 32.5 | 20.8 | 11.7 | 7.2 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Hsiong, R. L., Sengupta, A., Iovine, P. M., Hildebrand, J. A., ... & McKittrick, J. (2016). Bioinspired intrinsic control of freeze cast composites: Harnessing hydrophobic hydration and clathrate hydrates. Acta Materialia, 114, 67-79. | 2016 | 421 | 10.1016/j.actamat.2016.05.019 | 5855 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 15.0 | 20.0 | 100 | powder | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 20.6 | 13.8 | 6.8 | 3.6 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Hsiong, R. L., Sengupta, A., Iovine, P. M., Hildebrand, J. A., ... & McKittrick, J. (2016). Bioinspired intrinsic control of freeze cast composites: Harnessing hydrophobic hydration and clathrate hydrates. Acta Materialia, 114, 67-79. | 2016 | 421 | 10.1016/j.actamat.2016.05.019 | 5856 | ceramic | ZrO2 | water | 99 | butanol | 0 | 15.0 | 20.0 | 100 | powder | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 28.6 | 18.0 | 10.6 | 4.8 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Hsiong, R. L., Sengupta, A., Iovine, P. M., Hildebrand, J. A., ... & McKittrick, J. (2016). Bioinspired intrinsic control of freeze cast composites: Harnessing hydrophobic hydration and clathrate hydrates. Acta Materialia, 114, 67-79. | 2016 | 421 | 10.1016/j.actamat.2016.05.019 | 5857 | ceramic | ZrO2 | water | 97 | butanol | 2 | 15.0 | 20.0 | 100 | powder | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 61.5 | 41.3 | 20.2 | 5.5 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Hsiong, R. L., Sengupta, A., Iovine, P. M., Hildebrand, J. A., ... & McKittrick, J. (2016). Bioinspired intrinsic control of freeze cast composites: Harnessing hydrophobic hydration and clathrate hydrates. Acta Materialia, 114, 67-79. | 2016 | 421 | 10.1016/j.actamat.2016.05.019 | 5858 | ceramic | ZrO2 | water | 94 | butanol | 5 | 15.0 | 20.0 | 100 | powder | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 29.2 | 20.6 | 8.6 | 4.0 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Hsiong, R. L., Sengupta, A., Iovine, P. M., Hildebrand, J. A., ... & McKittrick, J. (2016). Bioinspired intrinsic control of freeze cast composites: Harnessing hydrophobic hydration and clathrate hydrates. Acta Materialia, 114, 67-79. | 2016 | 421 | 10.1016/j.actamat.2016.05.019 | 5859 | ceramic | ZrO2 | water | 93 | butanol | 7 | 15.0 | 20.0 | 100 | powder | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 29.0 | 20.1 | 8.9 | 4.1 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Hsiong, R. L., Sengupta, A., Iovine, P. M., Hildebrand, J. A., ... & McKittrick, J. (2016). Bioinspired intrinsic control of freeze cast composites: Harnessing hydrophobic hydration and clathrate hydrates. Acta Materialia, 114, 67-79. | 2016 | 421 | 10.1016/j.actamat.2016.05.019 | 5860 | ceramic | ZrO2 | water | 89 | butanol | 10 | 15.0 | 20.0 | 100 | powder | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 28.4 | 17.7 | 10.7 | 4.4 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Hsiong, R. L., Sengupta, A., Iovine, P. M., Hildebrand, J. A., ... & McKittrick, J. (2016). Bioinspired intrinsic control of freeze cast composites: Harnessing hydrophobic hydration and clathrate hydrates. Acta Materialia, 114, 67-79. | 2016 | 421 | 10.1016/j.actamat.2016.05.019 | 5861 | ceramic | ZrO2 | water | 85 | butanol | 15 | 15.0 | 20.0 | 100 | powder | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 36.4 | 22.3 | 14.1 | 6.2 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Hsiong, R. L., Sengupta, A., Iovine, P. M., Hildebrand, J. A., ... & McKittrick, J. (2016). Bioinspired intrinsic control of freeze cast composites: Harnessing hydrophobic hydration and clathrate hydrates. Acta Materialia, 114, 67-79. | 2016 | 421 | 10.1016/j.actamat.2016.05.019 | 5862 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 15.0 | 20.0 | 100 | powder | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Hsiong, R. L., Sengupta, A., Iovine, P. M., Hildebrand, J. A., ... & McKittrick, J. (2016). Bioinspired intrinsic control of freeze cast composites: Harnessing hydrophobic hydration and clathrate hydrates. Acta Materialia, 114, 67-79. | 2016 | 421 | 10.1016/j.actamat.2016.05.019 | 5863 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 15.0 | 20.0 | 100 | powder | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3909 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 10.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 76.1 | 71.4 | 4.7 | 3.98 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3910 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 10.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 99.1 | 95.8 | 3.3 | 8.32 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3911 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 10.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 100.4 | 97.1 | 3.3 | 6.74 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3912 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 10.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 11.69 | 8.49 | 3.2 | 5.32 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3913 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 10.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 87.3 | 84.3 | 3.0 | 5.49 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3914 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 10.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 80.3 | 78.1 | 2.2 | 6.67 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3915 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 10.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 91.3 | 88.0 | 3.3 | 4.91 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3916 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 10.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 82.7 | 79.7 | 3.0 | 5.31 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3917 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 15.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 65.9 | 59.6 | 6.3 | 3.94 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3918 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 15.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 60.6 | 58.0 | 4.6 | 4.92 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3919 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 15.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 61.0 | 56.0 | 5.0 | 5.08 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3920 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 15.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 54.8 | 50.1 | 4.7 | 4.49 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3921 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 15.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 41.5 | 41.4 | 5.1 | 4.17 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3922 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 15.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 61.6 | 56.5 | 5.1 | 4.66 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3923 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 15.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 60.2 | 55.6 | 4.8 | 5.2 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3924 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 15.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 70.4 | 64.5 | 4.9 | 6.1 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3925 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 20.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 63.3 | 55.7 | 7.5 | 4.41 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3926 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 20.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 76.9 | 68.8 | 8.1 | 4.87 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3927 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 20.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 63.4 | 55.9 | 7.5 | 5.26 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3928 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 20.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 57.9 | 49.6 | 8.3 | 3.54 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3929 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 20.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 57.9 | 50.8 | 7.1 | 3.9 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3930 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 20.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 64.3 | 55.1 | 9.2 | 3.28 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3931 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 20.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 64.1 | 55.2 | 8.8 | 3.34 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3932 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 20.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 68.6 | 60.5 | 8.1 | 4.69 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3933 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 10.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 11.69 | 8.49 | 3.2 | 5.84 | 103.5 | 0.0 | 1380.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3934 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 10.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 11.69 | 8.49 | 3.2 | 5.84 | 112.5 | 0.0 | 1360.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3935 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 10.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 11.69 | 8.49 | 3.2 | 5.84 | 107.9 | 0.0 | 1270.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3936 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 10.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 11.69 | 8.49 | 3.2 | 5.84 | 92.9 | 0.0 | 1450.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3937 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 10.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 11.69 | 8.49 | 3.2 | 5.84 | 113.7 | 0.0 | 1580.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3938 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 15.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 57.3 | 55.2 | 5.1 | 4.82 | 150.6 | 0.0 | 2710.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3939 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 15.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 57.3 | 55.2 | 5.1 | 4.82 | 107.5 | 0.0 | 2620.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3940 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 15.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 57.3 | 55.2 | 5.1 | 4.82 | 130.6 | 0.0 | 2820.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3941 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 15.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 57.3 | 55.2 | 5.1 | 4.82 | 136.0 | 0.0 | 2410.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3942 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 15.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 57.3 | 55.2 | 5.1 | 4.82 | 99.7 | 0.0 | 2840.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3943 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 20.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 62.5 | 56.4 | 8.1 | 4.16 | 140.7 | 0.0 | 2980.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3944 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 20.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 62.5 | 56.4 | 8.1 | 4.16 | 134.8 | 0.0 | 3260.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3945 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 20.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 62.5 | 56.4 | 8.1 | 4.16 | 124.3 | 0.0 | 2120.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3946 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 20.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 62.5 | 56.4 | 8.1 | 4.16 | 92.3 | 0.0 | 2700.0 |
Naleway, S. E., Fickas, K. C., Maker, Y. N., Meyers, M. A., & McKittrick, J. (2016). Reproducibility of ZrO 2-based freeze casting for biomaterials. Materials Science and Engineering: C, 61, 105-112. | 2016 | 422 | 10.1016/j.msec.2015.12.012 | 3947 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 20.0 | 20.0 | 100 | 0 | 0.35 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 62.5 | 56.4 | 8.1 | 4.16 | 135.5 | 0.0 | 3210.0 |
Naleway, S. E., Christopher, F. Y., Porter, M. M., Sengupta, A., Iovine, P. M., Meyers, M. A., & McKittrick, J. (2015). Bioinspired composites from freeze casting with clathrate hydrates. Materials & Design, 71, 62-67. | 2015 | 423 | 10.1016/j.matdes.2015.01.010 | 3948 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 10.0 | 20.0 | 100 | 0 | 0.3 | 0 | 0 | 1 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 15.0 | 10.0 | 5.0 | 5.0 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Porter, M. M., Sengupta, A., Iovine, P. M., Meyers, M. A., & McKittrick, J. (2015). Bioinspired composites from freeze casting with clathrate hydrates. Materials & Design, 71, 62-67. | 2015 | 423 | 10.1016/j.matdes.2015.01.010 | 3949 | ceramic | ZrO2 | water | 99 | isopropyl alcohol | 0 | 10.0 | 20.0 | 100 | 0 | 0.3 | 0 | 0 | 1 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 32.0 | 22.0 | 10.0 | 9.0 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Porter, M. M., Sengupta, A., Iovine, P. M., Meyers, M. A., & McKittrick, J. (2015). Bioinspired composites from freeze casting with clathrate hydrates. Materials & Design, 71, 62-67. | 2015 | 423 | 10.1016/j.matdes.2015.01.010 | 3950 | ceramic | ZrO2 | water | 97 | isopropyl alcohol | 2 | 10.0 | 20.0 | 100 | 0 | 0.3 | 0 | 0 | 1 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 38.0 | 20.0 | 10.0 | 15.0 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Porter, M. M., Sengupta, A., Iovine, P. M., Meyers, M. A., & McKittrick, J. (2015). Bioinspired composites from freeze casting with clathrate hydrates. Materials & Design, 71, 62-67. | 2015 | 423 | 10.1016/j.matdes.2015.01.010 | 3951 | ceramic | ZrO2 | water | 95 | isopropyl alcohol | 3 | 10.0 | 20.0 | 100 | 0 | 0.3 | 0 | 0 | 1 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 43.0 | 28.0 | 15.0 | 15.0 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Porter, M. M., Sengupta, A., Iovine, P. M., Meyers, M. A., & McKittrick, J. (2015). Bioinspired composites from freeze casting with clathrate hydrates. Materials & Design, 71, 62-67. | 2015 | 423 | 10.1016/j.matdes.2015.01.010 | 3952 | ceramic | ZrO2 | water | 94 | isopropyl alcohol | 5 | 10.0 | 20.0 | 100 | 0 | 0.3 | 0 | 0 | 1 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 44.0 | 29.0 | 15.0 | 20.0 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Porter, M. M., Sengupta, A., Iovine, P. M., Meyers, M. A., & McKittrick, J. (2015). Bioinspired composites from freeze casting with clathrate hydrates. Materials & Design, 71, 62-67. | 2015 | 423 | 10.1016/j.matdes.2015.01.010 | 3953 | ceramic | ZrO2 | water | 93 | isopropyl alcohol | 5 | 10.0 | 20.0 | 100 | 0 | 0.3 | 0 | 0 | 1 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 42.0 | 30.0 | 12.0 | 10.0 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Porter, M. M., Sengupta, A., Iovine, P. M., Meyers, M. A., & McKittrick, J. (2015). Bioinspired composites from freeze casting with clathrate hydrates. Materials & Design, 71, 62-67. | 2015 | 423 | 10.1016/j.matdes.2015.01.010 | 3954 | ceramic | ZrO2 | water | 93 | isopropyl alcohol | 7 | 10.0 | 20.0 | 100 | 0 | 0.3 | 0 | 0 | 1 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 50.0 | 32.0 | 18.0 | 11.0 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Porter, M. M., Sengupta, A., Iovine, P. M., Meyers, M. A., & McKittrick, J. (2015). Bioinspired composites from freeze casting with clathrate hydrates. Materials & Design, 71, 62-67. | 2015 | 423 | 10.1016/j.matdes.2015.01.010 | 3955 | ceramic | ZrO2 | water | 92 | isopropyl alcohol | 7 | 10.0 | 20.0 | 100 | 0 | 0.3 | 0 | 0 | 1 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 48.0 | 28.0 | 20.0 | 10.0 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Porter, M. M., Sengupta, A., Iovine, P. M., Meyers, M. A., & McKittrick, J. (2015). Bioinspired composites from freeze casting with clathrate hydrates. Materials & Design, 71, 62-67. | 2015 | 423 | 10.1016/j.matdes.2015.01.010 | 3956 | ceramic | ZrO2 | water | 89 | isopropyl alcohol | 10 | 10.0 | 20.0 | 100 | 0 | 0.3 | 0 | 0 | 1 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 45.0 | 28.0 | 17.0 | 9.0 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Porter, M. M., Sengupta, A., Iovine, P. M., Meyers, M. A., & McKittrick, J. (2015). Bioinspired composites from freeze casting with clathrate hydrates. Materials & Design, 71, 62-67. | 2015 | 423 | 10.1016/j.matdes.2015.01.010 | 3957 | ceramic | ZrO2 | water | 85 | isopropyl alcohol | 15 | 10.0 | 20.0 | 100 | 0 | 0.3 | 0 | 0 | 1 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 17.0 | 7.0 | 10.0 | 8.5 | 0.0 | 0.0 | 0.0 |
Naleway, S. E., Christopher, F. Y., Porter, M. M., Sengupta, A., Iovine, P. M., Meyers, M. A., & McKittrick, J. (2015). Bioinspired composites from freeze casting with clathrate hydrates. Materials & Design, 71, 62-67. | 2015 | 423 | 10.1016/j.matdes.2015.01.010 | 3958 | ceramic | ZrO2 | water | 80 | isopropyl alcohol | 20 | 10.0 | 20.0 | 100 | 0 | 0.3 | 0 | 0 | 1 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 12.0 | 5.0 | 7.0 | 8.0 | 0.0 | 0.0 | 0.0 |
Porter, M. M., Niksiar, P., & McKittrick, J. (2016). Microstructural Control of Colloidal?Based Ceramics by Directional Solidification Under Weak Magnetic Fields. Journal of the American Ceramic Society, 99(6), 1917-1926. | 2016 | 488 | 10.1111/jace.14183 | 5190 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Porter, M. M., Niksiar, P., & McKittrick, J. (2016). Microstructural Control of Colloidal?Based Ceramics by Directional Solidification Under Weak Magnetic Fields. Journal of the American Ceramic Society, 99(6), 1917-1926. | 2016 | 488 | 10.1111/jace.14183 | 5191 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Porter, M. M., Niksiar, P., & McKittrick, J. (2016). Microstructural Control of Colloidal?Based Ceramics by Directional Solidification Under Weak Magnetic Fields. Journal of the American Ceramic Society, 99(6), 1917-1926. | 2016 | 488 | 10.1111/jace.14183 | 5192 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Porter, M. M., Niksiar, P., & McKittrick, J. (2016). Microstructural Control of Colloidal?Based Ceramics by Directional Solidification Under Weak Magnetic Fields. Journal of the American Ceramic Society, 99(6), 1917-1926. | 2016 | 488 | 10.1111/jace.14183 | 5193 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Porter, M. M., Niksiar, P., & McKittrick, J. (2016). Microstructural Control of Colloidal?Based Ceramics by Directional Solidification Under Weak Magnetic Fields. Journal of the American Ceramic Society, 99(6), 1917-1926. | 2016 | 488 | 10.1111/jace.14183 | 5194 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Porter, M. M., Niksiar, P., & McKittrick, J. (2016). Microstructural Control of Colloidal?Based Ceramics by Directional Solidification Under Weak Magnetic Fields. Journal of the American Ceramic Society, 99(6), 1917-1926. | 2016 | 488 | 10.1111/jace.14183 | 5195 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Porter, M. M., Niksiar, P., & McKittrick, J. (2016). Microstructural Control of Colloidal?Based Ceramics by Directional Solidification Under Weak Magnetic Fields. Journal of the American Ceramic Society, 99(6), 1917-1926. | 2016 | 488 | 10.1111/jace.14183 | 5196 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qian, L., Ahmed, A., Foster, A., Rannard, S. P., Cooper, A. I., & Zhang, H. (2009). Systematic tuning of pore morphologies and pore volumes in macroporous materials by freezing. Journal of Materials Chemistry, 19(29), 5212-5219. | 2009 | 505 | 10.1039/b903461g | 5444 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qian, L., Ahmed, A., Foster, A., Rannard, S. P., Cooper, A. I., & Zhang, H. (2009). Systematic tuning of pore morphologies and pore volumes in macroporous materials by freezing. Journal of Materials Chemistry, 19(29), 5212-5219. | 2009 | 505 | 10.1039/b903461g | 5445 | ceramic | ZrO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kamyshnaya, K. S., & Khabas, T. A. (2016, November). Developing porous ceramics on the base of zirconia oxide with thin and permeable pores by crystallization of organic additive method. In IOP Conference Series: Materials Science and Engineering (Vol. 156, No. 1, p. 012039). IOP Publishing. | 2016 | 861 | 10.1088/1757-899X/156/1/012039 | 4433 | ceramic | ZrO2 | water | 50 | carbamide | 50 | 0.0 | 20.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | needle | sintered | 47.5 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dhainaut, J., Piana, G., Deville, S., Guizard, C., & Klotz, M. (2014). Freezing-induced ordering of block copolymer micelles. Chemical Communications, 50(83), 12572-12574. | 2014 | 90 | 10.1039/c4cc05556j | 4872 | polymer | P123 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dinu, M. V., P?ádný, M., Dr?gan, E. S., & Michálek, J. (2013). Ice-templated hydrogels based on chitosan with tailored porous morphology. Carbohydrate polymers, 94(1), 170-178. | 2013 | 92 | 10.1016/j.carbpol.2013.01.084 | 4621 | polymer | chitosan-PMMA (mixed) | water | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 95.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dinu, M. V., P?ádný, M., Dr?gan, E. S., & Michálek, J. (2013). Ice-templated hydrogels based on chitosan with tailored porous morphology. Carbohydrate polymers, 94(1), 170-178. | 2013 | 92 | 10.1016/j.carbpol.2013.01.084 | 4622 | polymer | chitosan-PMMA (mixed) | water | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 96.67 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dinu, M. V., P?ádný, M., Dr?gan, E. S., & Michálek, J. (2013). Ice-templated hydrogels based on chitosan with tailored porous morphology. Carbohydrate polymers, 94(1), 170-178. | 2013 | 92 | 10.1016/j.carbpol.2013.01.084 | 4623 | polymer | chitosan-PMMA (mixed) | water | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 94.05 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dinu, M. V., P?ádný, M., Dr?gan, E. S., & Michálek, J. (2013). Ice-templated hydrogels based on chitosan with tailored porous morphology. Carbohydrate polymers, 94(1), 170-178. | 2013 | 92 | 10.1016/j.carbpol.2013.01.084 | 4624 | polymer | chitosan-PMMA (mixed) | water | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 94.88 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dinu, M. V., P?ádný, M., Dr?gan, E. S., & Michálek, J. (2013). Ice-templated hydrogels based on chitosan with tailored porous morphology. Carbohydrate polymers, 94(1), 170-178. | 2013 | 92 | 10.1016/j.carbpol.2013.01.084 | 4625 | polymer | chitosan-PMMA (mixed) | water | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 94.84 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dinu, M. V., P?ádný, M., Dr?gan, E. S., & Michálek, J. (2013). Ice-templated hydrogels based on chitosan with tailored porous morphology. Carbohydrate polymers, 94(1), 170-178. | 2013 | 92 | 10.1016/j.carbpol.2013.01.084 | 4626 | polymer | chitosan-PMMA (mixed) | water | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 96.34 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dinu, M. V., P?ádný, M., Dr?gan, E. S., & Michálek, J. (2013). Ice-templated hydrogels based on chitosan with tailored porous morphology. Carbohydrate polymers, 94(1), 170-178. | 2013 | 92 | 10.1016/j.carbpol.2013.01.084 | 4627 | polymer | chitosan-PMMA (mixed) | water | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 97.17 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dinu, M. V., P?ádný, M., Dr?gan, E. S., & Michálek, J. (2013). Ice-templated hydrogels based on chitosan with tailored porous morphology. Carbohydrate polymers, 94(1), 170-178. | 2013 | 92 | 10.1016/j.carbpol.2013.01.084 | 4628 | polymer | chitosan-PMMA (mixed) | water | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 95.58 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dinu, M. V., P?ádný, M., Dr?gan, E. S., & Michálek, J. (2013). Ice-templated hydrogels based on chitosan with tailored porous morphology. Carbohydrate polymers, 94(1), 170-178. | 2013 | 92 | 10.1016/j.carbpol.2013.01.084 | 4629 | polymer | chitosan-PMMA (mixed) | water | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 94.84 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dinu, M. V., P?ádný, M., Dr?gan, E. S., & Michálek, J. (2013). Ice-templated hydrogels based on chitosan with tailored porous morphology. Carbohydrate polymers, 94(1), 170-178. | 2013 | 92 | 10.1016/j.carbpol.2013.01.084 | 4630 | polymer | chitosan-PMMA (mixed) | water | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 94.87 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dinu, M. V., P?ádný, M., Dr?gan, E. S., & Michálek, J. (2013). Ice-templated hydrogels based on chitosan with tailored porous morphology. Carbohydrate polymers, 94(1), 170-178. | 2013 | 92 | 10.1016/j.carbpol.2013.01.084 | 4631 | polymer | chitosan-PMMA (mixed) | water | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 95.35 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dinu, M. V., P?ádný, M., Dr?gan, E. S., & Michálek, J. (2013). Ice-templated hydrogels based on chitosan with tailored porous morphology. Carbohydrate polymers, 94(1), 170-178. | 2013 | 92 | 10.1016/j.carbpol.2013.01.084 | 4632 | polymer | chitosan-PMMA (mixed) | water | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 97.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dinu, M. V., P?ádný, M., Dr?gan, E. S., & Michálek, J. (2013). Ice-templated hydrogels based on chitosan with tailored porous morphology. Carbohydrate polymers, 94(1), 170-178. | 2013 | 92 | 10.1016/j.carbpol.2013.01.084 | 4633 | polymer | chitosan-PMMA (mixed) | water | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 94.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dinu, M. V., P?ádný, M., Dr?gan, E. S., & Michálek, J. (2013). Ice-templated hydrogels based on chitosan with tailored porous morphology. Carbohydrate polymers, 94(1), 170-178. | 2013 | 92 | 10.1016/j.carbpol.2013.01.084 | 4634 | polymer | chitosan-PMMA (mixed) | water | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 245.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 95.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dinu, M. V., P?ádný, M., Dr?gan, E. S., & Michálek, J. (2013). Ice-templated hydrogels based on chitosan with tailored porous morphology. Carbohydrate polymers, 94(1), 170-178. | 2013 | 92 | 10.1016/j.carbpol.2013.01.084 | 4635 | polymer | chitosan-PMMA (mixed) | water | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 260.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 95.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dinu, M. V., P?ádný, M., Dr?gan, E. S., & Michálek, J. (2013). Ice-templated hydrogels based on chitosan with tailored porous morphology. Carbohydrate polymers, 94(1), 170-178. | 2013 | 92 | 10.1016/j.carbpol.2013.01.084 | 4636 | polymer | chitosan-PMMA (mixed) | water | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 95.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dong, Z., Zhang, Q., & Chen, W. (2014). Fabrication of highly porous chromium carbide with multiple pore structure. Journal of the American Ceramic Society, 97(4), 1317-1325. | 2014 | 97 | 10.1111/jace.12777 | 595 | ceramic | Cr3C2 | camphene | 100 | 0.0 | 0 | 10.0 | 44.0 | 100 | powder | 7.0 | 0 | 0 | 0 | 298.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 87.7 | 16.0 | 15.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dong, Z., Zhang, Q., & Chen, W. (2014). Fabrication of highly porous chromium carbide with multiple pore structure. Journal of the American Ceramic Society, 97(4), 1317-1325. | 2014 | 97 | 10.1111/jace.12777 | 596 | ceramic | Cr3C2 | camphene | 100 | 0.0 | 0 | 15.0 | 44.0 | 100 | powder | 7.0 | 0 | 0 | 0 | 298.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 85.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dong, Z., Zhang, Q., & Chen, W. (2014). Fabrication of highly porous chromium carbide with multiple pore structure. Journal of the American Ceramic Society, 97(4), 1317-1325. | 2014 | 97 | 10.1111/jace.12777 | 597 | ceramic | Cr3C2 | camphene | 100 | 0.0 | 0 | 20.0 | 44.0 | 100 | powder | 7.0 | 0 | 0 | 0 | 298.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 83.0 | 0.0 | 7.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dong, Z., Zhang, Q., & Chen, W. (2014). Fabrication of highly porous chromium carbide with multiple pore structure. Journal of the American Ceramic Society, 97(4), 1317-1325. | 2014 | 97 | 10.1111/jace.12777 | 598 | ceramic | Cr3C2 | camphene | 100 | 0.0 | 0 | 30.0 | 44.0 | 100 | powder | 7.0 | 0 | 0 | 0 | 298.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 80.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dong, Z., Zhang, Q., & Chen, W. (2014). Fabrication of highly porous chromium carbide with multiple pore structure. Journal of the American Ceramic Society, 97(4), 1317-1325. | 2014 | 97 | 10.1111/jace.12777 | 599 | ceramic | Cr3C2 | camphene | 100 | 0.0 | 0 | 10.0 | 44.0 | 100 | powder | 7.0 | 0 | 0 | 0 | 288.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 86.9 | 0.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dong, Z., Zhang, Q., & Chen, W. (2014). Fabrication of highly porous chromium carbide with multiple pore structure. Journal of the American Ceramic Society, 97(4), 1317-1325. | 2014 | 97 | 10.1111/jace.12777 | 600 | ceramic | Cr3C2 | camphene | 100 | 0.0 | 0 | 15.0 | 44.0 | 100 | powder | 7.0 | 0 | 0 | 0 | 288.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dong, Z., Zhang, Q., & Chen, W. (2014). Fabrication of highly porous chromium carbide with multiple pore structure. Journal of the American Ceramic Society, 97(4), 1317-1325. | 2014 | 97 | 10.1111/jace.12777 | 601 | ceramic | Cr3C2 | camphene | 100 | 0.0 | 0 | 20.0 | 44.0 | 100 | powder | 7.0 | 0 | 0 | 0 | 288.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dong, Z., Zhang, Q., & Chen, W. (2014). Fabrication of highly porous chromium carbide with multiple pore structure. Journal of the American Ceramic Society, 97(4), 1317-1325. | 2014 | 97 | 10.1111/jace.12777 | 602 | ceramic | Cr3C2 | camphene | 100 | 0.0 | 0 | 30.0 | 44.0 | 100 | powder | 7.0 | 0 | 0 | 0 | 288.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dong, Z., Zhang, Q., & Chen, W. (2014). Fabrication of highly porous chromium carbide with multiple pore structure. Journal of the American Ceramic Society, 97(4), 1317-1325. | 2014 | 97 | 10.1111/jace.12777 | 603 | ceramic | Cr3C2 | camphene | 100 | 0.0 | 0 | 10.0 | 44.0 | 100 | powder | 7.0 | 0 | 0 | 0 | 273.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 90.1 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dong, Z., Zhang, Q., & Chen, W. (2014). Fabrication of highly porous chromium carbide with multiple pore structure. Journal of the American Ceramic Society, 97(4), 1317-1325. | 2014 | 97 | 10.1111/jace.12777 | 604 | ceramic | Cr3C2 | camphene | 100 | 0.0 | 0 | 15.0 | 44.0 | 100 | powder | 7.0 | 0 | 0 | 0 | 273.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dong, Z., Zhang, Q., & Chen, W. (2014). Fabrication of highly porous chromium carbide with multiple pore structure. Journal of the American Ceramic Society, 97(4), 1317-1325. | 2014 | 97 | 10.1111/jace.12777 | 605 | ceramic | Cr3C2 | camphene | 100 | 0.0 | 0 | 20.0 | 44.0 | 100 | powder | 7.0 | 0 | 0 | 0 | 273.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dong, Z., Zhang, Q., & Chen, W. (2014). Fabrication of highly porous chromium carbide with multiple pore structure. Journal of the American Ceramic Society, 97(4), 1317-1325. | 2014 | 97 | 10.1111/jace.12777 | 606 | ceramic | Cr3C2 | camphene | 100 | 0.0 | 0 | 30.0 | 44.0 | 100 | powder | 7.0 | 0 | 0 | 0 | 273.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Donius, A. E., Liu, A., Berglund, L. A., & Wegst, U. G. (2014). Superior mechanical performance of highly porous, anisotropic nanocellulose?montmorillonite aerogels prepared by freeze casting. Journal of the mechanical behavior of biomedical materials, 37, 88-99. | 2014 | 98 | 10.1016/j.jmbbm.2014.05.012 | 4883 | polymer | Na-MMT-Cellulose | water | 100 | 0.0 | 0 | 1.5 | 97.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 98.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.03 |
Donius, A. E., Liu, A., Berglund, L. A., & Wegst, U. G. (2014). Superior mechanical performance of highly porous, anisotropic nanocellulose?montmorillonite aerogels prepared by freeze casting. Journal of the mechanical behavior of biomedical materials, 37, 88-99. | 2014 | 98 | 10.1016/j.jmbbm.2014.05.012 | 4884 | polymer | Na-MMT-Cellulose | water | 100 | 0.0 | 0 | 1.75 | 97.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 98.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.01 | 0.0 | 0.05 |
Donius, A. E., Liu, A., Berglund, L. A., & Wegst, U. G. (2014). Superior mechanical performance of highly porous, anisotropic nanocellulose?montmorillonite aerogels prepared by freeze casting. Journal of the mechanical behavior of biomedical materials, 37, 88-99. | 2014 | 98 | 10.1016/j.jmbbm.2014.05.012 | 4885 | polymer | Na-MMT-Cellulose | water | 100 | 0.0 | 0 | 2.0 | 97.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 98.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.03 | 0.0 | 0.39 |
Donius, A. E., Liu, A., Berglund, L. A., & Wegst, U. G. (2014). Superior mechanical performance of highly porous, anisotropic nanocellulose?montmorillonite aerogels prepared by freeze casting. Journal of the mechanical behavior of biomedical materials, 37, 88-99. | 2014 | 98 | 10.1016/j.jmbbm.2014.05.012 | 4886 | polymer | Na-MMT-Cellulose | water | 100 | 0.0 | 0 | 1.5 | 97.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 98.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.06 | 0.0 | 0.06 |
Donius, A. E., Liu, A., Berglund, L. A., & Wegst, U. G. (2014). Superior mechanical performance of highly porous, anisotropic nanocellulose?montmorillonite aerogels prepared by freeze casting. Journal of the mechanical behavior of biomedical materials, 37, 88-99. | 2014 | 98 | 10.1016/j.jmbbm.2014.05.012 | 4887 | polymer | Na-MMT-Cellulose | water | 100 | 0.0 | 0 | 1.75 | 97.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 98.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.03 | 0.0 | 0.05 |
Donius, A. E., Liu, A., Berglund, L. A., & Wegst, U. G. (2014). Superior mechanical performance of highly porous, anisotropic nanocellulose?montmorillonite aerogels prepared by freeze casting. Journal of the mechanical behavior of biomedical materials, 37, 88-99. | 2014 | 98 | 10.1016/j.jmbbm.2014.05.012 | 4888 | polymer | Na-MMT-Cellulose | water | 100 | 0.0 | 0 | 2.0 | 97.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 98.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.05 | 0.0 | 0.04 |
Gawryla, M. D., & Schiraldi, D. A. (2009). Novel absorbent materials created via ice templating. Macromolecular Materials and Engineering, 294(9), 570-574. | 2009 | 157 | 10.1002/mame.200900094 | 5220 | polymer | Na-MMT-Cellulose | water | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gawryla, M. D., & Schiraldi, D. A. (2009). Novel absorbent materials created via ice templating. Macromolecular Materials and Engineering, 294(9), 570-574. | 2009 | 157 | 10.1002/mame.200900094 | 5221 | polymer | Na-MMT-Cellulose | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gawryla, M. D., & Schiraldi, D. A. (2009). Novel absorbent materials created via ice templating. Macromolecular Materials and Engineering, 294(9), 570-574. | 2009 | 157 | 10.1002/mame.200900094 | 5222 | polymer | Na-MMT-Cellulose | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gawryla, M. D., & Schiraldi, D. A. (2009). Novel absorbent materials created via ice templating. Macromolecular Materials and Engineering, 294(9), 570-574. | 2009 | 157 | 10.1002/mame.200900094 | 5223 | polymer | Na-MMT-Cellulose | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gawryla, M. D., & Schiraldi, D. A. (2009). Novel absorbent materials created via ice templating. Macromolecular Materials and Engineering, 294(9), 570-574. | 2009 | 157 | 10.1002/mame.200900094 | 5224 | polymer | Na-MMT-Cellulose | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gawryla, M. D., & Schiraldi, D. A. (2009). Novel absorbent materials created via ice templating. Macromolecular Materials and Engineering, 294(9), 570-574. | 2009 | 157 | 10.1002/mame.200900094 | 5225 | polymer | Na-MMT-Cellulose | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gawryla, M. D., & Schiraldi, D. A. (2009). Novel absorbent materials created via ice templating. Macromolecular Materials and Engineering, 294(9), 570-574. | 2009 | 157 | 10.1002/mame.200900094 | 5226 | polymer | Na-MMT-Cellulose | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gawryla, M. D., & Schiraldi, D. A. (2009). Novel absorbent materials created via ice templating. Macromolecular Materials and Engineering, 294(9), 570-574. | 2009 | 157 | 10.1002/mame.200900094 | 5227 | polymer | Na-MMT-Cellulose | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, Y., Gawryla, M. D., & Schiraldi, D. A. (2013). Effects of freezing conditions on the morphology and mechanical properties of clay and polymer/clay aerogels. Journal of Applied Polymer Science, 129(3), 1637-1641. | 2013 | 650 | 10.1002/app.39143 | 4530 | polymer | Na-MMT-Cellulose | water | 100 | 0.0 | 0 | 4.0 | 106.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 55.0 | 15.0 | 40.0 | 0.0 | 0.04 | 0.0 | 0.0 |
Wang, Y., Gawryla, M. D., & Schiraldi, D. A. (2013). Effects of freezing conditions on the morphology and mechanical properties of clay and polymer/clay aerogels. Journal of Applied Polymer Science, 129(3), 1637-1641. | 2013 | 650 | 10.1002/app.39143 | 4531 | polymer | Na-MMT-Cellulose | water | 100 | 0.0 | 0 | 4.0 | 106.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 43.0 | 38.0 | 5.0 | 0.0 | 0.04 | 0.0 | 0.0 |
Wang, Y., Gawryla, M. D., & Schiraldi, D. A. (2013). Effects of freezing conditions on the morphology and mechanical properties of clay and polymer/clay aerogels. Journal of Applied Polymer Science, 129(3), 1637-1641. | 2013 | 650 | 10.1002/app.39143 | 4532 | polymer | Na-MMT-Cellulose | water | 100 | 0.0 | 0 | 4.0 | 106.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 20.0 | 10.0 | 10.0 | 0.0 | 0.01 | 0.0 | 0.0 |
Wang, Y., Gawryla, M. D., & Schiraldi, D. A. (2013). Effects of freezing conditions on the morphology and mechanical properties of clay and polymer/clay aerogels. Journal of Applied Polymer Science, 129(3), 1637-1641. | 2013 | 650 | 10.1002/app.39143 | 4533 | polymer | Na-MMT-Cellulose | water | 100 | 0.0 | 0 | 4.0 | 106.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 20.0 | 10.0 | 10.0 | 0.0 | 0.03 | 0.0 | 0.0 |
Wang, Y., Gawryla, M. D., & Schiraldi, D. A. (2013). Effects of freezing conditions on the morphology and mechanical properties of clay and polymer/clay aerogels. Journal of Applied Polymer Science, 129(3), 1637-1641. | 2013 | 650 | 10.1002/app.39143 | 4534 | polymer | Na-MMT-Cellulose | water | 100 | 0.0 | 0 | 4.0 | 106.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 49.0 | 45.0 | 4.0 | 0.0 | 0.05 | 0.0 | 0.0 |
Wang, Y., Gawryla, M. D., & Schiraldi, D. A. (2013). Effects of freezing conditions on the morphology and mechanical properties of clay and polymer/clay aerogels. Journal of Applied Polymer Science, 129(3), 1637-1641. | 2013 | 650 | 10.1002/app.39143 | 4535 | polymer | Na-MMT-Cellulose | water | 100 | 0.0 | 0 | 4.0 | 106.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 85.0 | 60.0 | 25.0 | 0.0 | 0.03 | 0.0 | 0.0 |
Wang, Y., Gawryla, M. D., & Schiraldi, D. A. (2013). Effects of freezing conditions on the morphology and mechanical properties of clay and polymer/clay aerogels. Journal of Applied Polymer Science, 129(3), 1637-1641. | 2013 | 650 | 10.1002/app.39143 | 4536 | polymer | Na-MMT-Cellulose | water | 100 | 0.0 | 0 | 4.0 | 106.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 92.0 | 50.0 | 42.0 | 0.0 | 0.03 | 0.0 | 0.0 |
Wang, Y., Gawryla, M. D., & Schiraldi, D. A. (2013). Effects of freezing conditions on the morphology and mechanical properties of clay and polymer/clay aerogels. Journal of Applied Polymer Science, 129(3), 1637-1641. | 2013 | 650 | 10.1002/app.39143 | 4537 | polymer | Na-MMT-Cellulose | water | 100 | 0.0 | 0 | 4.0 | 106.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 120.0 | 80.0 | 40.0 | 0.0 | 0.01 | 0.0 | 0.0 |
Driscoll, D., Weisenstein, A. J., & Sofie, S. W. (2011). Electrical and flexural anisotropy in freeze tape cast stainless steel porous substrates. Materials Letters, 65(23), 3433-3435. | 2011 | 100 | 10.1016/j.matlet.2011.07.066 | 607 | metal | stainless steel | water | 100 | 0.0 | 0 | 25.0 | 72.0 | 100 | powder | 22.0 | 2 | 0 | 0 | 243.0 | 0.0 | 0.0 | tape-casting | constant | 80.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Du, J., Zhang, X., Hong, C., & Han, W. (2013). Microstructure and mechanical properties of ZrB 2?SiC porous ceramic by camphene-based freeze casting. Ceramics International, 39(2), 953-957. | 2013 | 103 | 10.1016/j.ceramint.2012.07.012 | 608 | ceramic | ZrB2-SiC (mixed) | camphene | 100 | 0.0 | 0 | 20.0 | 33.0 | 0 | powder | 1.0 | 0 | 2 | 0 | 278.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 175.0 | 0.0 | 0.0 |
Du, J., Zhang, X., Hong, C., & Han, W. (2013). Microstructure and mechanical properties of ZrB 2?SiC porous ceramic by camphene-based freeze casting. Ceramics International, 39(2), 953-957. | 2013 | 103 | 10.1016/j.ceramint.2012.07.012 | 609 | ceramic | ZrB2-SiC (mixed) | camphene | 100 | 0.0 | 0 | 25.0 | 33.0 | 0 | powder | 1.0 | 0 | 2 | 0 | 278.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 325.0 | 0.0 | 0.0 |
Du, J., Zhang, X., Hong, C., & Han, W. (2013). Microstructure and mechanical properties of ZrB 2?SiC porous ceramic by camphene-based freeze casting. Ceramics International, 39(2), 953-957. | 2013 | 103 | 10.1016/j.ceramint.2012.07.012 | 610 | ceramic | ZrB2-SiC (mixed) | camphene | 100 | 0.0 | 0 | 30.0 | 33.0 | 0 | powder | 1.0 | 0 | 2 | 0 | 278.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 42.0 | 0.0 | 0.0 | 0.0 | 0.0 | 350.0 | 0.0 | 0.0 |
Du, K., Zhang, Q., Dan, S., Yang, M., Zhang, Y., & Chai, D. (2016). Fabrication and characterization of aligned macroporous monolith for high-performance protein chromatography. Journal of Chromatography A, 1443, 111-117. | 2016 | 104 | 10.1016/j.chroma.2016.03.026 | 4582 | polymer | glycidyl methacrylate-ethylene glycol | dioxane | 27 | triproplyene glycol | 23 | 25.0 | 108.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 8.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 79.0 | 0.0 | 10.0 | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Du, K., Zhang, Q., Dan, S., Yang, M., Zhang, Y., & Chai, D. (2016). Fabrication and characterization of aligned macroporous monolith for high-performance protein chromatography. Journal of Chromatography A, 1443, 111-117. | 2016 | 104 | 10.1016/j.chroma.2016.03.026 | 4583 | polymer/biological | glycidyl methacrylate-ethylene glycol-E. coli (adsorbed) | dioxane | 27 | triproplyene glycol | 23 | 25.0 | 108.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 8.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 57.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Du, K., Zhang, Q., Dan, S., Yang, M., Zhang, Y., & Chai, D. (2016). Fabrication and characterization of aligned macroporous monolith for high-performance protein chromatography. Journal of Chromatography A, 1443, 111-117. | 2016 | 104 | 10.1016/j.chroma.2016.03.026 | 4584 | polymer/biological | glycidyl methacrylate-ethylene glycol-Plasmid DNA (adsorbed) | dioxane | 27 | triproplyene glycol | 23 | 25.0 | 108.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 8.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 61.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Du, K., Zhang, Q., Dan, S., Yang, M., Zhang, Y., & Chai, D. (2016). Fabrication and characterization of aligned macroporous monolith for high-performance protein chromatography. Journal of Chromatography A, 1443, 111-117. | 2016 | 104 | 10.1016/j.chroma.2016.03.026 | 4585 | polymer/biological | glycidyl methacrylate-ethylene glycol-IgG (adsorbed) | dioxane | 27 | triproplyene glycol | 23 | 25.0 | 108.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 8.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 72.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Du, K., Zhang, Q., Dan, S., Yang, M., Zhang, Y., & Chai, D. (2016). Fabrication and characterization of aligned macroporous monolith for high-performance protein chromatography. Journal of Chromatography A, 1443, 111-117. | 2016 | 104 | 10.1016/j.chroma.2016.03.026 | 4586 | polymer/biological | glycidyl methacrylate-ethylene glycol-BSA (adsorbed) | dioxane | 27 | triproplyene glycol | 23 | 25.0 | 108.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 8.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 73.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Du, K., Zhang, Q., Dan, S., Yang, M., Zhang, Y., & Chai, D. (2016). Fabrication and characterization of aligned macroporous monolith for high-performance protein chromatography. Journal of Chromatography A, 1443, 111-117. | 2016 | 104 | 10.1016/j.chroma.2016.03.026 | 4587 | polymer/biological | glycidyl methacrylate-ethylene glycol-Lysozyme (adsorbed) | dioxane | 27 | triproplyene glycol | 23 | 25.0 | 108.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 8.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 76.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Du, K., Zhang, Q., Dan, S., Yang, M., Zhang, Y., & Chai, D. (2016). Fabrication and characterization of aligned macroporous monolith for high-performance protein chromatography. Journal of Chromatography A, 1443, 111-117. | 2016 | 104 | 10.1016/j.chroma.2016.03.026 | 4588 | polymer/biological | glycidyl methacrylate-ethylene glycol-acetone (adsorbed) | dioxane | 27 | triproplyene glycol | 23 | 25.0 | 108.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 8.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dutta, A., & Tekalur, S. A. (2013). Synthetic staggered architecture composites. Materials & Design, 46, 802-808. | 2013 | 107 | 10.1016/j.matdes.2012.11.018 | 5213 | ceramic/polymer | PMMA-35wt.% SiO2 (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dutta, A., & Tekalur, S. A. (2013). Synthetic staggered architecture composites. Materials & Design, 46, 802-808. | 2013 | 107 | 10.1016/j.matdes.2012.11.018 | 5214 | ceramic/polymer | PMMA-40wt.% SiO2 (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dutta, A., & Tekalur, S. A. (2013). Synthetic staggered architecture composites. Materials & Design, 46, 802-808. | 2013 | 107 | 10.1016/j.matdes.2012.11.018 | 5215 | ceramic/polymer | PMMA-55wt.% SiO2 (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dutta, A., & Tekalur, S. A. (2013). Synthetic staggered architecture composites. Materials & Design, 46, 802-808. | 2013 | 107 | 10.1016/j.matdes.2012.11.018 | 5216 | ceramic/polymer | PMMA-58wt.% SiO2 (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dutta, A., & Tekalur, S. A. (2013). Synthetic staggered architecture composites. Materials & Design, 46, 802-808. | 2013 | 107 | 10.1016/j.matdes.2012.11.018 | 5217 | ceramic/polymer | PMMA-60wt.% SiO2 (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dutta, A., & Tekalur, S. A. (2013). Synthetic staggered architecture composites. Materials & Design, 46, 802-808. | 2013 | 107 | 10.1016/j.matdes.2012.11.018 | 5218 | ceramic/polymer | PMMA-65wt.% SiO2 (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dutta, A., & Tekalur, S. A. (2013). Synthetic staggered architecture composites. Materials & Design, 46, 802-808. | 2013 | 107 | 10.1016/j.matdes.2012.11.018 | 5219 | ceramic/polymer | PMMA-70wt.% SiO2 (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Estevez, L., Kelarakis, A., Gong, Q., Da?as, E. H., & Giannelis, E. P. (2011). Multifunctional graphene/platinum/nafion hybrids via ice templating. Journal of the American Chemical Society, 133(16), 6122-6125. | 2011 | 112 | 10.1021/ja200244s | 4431 | metal/carbon/polymer | Graphene-Pt-Nafton (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 92.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fassler, A., & Majidi, C. (2013). 3D structures of liquid-phase GaIn alloy embedded in PDMS with freeze casting. Lab on a Chip, 13(22), 4442-4450. | 2013 | 115 | 10.1039/c3lc50833a | 4432 | metal/polymer | GaIn-PDMS (mixed) | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ferraro, C., Garcia?Tuñon, E., Rocha, V. G., Barg, S., Fariñas, M. D., Alvarez?Arenas, T. E. G., ... & Saiz, E. (2016). Light and strong SiC networks. Advanced Functional Materials, 26(10), 1636-1645. | 2016 | 116 | 10.1002/adfm.201504051 | 661 | ceramic | SiC-15wt.% Al2O3 (mixed) | water | 100 | 0.0 | 0 | 1.5 | 24.0 | 83 | fiber | 1.5 | 0 | 0 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 98.0 | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ferraro, C., Garcia?Tuñon, E., Rocha, V. G., Barg, S., Fariñas, M. D., Alvarez?Arenas, T. E. G., ... & Saiz, E. (2016). Light and strong SiC networks. Advanced Functional Materials, 26(10), 1636-1645. | 2016 | 116 | 10.1002/adfm.201504051 | 662 | ceramic | SiC-15wt.% Al2O3 (mixed) | water | 100 | 0.0 | 0 | 3.0 | 24.0 | 83 | fiber | 1.5 | 0 | 0 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ferraro, C., Garcia?Tuñon, E., Rocha, V. G., Barg, S., Fariñas, M. D., Alvarez?Arenas, T. E. G., ... & Saiz, E. (2016). Light and strong SiC networks. Advanced Functional Materials, 26(10), 1636-1645. | 2016 | 116 | 10.1002/adfm.201504051 | 663 | ceramic | SiC-15wt.% Al2O3 (mixed) | water | 100 | 0.0 | 0 | 7.0 | 24.0 | 83 | fiber | 1.5 | 0 | 0 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 92.0 | 0.0 | 20.0 | 0.0 | 0.0 | 3.0 | 0.0 | 300.0 |
Ferraro, C., Garcia?Tuñon, E., Rocha, V. G., Barg, S., Fariñas, M. D., Alvarez?Arenas, T. E. G., ... & Saiz, E. (2016). Light and strong SiC networks. Advanced Functional Materials, 26(10), 1636-1645. | 2016 | 116 | 10.1002/adfm.201504051 | 664 | ceramic | SiC-15wt.% Al2O3 (mixed) | water | 100 | 0.0 | 0 | 1.5 | 24.0 | 83 | fiber | 1.5 | 0 | 0 | 0 | 0.0 | 15.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 98.0 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ferraro, C., Garcia?Tuñon, E., Rocha, V. G., Barg, S., Fariñas, M. D., Alvarez?Arenas, T. E. G., ... & Saiz, E. (2016). Light and strong SiC networks. Advanced Functional Materials, 26(10), 1636-1645. | 2016 | 116 | 10.1002/adfm.201504051 | 665 | ceramic | SiC-15wt.% Al2O3 (mixed) | water | 100 | 0.0 | 0 | 3.0 | 24.0 | 83 | fiber | 1.5 | 0 | 0 | 0 | 0.0 | 15.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ferraro, C., Garcia?Tuñon, E., Rocha, V. G., Barg, S., Fariñas, M. D., Alvarez?Arenas, T. E. G., ... & Saiz, E. (2016). Light and strong SiC networks. Advanced Functional Materials, 26(10), 1636-1645. | 2016 | 116 | 10.1002/adfm.201504051 | 666 | ceramic | SiC-15wt.% Al2O3 (mixed) | water | 100 | 0.0 | 0 | 7.0 | 24.0 | 83 | fiber | 1.5 | 0 | 0 | 0 | 0.0 | 15.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 92.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ferrer, M. L., Esquembre, R., Ortega, I., Mateo, C. R., & del Monte, F. (2006). Freezing of binary colloidal systems for the formation of hierarchy assemblies. Chemistry of materials, 18(2), 554-559. | 2006 | 117 | 10.1021/cm052087z | 4589 | polymer/biological | DMPA-silica | water | 100 | 0.0 | 0 | 2.0 | 110.0 | 0 | powder | 0.29 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | iso-honeycomb | green | 0.0 | 0.0 | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Flauder, S., Sajzew, R., & Mu?ller, F. A. (2014). Mechanical properties of porous ?-tricalcium phosphate composites prepared by ice-templating and poly (?-caprolactone) impregnation. ACS applied materials & interfaces, 7(1), 845-851. | 2014 | 119 | 10.1021/am507333q | AC | 669 | ceramic | TCP | water | 100 | 0.0 | 0 | 10.0 | 26.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | parabolic | 20.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 85.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Flauder, S., Sajzew, R., & Mu?ller, F. A. (2014). Mechanical properties of porous ?-tricalcium phosphate composites prepared by ice-templating and poly (?-caprolactone) impregnation. ACS applied materials & interfaces, 7(1), 845-851. | 2014 | 119 | 10.1021/am507333q | AC | 670 | ceramic | TCP | water | 100 | 0.0 | 0 | 20.0 | 26.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | parabolic | 20.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 68.6 | 35.0 | 20.0 | 15.0 | 0.0 | 4.25 | 3.25 | 0.0 |
Flauder, S., Sajzew, R., & Mu?ller, F. A. (2014). Mechanical properties of porous ?-tricalcium phosphate composites prepared by ice-templating and poly (?-caprolactone) impregnation. ACS applied materials & interfaces, 7(1), 845-851. | 2014 | 119 | 10.1021/am507333q | AC | 671 | ceramic | TCP | water | 100 | 0.0 | 0 | 20.0 | 26.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | parabolic | 20.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 66.5 | 0.0 | 0.0 | 0.0 | 0.0 | 4.25 | 3.25 | 0.0 |
Flauder, S., Sajzew, R., & Mu?ller, F. A. (2014). Mechanical properties of porous ?-tricalcium phosphate composites prepared by ice-templating and poly (?-caprolactone) impregnation. ACS applied materials & interfaces, 7(1), 845-851. | 2014 | 119 | 10.1021/am507333q | AC | 672 | ceramic | TCP | water | 100 | 0.0 | 0 | 30.0 | 26.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | parabolic | 20.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 35.0 | 20.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Flauder, S., Sajzew, R., & Mu?ller, F. A. (2014). Mechanical properties of porous ?-tricalcium phosphate composites prepared by ice-templating and poly (?-caprolactone) impregnation. ACS applied materials & interfaces, 7(1), 845-851. | 2014 | 119 | 10.1021/am507333q | AC | 673 | ceramic | TCP | water | 100 | 0.0 | 0 | 10.0 | 26.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | parabolic | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 20.0 | 15.0 | 5.0 | 0.0 | 33.0 | 0.0 | 0.0 |
Flauder, S., Sajzew, R., & Mu?ller, F. A. (2014). Mechanical properties of porous ?-tricalcium phosphate composites prepared by ice-templating and poly (?-caprolactone) impregnation. ACS applied materials & interfaces, 7(1), 845-851. | 2014 | 119 | 10.1021/am507333q | AC | 674 | ceramic | TCP | water | 100 | 0.0 | 0 | 20.0 | 26.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | parabolic | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.8 | 23.0 | 12.0 | 11.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Flauder, S., Sajzew, R., & Mu?ller, F. A. (2014). Mechanical properties of porous ?-tricalcium phosphate composites prepared by ice-templating and poly (?-caprolactone) impregnation. ACS applied materials & interfaces, 7(1), 845-851. | 2014 | 119 | 10.1021/am507333q | AC | 675 | ceramic | TCP | water | 100 | 0.0 | 0 | 30.0 | 26.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | parabolic | 30.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 50.1 | 21.0 | 8.0 | 13.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Flauder, S., Gbureck, U., & Müller, F. A. (2013). ?-TCP scaffolds with an interconnected and aligned porosity fabricated via ice-templating. In Key Engineering Materials (Vol. 529, pp. 129-132). Trans Tech Publications. | 2013 | 120 | 0 | 676 | ceramic | TCP | water | 100 | 0.0 | 0 | 10.0 | 26.0 | 100 | powder | 0.25 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | exponential | 8.8 | 8.8 | 0 | 0 | 0 | lamellar | sintered | 82.0 | 51.0 | 40.0 | 11.0 | 0.0 | 0.15 | 0.0 | 0.0 |
Flauder, S., Gbureck, U., & Müller, F. A. (2013). ?-TCP scaffolds with an interconnected and aligned porosity fabricated via ice-templating. In Key Engineering Materials (Vol. 529, pp. 129-132). Trans Tech Publications. | 2013 | 120 | 0 | 677 | ceramic | TCP | water | 100 | 0.0 | 0 | 20.0 | 26.0 | 100 | powder | 0.25 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | exponential | 8.8 | 8.8 | 0 | 0 | 0 | lamellar | sintered | 68.0 | 48.0 | 27.0 | 21.0 | 0.0 | 4.0 | 0.0 | 0.0 |
Flauder, S., Gbureck, U., & Müller, F. A. (2013). ?-TCP scaffolds with an interconnected and aligned porosity fabricated via ice-templating. In Key Engineering Materials (Vol. 529, pp. 129-132). Trans Tech Publications. | 2013 | 120 | 0 | 678 | ceramic | TCP | water | 100 | 0.0 | 0 | 30.0 | 26.0 | 100 | powder | 0.25 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | exponential | 8.8 | 8.8 | 0 | 0 | 0 | lamellar | sintered | 51.0 | 39.0 | 24.0 | 15.0 | 0.0 | 11.0 | 0.0 | 0.0 |
Flauder, S., Gbureck, U., & Müller, F. A. (2013). ?-TCP scaffolds with an interconnected and aligned porosity fabricated via ice-templating. In Key Engineering Materials (Vol. 529, pp. 129-132). Trans Tech Publications. | 2013 | 120 | 0 | 679 | ceramic | TCP | water | 100 | 0.0 | 0 | 10.0 | 26.0 | 100 | powder | 0.25 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | exponential | 16.8 | 16.8 | 0 | 0 | 0 | lamellar | sintered | 82.0 | 40.0 | 30.0 | 10.0 | 0.0 | 0.8 | 0.0 | 0.0 |
Flauder, S., Gbureck, U., & Müller, F. A. (2013). ?-TCP scaffolds with an interconnected and aligned porosity fabricated via ice-templating. In Key Engineering Materials (Vol. 529, pp. 129-132). Trans Tech Publications. | 2013 | 120 | 0 | 680 | ceramic | TCP | water | 100 | 0.0 | 0 | 20.0 | 26.0 | 100 | powder | 0.25 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | exponential | 16.8 | 16.8 | 0 | 0 | 0 | lamellar | sintered | 68.0 | 33.0 | 18.0 | 15.0 | 0.0 | 9.5 | 0.0 | 0.0 |
Flauder, S., Gbureck, U., & Müller, F. A. (2013). ?-TCP scaffolds with an interconnected and aligned porosity fabricated via ice-templating. In Key Engineering Materials (Vol. 529, pp. 129-132). Trans Tech Publications. | 2013 | 120 | 0 | 681 | ceramic | TCP | water | 100 | 0.0 | 0 | 30.0 | 26.0 | 100 | powder | 0.25 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | exponential | 16.8 | 16.8 | 0 | 0 | 0 | lamellar | sintered | 51.0 | 37.0 | 23.0 | 14.0 | 0.0 | 30.0 | 0.0 | 0.0 |
Flauder, S., Gbureck, U., & Müller, F. A. (2013). ?-TCP scaffolds with an interconnected and aligned porosity fabricated via ice-templating. In Key Engineering Materials (Vol. 529, pp. 129-132). Trans Tech Publications. | 2013 | 120 | 0 | 682 | ceramic | TCP | water | 100 | 0.0 | 0 | 10.0 | 26.0 | 100 | powder | 0.25 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | exponential | 26.2 | 26.2 | 0 | 0 | 0 | lamellar | sintered | 82.0 | 20.0 | 15.0 | 5.0 | 0.0 | 1.5 | 0.0 | 0.0 |
Flauder, S., Gbureck, U., & Müller, F. A. (2013). ?-TCP scaffolds with an interconnected and aligned porosity fabricated via ice-templating. In Key Engineering Materials (Vol. 529, pp. 129-132). Trans Tech Publications. | 2013 | 120 | 0 | 683 | ceramic | TCP | water | 100 | 0.0 | 0 | 20.0 | 26.0 | 100 | powder | 0.25 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | exponential | 26.2 | 26.2 | 0 | 0 | 0 | lamellar | sintered | 68.0 | 24.0 | 13.0 | 11.0 | 0.0 | 12.0 | 0.0 | 0.0 |
Flauder, S., Gbureck, U., & Müller, F. A. (2013). ?-TCP scaffolds with an interconnected and aligned porosity fabricated via ice-templating. In Key Engineering Materials (Vol. 529, pp. 129-132). Trans Tech Publications. | 2013 | 120 | 0 | 684 | ceramic | TCP | water | 100 | 0.0 | 0 | 30.0 | 26.0 | 100 | powder | 0.25 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | exponential | 26.2 | 26.2 | 0 | 0 | 0 | lamellar | sintered | 51.0 | 24.0 | 15.0 | 9.0 | 0.0 | 45.0 | 0.0 | 0.0 |
Flauder, S., Gbureck, U., & Müller, F. A. (2014). Structure and mechanical properties of ?-TCP scaffolds prepared by ice-templating with preset ice front velocities. Acta biomaterialia, 10(12), 5148-5155. | 2014 | 121 | 10.1016/j.actbio.2014.08.020 | 685 | ceramic | TCP | water | 100 | 0.0 | 0 | 10.0 | 26.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | exponential | 8.8 | 8.8 | 0 | 20 | 20 | lamellar | sintered | 81.8 | 65.1 | 39.22 | 11.11 | 0.0 | 0.41 | 0.0 | 0.0 |
Flauder, S., Gbureck, U., & Müller, F. A. (2014). Structure and mechanical properties of ?-TCP scaffolds prepared by ice-templating with preset ice front velocities. Acta biomaterialia, 10(12), 5148-5155. | 2014 | 121 | 10.1016/j.actbio.2014.08.020 | 686 | ceramic | TCP | water | 100 | 0.0 | 0 | 20.0 | 26.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | exponential | 8.8 | 8.8 | 0 | 18 | 20 | lamellar | sintered | 67.0 | 60.0 | 25.89 | 20.29 | 0.0 | 3.08 | 0.0 | 0.0 |
Flauder, S., Gbureck, U., & Müller, F. A. (2014). Structure and mechanical properties of ?-TCP scaffolds prepared by ice-templating with preset ice front velocities. Acta biomaterialia, 10(12), 5148-5155. | 2014 | 121 | 10.1016/j.actbio.2014.08.020 | 687 | ceramic | TCP | water | 100 | 0.0 | 0 | 30.0 | 26.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | exponential | 8.8 | 8.8 | 0 | 17 | 20 | lamellar | sintered | 48.9 | 44.2 | 14.54 | 21.29 | 0.0 | 16.91 | 0.0 | 0.0 |
Flauder, S., Gbureck, U., & Müller, F. A. (2014). Structure and mechanical properties of ?-TCP scaffolds prepared by ice-templating with preset ice front velocities. Acta biomaterialia, 10(12), 5148-5155. | 2014 | 121 | 10.1016/j.actbio.2014.08.020 | 688 | ceramic | TCP | water | 100 | 0.0 | 0 | 10.0 | 26.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | exponential | 26.2 | 26.2 | 0 | 10 | 20 | lamellar | sintered | 81.8 | 25.0 | 15.03 | 4.36 | 0.0 | 1.14 | 0.0 | 0.0 |
Flauder, S., Gbureck, U., & Müller, F. A. (2014). Structure and mechanical properties of ?-TCP scaffolds prepared by ice-templating with preset ice front velocities. Acta biomaterialia, 10(12), 5148-5155. | 2014 | 121 | 10.1016/j.actbio.2014.08.020 | 689 | ceramic | TCP | water | 100 | 0.0 | 0 | 20.0 | 26.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | exponential | 26.2 | 26.2 | 0 | 18 | 20 | lamellar | sintered | 67.0 | 27.4 | 10.75 | 9.74 | 0.0 | 15.0 | 0.0 | 0.0 |
Flauder, S., Gbureck, U., & Müller, F. A. (2014). Structure and mechanical properties of ?-TCP scaffolds prepared by ice-templating with preset ice front velocities. Acta biomaterialia, 10(12), 5148-5155. | 2014 | 121 | 10.1016/j.actbio.2014.08.020 | 690 | ceramic | TCP | water | 100 | 0.0 | 0 | 30.0 | 26.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | exponential | 26.2 | 26.2 | 0 | 17 | 20 | lamellar | sintered | 48.9 | 25.2 | 7.91 | 12.74 | 0.0 | 40.0 | 0.0 | 0.0 |
Flauder, S., Gbureck, U., & Müller, F. A. (2014). Structure and mechanical properties of ?-TCP scaffolds prepared by ice-templating with preset ice front velocities. Acta biomaterialia, 10(12), 5148-5155. | 2014 | 121 | 10.1016/j.actbio.2014.08.020 | 5892 | ceramic | TCP | water | 100 | 0.0 | 0 | 20.0 | 26.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | exponential | 16.8 | 16.8 | 0 | 18 | 20 | lamellar | sintered | 67.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Flauder, S., Gbureck, U., & Müller, F. A. (2014). Structure and mechanical properties of ?-TCP scaffolds prepared by ice-templating with preset ice front velocities. Acta biomaterialia, 10(12), 5148-5155. | 2014 | 121 | 10.1016/j.actbio.2014.08.020 | 5893 | ceramic | TCP | water | 100 | 0.0 | 0 | 10.0 | 26.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | exponential | 8.8 | 8.8 | 0 | 20 | 20 | lamellar | sintered | 81.8 | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Flauder, S., Gbureck, U., & Müller, F. A. (2014). Structure and mechanical properties of ?-TCP scaffolds prepared by ice-templating with preset ice front velocities. Acta biomaterialia, 10(12), 5148-5155. | 2014 | 121 | 10.1016/j.actbio.2014.08.020 | 5894 | ceramic | TCP | water | 100 | 0.0 | 0 | 10.0 | 26.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | exponential | 26.2 | 26.2 | 0 | 20 | 20 | lamellar | sintered | 81.8 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Flauder, S., Gbureck, U., & Müller, F. A. (2014). Structure and mechanical properties of ?-TCP scaffolds prepared by ice-templating with preset ice front velocities. Acta biomaterialia, 10(12), 5148-5155. | 2014 | 121 | 10.1016/j.actbio.2014.08.020 | 5895 | ceramic | TCP | water | 100 | 0.0 | 0 | 20.0 | 26.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | exponential | 8.8 | 8.8 | 0 | 18 | 20 | lamellar | sintered | 67.0 | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Flauder, S., Gbureck, U., & Müller, F. A. (2014). Structure and mechanical properties of ?-TCP scaffolds prepared by ice-templating with preset ice front velocities. Acta biomaterialia, 10(12), 5148-5155. | 2014 | 121 | 10.1016/j.actbio.2014.08.020 | 5896 | ceramic | TCP | water | 100 | 0.0 | 0 | 20.0 | 26.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | exponential | 26.2 | 26.2 | 0 | 18 | 20 | lamellar | sintered | 67.0 | 27.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Flauder, S., Gbureck, U., & Müller, F. A. (2014). Structure and mechanical properties of ?-TCP scaffolds prepared by ice-templating with preset ice front velocities. Acta biomaterialia, 10(12), 5148-5155. | 2014 | 121 | 10.1016/j.actbio.2014.08.020 | 5897 | ceramic | TCP | water | 100 | 0.0 | 0 | 30.0 | 26.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | exponential | 8.8 | 8.8 | 0 | 17 | 20 | lamellar | sintered | 48.9 | 44.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Flauder, S., Gbureck, U., & Müller, F. A. (2014). Structure and mechanical properties of ?-TCP scaffolds prepared by ice-templating with preset ice front velocities. Acta biomaterialia, 10(12), 5148-5155. | 2014 | 121 | 10.1016/j.actbio.2014.08.020 | 5898 | ceramic | TCP | water | 100 | 0.0 | 0 | 30.0 | 26.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | exponential | 26.2 | 26.2 | 0 | 17 | 20 | lamellar | sintered | 48.9 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hess, U., Mikolajczyk, G., Treccani, L., Streckbein, P., Heiss, C., Odenbach, S., & Rezwan, K. (2016). Multi-loaded ceramic beads/matrix scaffolds obtained by combining ionotropic and freeze gelation for sustained and tuneable vancomycin release. Materials Science and Engineering: C, 67, 542-553. | 2016 | 203 | 10.1016/j.msec.2016.05.042 | 4953 | ceramic | TCP | water | 100 | 0.0 | 0 | 33.0 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hess, U., Mikolajczyk, G., Treccani, L., Streckbein, P., Heiss, C., Odenbach, S., & Rezwan, K. (2016). Multi-loaded ceramic beads/matrix scaffolds obtained by combining ionotropic and freeze gelation for sustained and tuneable vancomycin release. Materials Science and Engineering: C, 67, 542-553. | 2016 | 203 | 10.1016/j.msec.2016.05.042 | 4954 | ceramic | TCP | water | 100 | 0.0 | 0 | 33.0 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hess, U., Mikolajczyk, G., Treccani, L., Streckbein, P., Heiss, C., Odenbach, S., & Rezwan, K. (2016). Multi-loaded ceramic beads/matrix scaffolds obtained by combining ionotropic and freeze gelation for sustained and tuneable vancomycin release. Materials Science and Engineering: C, 67, 542-553. | 2016 | 203 | 10.1016/j.msec.2016.05.042 | 4955 | ceramic | TCP | water | 100 | 0.0 | 0 | 33.0 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, D. H., Kim, K. L., Chun, H. H., Kim, T. W., Park, H. C., & Yoon, S. Y. (2014). In vitro biodegradable and mechanical performance of biphasic calcium phosphate porous scaffolds with unidirectional macro-pore structure. Ceramics International, 40(6), 8293-8300. | 2014 | 257 | 10.1016/j.ceramint.2014.01.031 | 3116 | ceramic | TCP | TBA | 100 | 0.0 | 0 | 25.0 | 8.0 | 100 | 0 | 75.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 46.0 | 0.0 | 0.0 |
Kim, D. H., Kim, K. L., Chun, H. H., Kim, T. W., Park, H. C., & Yoon, S. Y. (2014). In vitro biodegradable and mechanical performance of biphasic calcium phosphate porous scaffolds with unidirectional macro-pore structure. Ceramics International, 40(6), 8293-8300. | 2014 | 257 | 10.1016/j.ceramint.2014.01.031 | 3117 | ceramic | TCP | TBA | 100 | 0.0 | 0 | 25.0 | 8.0 | 100 | 0 | 75.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 50 | honeycomb | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 26.0 | 0.0 | 0.0 |
Kim, D. H., Kim, K. L., Chun, H. H., Kim, T. W., Park, H. C., & Yoon, S. Y. (2014). In vitro biodegradable and mechanical performance of biphasic calcium phosphate porous scaffolds with unidirectional macro-pore structure. Ceramics International, 40(6), 8293-8300. | 2014 | 257 | 10.1016/j.ceramint.2014.01.031 | 3118 | ceramic | TCP | TBA | 100 | 0.0 | 0 | 25.0 | 8.0 | 100 | 0 | 75.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.75 | 0.0 | 0.0 |
Kim, D. H., Kim, K. L., Chun, H. H., Kim, T. W., Park, H. C., & Yoon, S. Y. (2014). In vitro biodegradable and mechanical performance of biphasic calcium phosphate porous scaffolds with unidirectional macro-pore structure. Ceramics International, 40(6), 8293-8300. | 2014 | 257 | 10.1016/j.ceramint.2014.01.031 | 3119 | ceramic | TCP | TBA | 100 | 0.0 | 0 | 25.0 | 8.0 | 100 | 0 | 75.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 24.0 | 0.0 | 0.0 |
Kim, D. H., Kim, K. L., Chun, H. H., Kim, T. W., Park, H. C., & Yoon, S. Y. (2014). In vitro biodegradable and mechanical performance of biphasic calcium phosphate porous scaffolds with unidirectional macro-pore structure. Ceramics International, 40(6), 8293-8300. | 2014 | 257 | 10.1016/j.ceramint.2014.01.031 | 3120 | ceramic | TCP | TBA | 100 | 0.0 | 0 | 25.0 | 8.0 | 100 | 0 | 75.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 |
Kim, D. H., Kim, K. L., Chun, H. H., Kim, T. W., Park, H. C., & Yoon, S. Y. (2014). In vitro biodegradable and mechanical performance of biphasic calcium phosphate porous scaffolds with unidirectional macro-pore structure. Ceramics International, 40(6), 8293-8300. | 2014 | 257 | 10.1016/j.ceramint.2014.01.031 | 3121 | ceramic | TCP | TBA | 100 | 0.0 | 0 | 25.0 | 8.0 | 100 | 0 | 75.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 34.0 | 0.0 | 0.0 |
Kim, D. H., Kim, K. L., Chun, H. H., Kim, T. W., Park, H. C., & Yoon, S. Y. (2014). In vitro biodegradable and mechanical performance of biphasic calcium phosphate porous scaffolds with unidirectional macro-pore structure. Ceramics International, 40(6), 8293-8300. | 2014 | 257 | 10.1016/j.ceramint.2014.01.031 | 3122 | ceramic | TCP | TBA | 100 | 0.0 | 0 | 25.0 | 8.0 | 100 | 0 | 75.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 24.0 | 0.0 | 0.0 |
Kim, D. H., Kim, K. L., Chun, H. H., Kim, T. W., Park, H. C., & Yoon, S. Y. (2014). In vitro biodegradable and mechanical performance of biphasic calcium phosphate porous scaffolds with unidirectional macro-pore structure. Ceramics International, 40(6), 8293-8300. | 2014 | 257 | 10.1016/j.ceramint.2014.01.031 | 3123 | ceramic | TCP | TBA | 100 | 0.0 | 0 | 25.0 | 8.0 | 100 | 0 | 75.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 24.0 | 0.0 | 0.0 |
Kim, D. H., Kim, K. L., Chun, H. H., Kim, T. W., Park, H. C., & Yoon, S. Y. (2014). In vitro biodegradable and mechanical performance of biphasic calcium phosphate porous scaffolds with unidirectional macro-pore structure. Ceramics International, 40(6), 8293-8300. | 2014 | 257 | 10.1016/j.ceramint.2014.01.031 | 3124 | ceramic | TCP | TBA | 100 | 0.0 | 0 | 25.0 | 8.0 | 100 | 0 | 75.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 22.0 | 0.0 | 0.0 |
Kim, D. H., Kim, K. L., Chun, H. H., Kim, T. W., Park, H. C., & Yoon, S. Y. (2014). In vitro biodegradable and mechanical performance of biphasic calcium phosphate porous scaffolds with unidirectional macro-pore structure. Ceramics International, 40(6), 8293-8300. | 2014 | 257 | 10.1016/j.ceramint.2014.01.031 | 3125 | ceramic | TCP | TBA | 100 | 0.0 | 0 | 25.0 | 8.0 | 100 | 0 | 75.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 |
Meurice, E., Bouchart, F., Hornez, J. C., Leriche, A., Hautcoeur, D., Lardot, V., ... & Monteiro, F. (2016). Osteoblastic cells colonization inside beta-TCP macroporous structures obtained by ice-templating. Journal of the European Ceramic Society, 36(12), 2895-2901. | 2015 | 385 | 10.1016/j.jeurceramsoc.2015.10.030 | 3759 | ceramic | TCP | water | 100 | 0.0 | 0 | 0.0 | 26.0 | 100 | 0 | 1.5 | 2 | 2 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 51.0 | 75.0 | 41.0 | 34.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Meurice, E., Bouchart, F., Hornez, J. C., Leriche, A., Hautcoeur, D., Lardot, V., ... & Monteiro, F. (2016). Osteoblastic cells colonization inside beta-TCP macroporous structures obtained by ice-templating. Journal of the European Ceramic Society, 36(12), 2895-2901. | 2015 | 385 | 10.1016/j.jeurceramsoc.2015.10.030 | 3760 | ceramic | TCP | water | 100 | 0.0 | 0 | 0.0 | 26.0 | 100 | 0 | 1.5 | 2 | 2 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 52.0 | 75.0 | 37.0 | 38.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Meurice, E., Bouchart, F., Hornez, J. C., Leriche, A., Hautcoeur, D., Lardot, V., ... & Monteiro, F. (2016). Osteoblastic cells colonization inside beta-TCP macroporous structures obtained by ice-templating. Journal of the European Ceramic Society, 36(12), 2895-2901. | 2015 | 385 | 10.1016/j.jeurceramsoc.2015.10.030 | 3761 | ceramic | TCP | water | 100 | 0.0 | 0 | 0.0 | 26.0 | 100 | 0 | 1.5 | 2 | 2 | 0 | 0.0 | 20.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 53.0 | 13.0 | 6.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Meurice, E., Bouchart, F., Hornez, J. C., Leriche, A., Hautcoeur, D., Lardot, V., ... & Monteiro, F. (2016). Osteoblastic cells colonization inside beta-TCP macroporous structures obtained by ice-templating. Journal of the European Ceramic Society, 36(12), 2895-2901. | 2015 | 385 | 10.1016/j.jeurceramsoc.2015.10.030 | 3762 | ceramic | TCP | water | 100 | 0.0 | 0 | 0.0 | 26.0 | 100 | 0 | 1.5 | 1 | 2 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 51.0 | 106.0 | 54.0 | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Meurice, E., Bouchart, F., Hornez, J. C., Leriche, A., Hautcoeur, D., Lardot, V., ... & Monteiro, F. (2016). Osteoblastic cells colonization inside beta-TCP macroporous structures obtained by ice-templating. Journal of the European Ceramic Society, 36(12), 2895-2901. | 2015 | 385 | 10.1016/j.jeurceramsoc.2015.10.030 | 3763 | ceramic | TCP | water | 100 | 0.0 | 0 | 0.0 | 26.0 | 100 | 0 | 1.5 | 5 | 2 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 50.0 | 90.0 | 53.0 | 37.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Meurice, E., Bouchart, F., Hornez, J. C., Leriche, A., Hautcoeur, D., Lardot, V., ... & Monteiro, F. (2016). Osteoblastic cells colonization inside beta-TCP macroporous structures obtained by ice-templating. Journal of the European Ceramic Society, 36(12), 2895-2901. | 2015 | 385 | 10.1016/j.jeurceramsoc.2015.10.030 | 3764 | ceramic | TCP | water | 100 | 0.0 | 0 | 0.0 | 26.0 | 100 | 0 | 1.5 | 2 | 2 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 67.0 | 106.0 | 67.0 | 39.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shazni, Z. A., Mariatti, M., Nurazreena, A., & Razak, K. A. (2016). Properties of Calcium Phosphate Scaffolds Produced by Freeze-Casting. Procedia Chemistry, 19, 174-180. | 2016 | 564 | 10.1016/j.proche.2016.03.090 | 2763 | ceramic | TCP | water | 100 | 0.0 | 0 | 24.0 | 26.0 | 100 | 0 | 0.0 | 3 | 0 | 3 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 54.0 | 0.0 | 102.0 | 0.0 | 0.0 | 0.85 | 0.0 | 0.0 |
Shazni, Z. A., Mariatti, M., Nurazreena, A., & Razak, K. A. (2016). Properties of Calcium Phosphate Scaffolds Produced by Freeze-Casting. Procedia Chemistry, 19, 174-180. | 2016 | 564 | 10.1016/j.proche.2016.03.090 | 2764 | ceramic | TCP | water | 100 | 0.0 | 0 | 24.0 | 26.0 | 100 | 0 | 0.0 | 3 | 0 | 3 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 64.3 | 0.0 | 113.0 | 0.0 | 0.0 | 0.7 | 0.0 | 0.0 |
Zairani, N. A. S., Jaafar, M., Ahmad, N., & Razak, K. A. (2016). Fabrication and characterization of porous ?-tricalcium phosphate scaffolds coated with alginate. Ceramics International, 42(4), 5141-5147. | 2016 | 748 | 10.1016/j.ceramint.2015.12.034 | 2130 | ceramic | TCP | water | 100 | 0.0 | 0 | 2.0 | 26.0 | 100 | 0 | 0.0 | 3 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 54.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.5 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Bal, B. S., & Brown, R. F. (2010). Preparation and in vitro evaluation of bioactive glass (13?93) scaffolds with oriented microstructures for repair and regeneration of load?bearing bones. Journal of Biomedical Materials Research Part A, 93(4), 1380-1390. | 2010 | 131 | 10.1002/jbm.a.32637 | 745 | ceramic | Bioglass | water | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Bal, B. S., & Brown, R. F. (2010). Preparation and in vitro evaluation of bioactive glass (13?93) scaffolds with oriented microstructures for repair and regeneration of load?bearing bones. Journal of Biomedical Materials Research Part A, 93(4), 1380-1390. | 2010 | 131 | 10.1002/jbm.a.32637 | 746 | ceramic | Bioglass | water | 100 | 0.0 | 0 | 12.5 | 10.0 | 100 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.5 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Bal, B. S., & Brown, R. F. (2010). Preparation and in vitro evaluation of bioactive glass (13?93) scaffolds with oriented microstructures for repair and regeneration of load?bearing bones. Journal of Biomedical Materials Research Part A, 93(4), 1380-1390. | 2010 | 131 | 10.1002/jbm.a.32637 | 747 | ceramic | Bioglass | water | 100 | 0.0 | 0 | 15.0 | 10.0 | 100 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 61.0 | 0.0 | 25.0 | 0.0 | 8.0 | 10.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Bal, B. S., & Brown, R. F. (2010). Preparation and in vitro evaluation of bioactive glass (13?93) scaffolds with oriented microstructures for repair and regeneration of load?bearing bones. Journal of Biomedical Materials Research Part A, 93(4), 1380-1390. | 2010 | 131 | 10.1002/jbm.a.32637 | 748 | ceramic | Bioglass | water | 100 | 0.0 | 0 | 20.0 | 10.0 | 100 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Bal, B. S., & Brown, R. F. (2010). Preparation and in vitro evaluation of bioactive glass (13?93) scaffolds with oriented microstructures for repair and regeneration of load?bearing bones. Journal of Biomedical Materials Research Part A, 93(4), 1380-1390. | 2010 | 131 | 10.1002/jbm.a.32637 | 749 | ceramic | Bioglass | water | 60 | dioxane | 40 | 10.0 | 10.0 | 100 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | columnar | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Bal, B. S., & Brown, R. F. (2010). Preparation and in vitro evaluation of bioactive glass (13?93) scaffolds with oriented microstructures for repair and regeneration of load?bearing bones. Journal of Biomedical Materials Research Part A, 93(4), 1380-1390. | 2010 | 131 | 10.1002/jbm.a.32637 | 750 | ceramic | Bioglass | water | 60 | dioxane | 40 | 12.5 | 10.0 | 100 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | columnar | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Bal, B. S., & Brown, R. F. (2010). Preparation and in vitro evaluation of bioactive glass (13?93) scaffolds with oriented microstructures for repair and regeneration of load?bearing bones. Journal of Biomedical Materials Research Part A, 93(4), 1380-1390. | 2010 | 131 | 10.1002/jbm.a.32637 | 751 | ceramic | Bioglass | water | 60 | dioxane | 40 | 15.0 | 10.0 | 100 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | columnar | sintered | 55.0 | 0.0 | 100.0 | 0.0 | 0.0 | 25.0 | 0.0 | 0.0 |
Fu, Q., Rahaman, M. N., Bal, B. S., & Brown, R. F. (2010). Preparation and in vitro evaluation of bioactive glass (13?93) scaffolds with oriented microstructures for repair and regeneration of load?bearing bones. Journal of Biomedical Materials Research Part A, 93(4), 1380-1390. | 2010 | 131 | 10.1002/jbm.a.32637 | 752 | ceramic | Bioglass | water | 60 | dioxane | 40 | 20.0 | 10.0 | 100 | powder | 5.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | columnar | sintered | 35.0 | 0.0 | 0.0 | 0.0 | 0.0 | 50.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., & Fu, Q. (2011). Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response. Acta biomaterialia, 7(1), 406-416. | 2011 | 350 | 10.1016/j.actbio.2010.08.025 | 3561 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 0.75 | 0 | 0 | 0 | 276.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 46 | 46 | cellular | sintered | 19.0 | 0.0 | 6.0 | 0.0 | 0.0 | 180.0 | 0.0 | 25000.0 |
Liu, X., Rahaman, M. N., & Fu, Q. (2011). Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response. Acta biomaterialia, 7(1), 406-416. | 2011 | 350 | 10.1016/j.actbio.2010.08.025 | 3562 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 0.75 | 0 | 0 | 0 | 276.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 37.0 | 0.0 | 38.0 | 0.0 | 0.0 | 66.0 | 0.0 | 10000.0 |
Liu, X., Rahaman, M. N., & Fu, Q. (2011). Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response. Acta biomaterialia, 7(1), 406-416. | 2011 | 350 | 10.1016/j.actbio.2010.08.025 | 3563 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 0.75 | 0 | 0 | 0 | 276.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 46.0 | 0.0 | 60.0 | 0.0 | 0.0 | 53.0 | 0.0 | 9000.0 |
Liu, X., Rahaman, M. N., & Fu, Q. (2011). Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response. Acta biomaterialia, 7(1), 406-416. | 2011 | 350 | 10.1016/j.actbio.2010.08.025 | 3564 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 0.75 | 0 | 0 | 0 | 276.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 52.0 | 0.0 | 90.0 | 0.0 | 0.0 | 27.0 | 0.0 | 7000.0 |
Liu, X., Rahaman, M. N., & Fu, Q. (2011). Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response. Acta biomaterialia, 7(1), 406-416. | 2011 | 350 | 10.1016/j.actbio.2010.08.025 | 3565 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 0.75 | 0 | 0 | 0 | 276.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 31 | 37 | dendritic | sintered | 59.0 | 0.0 | 115.0 | 0.0 | 0.0 | 16.0 | 0.0 | 4000.0 |
Liu, X., Rahaman, M. N., & Fu, Q. (2011). Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response. Acta biomaterialia, 7(1), 406-416. | 2011 | 350 | 10.1016/j.actbio.2010.08.025 | 3566 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 0.75 | 0 | 0 | 0 | 77.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 46 | 46 | cellular | sintered | 19.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., & Fu, Q. (2011). Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response. Acta biomaterialia, 7(1), 406-416. | 2011 | 350 | 10.1016/j.actbio.2010.08.025 | 3567 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 0.75 | 0 | 0 | 0 | 77.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 37.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., & Fu, Q. (2011). Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response. Acta biomaterialia, 7(1), 406-416. | 2011 | 350 | 10.1016/j.actbio.2010.08.025 | 3568 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 0.75 | 0 | 0 | 0 | 77.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 46.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., & Fu, Q. (2011). Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response. Acta biomaterialia, 7(1), 406-416. | 2011 | 350 | 10.1016/j.actbio.2010.08.025 | 3569 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 0.75 | 0 | 0 | 0 | 77.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., & Fu, Q. (2011). Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response. Acta biomaterialia, 7(1), 406-416. | 2011 | 350 | 10.1016/j.actbio.2010.08.025 | 3570 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 0.75 | 0 | 0 | 0 | 77.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 31 | 37 | dendritic | sintered | 59.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., & Fu, Q. (2011). Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response. Acta biomaterialia, 7(1), 406-416. | 2011 | 350 | 10.1016/j.actbio.2010.08.025 | 3571 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 276.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | frozen | 86.0 | 0.0 | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., & Fu, Q. (2011). Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response. Acta biomaterialia, 7(1), 406-416. | 2011 | 350 | 10.1016/j.actbio.2010.08.025 | 3572 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 276.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | frozen | 86.0 | 0.0 | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., & Fu, Q. (2011). Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response. Acta biomaterialia, 7(1), 406-416. | 2011 | 350 | 10.1016/j.actbio.2010.08.025 | 5919 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 276.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | frozen | 86.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., & Fu, Q. (2011). Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response. Acta biomaterialia, 7(1), 406-416. | 2011 | 350 | 10.1016/j.actbio.2010.08.025 | 5920 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 276.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | frozen | 86.0 | 0.0 | 130.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., & Fu, Q. (2011). Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response. Acta biomaterialia, 7(1), 406-416. | 2011 | 350 | 10.1016/j.actbio.2010.08.025 | 5921 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 276.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | frozen | 86.0 | 0.0 | 150.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., & Fu, Q. (2011). Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response. Acta biomaterialia, 7(1), 406-416. | 2011 | 350 | 10.1016/j.actbio.2010.08.025 | 5922 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 77.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | frozen | 86.0 | 0.0 | 160.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., & Fu, Q. (2011). Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response. Acta biomaterialia, 7(1), 406-416. | 2011 | 350 | 10.1016/j.actbio.2010.08.025 | 5923 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 77.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | frozen | 86.0 | 0.0 | 18.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., & Fu, Q. (2011). Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response. Acta biomaterialia, 7(1), 406-416. | 2011 | 350 | 10.1016/j.actbio.2010.08.025 | 5924 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 77.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | frozen | 86.0 | 0.0 | 79.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., & Fu, Q. (2011). Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response. Acta biomaterialia, 7(1), 406-416. | 2011 | 350 | 10.1016/j.actbio.2010.08.025 | 5925 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 77.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | frozen | 86.0 | 0.0 | 120.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., & Fu, Q. (2011). Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response. Acta biomaterialia, 7(1), 406-416. | 2011 | 350 | 10.1016/j.actbio.2010.08.025 | 5926 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 77.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | frozen | 86.0 | 0.0 | 125.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., Fu, Q., & Tomsia, A. P. (2012). Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions. Acta biomaterialia, 8(1), 415-423. | 2012 | 351 | 10.1016/j.actbio.2011.07.034 | 3573 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | frozen | 50.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., Fu, Q., & Tomsia, A. P. (2012). Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions. Acta biomaterialia, 8(1), 415-423. | 2012 | 351 | 10.1016/j.actbio.2011.07.034 | 3574 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | frozen | 50.0 | 0.0 | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., Fu, Q., & Tomsia, A. P. (2012). Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions. Acta biomaterialia, 8(1), 415-423. | 2012 | 351 | 10.1016/j.actbio.2011.07.034 | 3575 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | frozen | 50.0 | 0.0 | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., Fu, Q., & Tomsia, A. P. (2012). Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions. Acta biomaterialia, 8(1), 415-423. | 2012 | 351 | 10.1016/j.actbio.2011.07.034 | 3576 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 276.0 | 1.0 | 0.0 | one-sided | linear | 4.0 | 0.0 | 0 | 0 | 0 | dendritic | frozen | 50.0 | 0.0 | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., Fu, Q., & Tomsia, A. P. (2012). Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions. Acta biomaterialia, 8(1), 415-423. | 2012 | 351 | 10.1016/j.actbio.2011.07.034 | 3577 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 276.0 | 1.0 | 0.0 | one-sided | linear | 4.0 | 0.0 | 0 | 0 | 0 | dendritic | frozen | 50.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., Fu, Q., & Tomsia, A. P. (2012). Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions. Acta biomaterialia, 8(1), 415-423. | 2012 | 351 | 10.1016/j.actbio.2011.07.034 | 3578 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 276.0 | 1.0 | 0.0 | one-sided | linear | 4.0 | 0.0 | 0 | 0 | 0 | dendritic | frozen | 50.0 | 0.0 | 145.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., Fu, Q., & Tomsia, A. P. (2012). Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions. Acta biomaterialia, 8(1), 415-423. | 2012 | 351 | 10.1016/j.actbio.2011.07.034 | 3579 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 276.0 | 4.0 | 0.0 | one-sided | linear | 10.0 | 0.0 | 0 | 0 | 0 | dendritic | frozen | 50.0 | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., Fu, Q., & Tomsia, A. P. (2012). Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions. Acta biomaterialia, 8(1), 415-423. | 2012 | 351 | 10.1016/j.actbio.2011.07.034 | 3580 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 276.0 | 4.0 | 0.0 | one-sided | linear | 10.0 | 0.0 | 0 | 0 | 0 | dendritic | frozen | 50.0 | 0.0 | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., Fu, Q., & Tomsia, A. P. (2012). Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions. Acta biomaterialia, 8(1), 415-423. | 2012 | 351 | 10.1016/j.actbio.2011.07.034 | 3581 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 276.0 | 4.0 | 0.0 | one-sided | linear | 10.0 | 0.0 | 0 | 0 | 0 | dendritic | frozen | 50.0 | 0.0 | 90.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., Fu, Q., & Tomsia, A. P. (2012). Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions. Acta biomaterialia, 8(1), 415-423. | 2012 | 351 | 10.1016/j.actbio.2011.07.034 | 3582 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 276.0 | 7.0 | 0.0 | one-sided | linear | 16.0 | 0.0 | 0 | 0 | 0 | dendritic | frozen | 50.0 | 0.0 | 55.0 | 0.0 | 0.0 | 35.0 | 0.0 | 7000.0 |
Liu, X., Rahaman, M. N., Fu, Q., & Tomsia, A. P. (2012). Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions. Acta biomaterialia, 8(1), 415-423. | 2012 | 351 | 10.1016/j.actbio.2011.07.034 | 3583 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 276.0 | 7.0 | 0.0 | one-sided | linear | 16.0 | 0.0 | 0 | 0 | 0 | dendritic | frozen | 50.0 | 0.0 | 56.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., Fu, Q., & Tomsia, A. P. (2012). Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions. Acta biomaterialia, 8(1), 415-423. | 2012 | 351 | 10.1016/j.actbio.2011.07.034 | 3584 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 276.0 | 7.0 | 0.0 | one-sided | linear | 16.0 | 0.0 | 0 | 0 | 0 | dendritic | frozen | 50.0 | 0.0 | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., Fu, Q., & Tomsia, A. P. (2012). Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions. Acta biomaterialia, 8(1), 415-423. | 2012 | 351 | 10.1016/j.actbio.2011.07.034 | 3585 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 50.0 | 0.0 | 100.0 | 0.0 | 0.0 | 50.0 | 0.0 | 11000.0 |
Liu, X., Rahaman, M. N., Fu, Q., & Tomsia, A. P. (2012). Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions. Acta biomaterialia, 8(1), 415-423. | 2012 | 351 | 10.1016/j.actbio.2011.07.034 | 5927 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | frozen | 50.0 | 0.0 | 162.0 | 0.0 | 0.0 | 35.0 | 0.0 | 8300.0 |
Liu, X., Rahaman, M. N., Fu, Q., & Tomsia, A. P. (2012). Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions. Acta biomaterialia, 8(1), 415-423. | 2012 | 351 | 10.1016/j.actbio.2011.07.034 | 5928 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 50.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., Fu, Q., & Tomsia, A. P. (2012). Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions. Acta biomaterialia, 8(1), 415-423. | 2012 | 351 | 10.1016/j.actbio.2011.07.034 | 5929 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 276.0 | 1.0 | 0.0 | one-sided | linear | 4.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 50.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., Fu, Q., & Tomsia, A. P. (2012). Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions. Acta biomaterialia, 8(1), 415-423. | 2012 | 351 | 10.1016/j.actbio.2011.07.034 | 5930 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 276.0 | 1.0 | 0.0 | one-sided | linear | 4.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 50.0 | 0.0 | 100.0 | 0.0 | 0.0 | 37.0 | 0.0 | 8000.0 |
Liu, X., Rahaman, M. N., Fu, Q., & Tomsia, A. P. (2012). Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions. Acta biomaterialia, 8(1), 415-423. | 2012 | 351 | 10.1016/j.actbio.2011.07.034 | 5931 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 276.0 | 1.0 | 0.0 | one-sided | linear | 4.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 50.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., Fu, Q., & Tomsia, A. P. (2012). Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions. Acta biomaterialia, 8(1), 415-423. | 2012 | 351 | 10.1016/j.actbio.2011.07.034 | 5932 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 276.0 | 4.0 | 0.0 | one-sided | linear | 10.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 50.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., Fu, Q., & Tomsia, A. P. (2012). Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions. Acta biomaterialia, 8(1), 415-423. | 2012 | 351 | 10.1016/j.actbio.2011.07.034 | 5933 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 276.0 | 4.0 | 0.0 | one-sided | linear | 10.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 50.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., Fu, Q., & Tomsia, A. P. (2012). Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions. Acta biomaterialia, 8(1), 415-423. | 2012 | 351 | 10.1016/j.actbio.2011.07.034 | 5934 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 276.0 | 4.0 | 0.0 | one-sided | linear | 10.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 50.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., Fu, Q., & Tomsia, A. P. (2012). Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions. Acta biomaterialia, 8(1), 415-423. | 2012 | 351 | 10.1016/j.actbio.2011.07.034 | 5935 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 276.0 | 7.0 | 0.0 | one-sided | linear | 16.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 50.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Rahaman, M. N., Fu, Q., & Tomsia, A. P. (2012). Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions. Acta biomaterialia, 8(1), 415-423. | 2012 | 351 | 10.1016/j.actbio.2011.07.034 | 5936 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 276.0 | 7.0 | 0.0 | one-sided | linear | 16.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 50.0 | 0.0 | 100.0 | 0.0 | 0.0 | 47.0 | 0.0 | 11000.0 |
Liu, X., Rahaman, M. N., Fu, Q., & Tomsia, A. P. (2012). Porous and strong bioactive glass (13-93) scaffolds prepared by unidirectional freezing of camphene-based suspensions. Acta biomaterialia, 8(1), 415-423. | 2012 | 351 | 10.1016/j.actbio.2011.07.034 | 5937 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 10.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 276.0 | 7.0 | 0.0 | one-sided | linear | 16.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 50.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K. (2009). Freeze casting of porous bioactive glass and bioceramics. Journal of the American Ceramic Society, 92(s1). | 2009 | 377 | 10.1111/j.1551-2916.2008.02784.x | 3716 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 8.47 | 10.0 | 100 | 0 | 2.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 69.0 | 0.0 | 61.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K. (2009). Freeze casting of porous bioactive glass and bioceramics. Journal of the American Ceramic Society, 92(s1). | 2009 | 377 | 10.1111/j.1551-2916.2008.02784.x | 3717 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 13.7 | 10.0 | 100 | 0 | 2.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 60.0 | 0.0 | 56.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K. (2009). Freeze casting of porous bioactive glass and bioceramics. Journal of the American Ceramic Society, 92(s1). | 2009 | 377 | 10.1111/j.1551-2916.2008.02784.x | 3718 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 19.8 | 10.0 | 100 | 0 | 2.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 46.0 | 0.0 | 46.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K. (2009). Freeze casting of porous bioactive glass and bioceramics. Journal of the American Ceramic Society, 92(s1). | 2009 | 377 | 10.1111/j.1551-2916.2008.02784.x | 3719 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 27.03 | 10.0 | 100 | 0 | 2.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 32.0 | 0.0 | 31.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K. (2009). Freeze casting of porous bioactive glass and bioceramics. Journal of the American Ceramic Society, 92(s1). | 2009 | 377 | 10.1111/j.1551-2916.2008.02784.x | 3720 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 35.71 | 10.0 | 100 | 0 | 2.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 15.0 | 0.0 | 16.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K. (2009). Freeze casting of porous bioactive glass and bioceramics. Journal of the American Ceramic Society, 92(s1). | 2009 | 377 | 10.1111/j.1551-2916.2008.02784.x | 3721 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 9.0 | 10.0 | 0 | 0 | 2.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 65.0 | 0.0 | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K. (2009). Freeze casting of porous bioactive glass and bioceramics. Journal of the American Ceramic Society, 92(s1). | 2009 | 377 | 10.1111/j.1551-2916.2008.02784.x | 3722 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 14.6 | 10.0 | 0 | 0 | 2.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 54.0 | 0.0 | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K. (2009). Freeze casting of porous bioactive glass and bioceramics. Journal of the American Ceramic Society, 92(s1). | 2009 | 377 | 10.1111/j.1551-2916.2008.02784.x | 3723 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 21.0 | 10.0 | 0 | 0 | 2.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 40.0 | 0.0 | 45.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K. (2009). Freeze casting of porous bioactive glass and bioceramics. Journal of the American Ceramic Society, 92(s1). | 2009 | 377 | 10.1111/j.1551-2916.2008.02784.x | 3724 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 28.57 | 10.0 | 0 | 0 | 2.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 25.0 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K. (2009). Freeze casting of porous bioactive glass and bioceramics. Journal of the American Ceramic Society, 92(s1). | 2009 | 377 | 10.1111/j.1551-2916.2008.02784.x | 3725 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 37.0 | 10.0 | 0 | 0 | 2.0 | 0 | 5 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 15.0 | 0.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K., Winnett, J., van Grunsven, W., Lapworth, J., & Reilly, G. C. (2012). Three?dimensional porous bioscaffolds for bone tissue regeneration: Fabrication via adaptive foam reticulation and freeze casting techniques, characterization, and cell study. Journal of Biomedical Materials Research Part A, 100(11), 2948-2959. | 2012 | 379 | 10.1002/jbm.a.34238 | 4445 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 4.0 | 10.0 | 100 | powder | 2.0 | 0 | 5 | 0 | 195.0 | 0.33 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 82.0 | 0.0 | 142.0 | 0.0 | 0.0 | 0.75 | 0.0 | 0.0 |
Mallick, K. K., Winnett, J., van Grunsven, W., Lapworth, J., & Reilly, G. C. (2012). Three?dimensional porous bioscaffolds for bone tissue regeneration: Fabrication via adaptive foam reticulation and freeze casting techniques, characterization, and cell study. Journal of Biomedical Materials Research Part A, 100(11), 2948-2959. | 2012 | 379 | 10.1002/jbm.a.34238 | 4446 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 8.0 | 10.0 | 100 | powder | 2.0 | 0 | 5 | 0 | 195.0 | 0.33 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 70.0 | 0.0 | 130.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K., Winnett, J., van Grunsven, W., Lapworth, J., & Reilly, G. C. (2012). Three?dimensional porous bioscaffolds for bone tissue regeneration: Fabrication via adaptive foam reticulation and freeze casting techniques, characterization, and cell study. Journal of Biomedical Materials Research Part A, 100(11), 2948-2959. | 2012 | 379 | 10.1002/jbm.a.34238 | 4447 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 12.0 | 10.0 | 100 | powder | 2.0 | 0 | 5 | 0 | 195.0 | 0.33 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 62.0 | 125.0 | 120.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K., Winnett, J., van Grunsven, W., Lapworth, J., & Reilly, G. C. (2012). Three?dimensional porous bioscaffolds for bone tissue regeneration: Fabrication via adaptive foam reticulation and freeze casting techniques, characterization, and cell study. Journal of Biomedical Materials Research Part A, 100(11), 2948-2959. | 2012 | 379 | 10.1002/jbm.a.34238 | 4448 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 18.0 | 10.0 | 100 | powder | 2.0 | 0 | 5 | 0 | 195.0 | 0.33 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 48.0 | 0.0 | 105.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K., Winnett, J., van Grunsven, W., Lapworth, J., & Reilly, G. C. (2012). Three?dimensional porous bioscaffolds for bone tissue regeneration: Fabrication via adaptive foam reticulation and freeze casting techniques, characterization, and cell study. Journal of Biomedical Materials Research Part A, 100(11), 2948-2959. | 2012 | 379 | 10.1002/jbm.a.34238 | 4449 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 25.0 | 10.0 | 100 | powder | 2.0 | 0 | 5 | 0 | 195.0 | 0.33 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 30.0 | 0.0 | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mallick, K. K., Winnett, J., van Grunsven, W., Lapworth, J., & Reilly, G. C. (2012). Three?dimensional porous bioscaffolds for bone tissue regeneration: Fabrication via adaptive foam reticulation and freeze casting techniques, characterization, and cell study. Journal of Biomedical Materials Research Part A, 100(11), 2948-2959. | 2012 | 379 | 10.1002/jbm.a.34238 | 4450 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 33.0 | 10.0 | 100 | powder | 2.0 | 0 | 5 | 0 | 195.0 | 33.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 20.0 | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mozafari, M., & Moztarzadeh, F. (2014). Synthesis, characterization and biocompatibility evaluation of sol?gel derived bioactive glass scaffolds prepared by freeze casting method. Ceramics International, 40(4), 5349-5355. | 2014 | 401 | 10.1016/j.ceramint.2013.10.115 | 4945 | ceramic | Bioglass | water | 100 | 0.0 | 0 | 8.0 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 58.0 | 0.0 | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mozafari, M., & Moztarzadeh, F. (2014). Synthesis, characterization and biocompatibility evaluation of sol?gel derived bioactive glass scaffolds prepared by freeze casting method. Ceramics International, 40(4), 5349-5355. | 2014 | 401 | 10.1016/j.ceramint.2013.10.115 | 4946 | ceramic | Bioglass | water | 100 | 0.0 | 0 | 12.0 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 55.0 | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mozafari, M., & Moztarzadeh, F. (2014). Synthesis, characterization and biocompatibility evaluation of sol?gel derived bioactive glass scaffolds prepared by freeze casting method. Ceramics International, 40(4), 5349-5355. | 2014 | 401 | 10.1016/j.ceramint.2013.10.115 | 4947 | ceramic | Bioglass | water | 100 | 0.0 | 0 | 18.0 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 48.0 | 0.0 | 45.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mozafari, M., & Moztarzadeh, F. (2014). Synthesis, characterization and biocompatibility evaluation of sol?gel derived bioactive glass scaffolds prepared by freeze casting method. Ceramics International, 40(4), 5349-5355. | 2014 | 401 | 10.1016/j.ceramint.2013.10.115 | 4948 | ceramic | Bioglass | water | 100 | 0.0 | 0 | 25.0 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 38.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mozafari, M., & Moztarzadeh, F. (2014). Synthesis, characterization and biocompatibility evaluation of sol?gel derived bioactive glass scaffolds prepared by freeze casting method. Ceramics International, 40(4), 5349-5355. | 2014 | 401 | 10.1016/j.ceramint.2013.10.115 | 4949 | ceramic | Bioglass | water | 100 | 0.0 | 0 | 33.0 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 15.0 | 0.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Onna, D., Minaberry, Y., & Jobbágy, M. (2015). Hierarchical bioglass scaffolds: introducing the ?milky way? for templated bioceramics. Journal of Materials Chemistry B, 3(15), 2971-2977. | 2015 | 450 | 10.1039/c5tb00138b | 4783 | ceramic | Bioglass | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 12.0 | 0.0 | 2.6 | 0.0 | 0.0 | 0.0 |
Pourhaghgouy, M., Zamanian, A., Shahrezaee, M., & Masouleh, M. P. (2016). Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass. Materials Science and Engineering: C, 58, 180-186. | 2015 | 495 | 10.1016/j.msec.2015.07.065 | 5748 | ceramic | Bioglass | water | 100 | 0.0 | 0 | 4.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 92.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pourhaghgouy, M., Zamanian, A., Shahrezaee, M., & Masouleh, M. P. (2016). Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass. Materials Science and Engineering: C, 58, 180-186. | 2015 | 495 | 10.1016/j.msec.2015.07.065 | 5749 | ceramic | Bioglass | water | 100 | 0.0 | 0 | 13.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 90.59 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pourhaghgouy, M., Zamanian, A., Shahrezaee, M., & Masouleh, M. P. (2016). Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass. Materials Science and Engineering: C, 58, 180-186. | 2015 | 495 | 10.1016/j.msec.2015.07.065 | 5750 | ceramic | Bioglass | water | 100 | 0.0 | 0 | 25.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 86.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Song, J. H., Koh, Y. H., Kim, H. E., Li, L. H., & Bahn, H. J. (2006). Fabrication of a Porous Bioactive Glass?Ceramic Using Room?Temperature Freeze Casting. Journal of the American Ceramic Society, 89(8), 2649-2653. | 2006 | 586 | 10.1111/j.1551-2916.2006.01092.x | 2862 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 0.0 | 10.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 53.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Song, J. H., Koh, Y. H., Kim, H. E., Li, L. H., & Bahn, H. J. (2006). Fabrication of a Porous Bioactive Glass?Ceramic Using Room?Temperature Freeze Casting. Journal of the American Ceramic Society, 89(8), 2649-2653. | 2006 | 586 | 10.1111/j.1551-2916.2006.01092.x | 2863 | ceramic | Bioglass | camphene | 100 | 0.0 | 0 | 0.0 | 10.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 48.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Touri, R., Moztarzadeh, F., Sadeghian, Z., Bizari, D., Tahriri, M., & Mozafari, M. (2013). The use of carbon nanotubes to reinforce 45S5 bioglass-based scaffolds for tissue engineering applications. BioMed research international, 2013. | 2013 | 625 | 10.1155/2013/465086 | 2979 | ceramic | Bioglass | water | 100 | 0.0 | 0 | 20.0 | 10.0 | 100 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | 0.0 | 110.0 |
Touri, R., Moztarzadeh, F., Sadeghian, Z., Bizari, D., Tahriri, M., & Mozafari, M. (2013). The use of carbon nanotubes to reinforce 45S5 bioglass-based scaffolds for tissue engineering applications. BioMed research international, 2013. | 2013 | 625 | 10.1155/2013/465086 | 2980 | ceramic | Bioglass | water | 100 | 0.0 | 0 | 20.0 | 10.0 | 99 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.5 | 0.0 | 130.0 |
Touri, R., Moztarzadeh, F., Sadeghian, Z., Bizari, D., Tahriri, M., & Mozafari, M. (2013). The use of carbon nanotubes to reinforce 45S5 bioglass-based scaffolds for tissue engineering applications. BioMed research international, 2013. | 2013 | 625 | 10.1155/2013/465086 | 2981 | ceramic | Bioglass | water | 100 | 0.0 | 0 | 20.0 | 10.0 | 99 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.8 | 0.0 | 270.0 |
Touri, R., Moztarzadeh, F., Sadeghian, Z., Bizari, D., Tahriri, M., & Mozafari, M. (2013). The use of carbon nanotubes to reinforce 45S5 bioglass-based scaffolds for tissue engineering applications. BioMed research international, 2013. | 2013 | 625 | 10.1155/2013/465086 | 2982 | ceramic | Bioglass | water | 100 | 0.0 | 0 | 20.0 | 10.0 | 99 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 0.0 | 160.0 |
FUKASAWA, T., ANDO, M., & OHJI, T. (2002). Filtering properties of porous ceramics with unidirectionally aligned pores. Journal of the Ceramic Society of Japan, 110(1283), 627-631. | 2002 | 134 | http://doi.org/10.2109/jcersj.110.627 | 781 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 20.0 | 23.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 15 | 0 | dendritic | sintered | 66.5 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
FUKASAWA, T., ANDO, M., & OHJI, T. (2002). Filtering properties of porous ceramics with unidirectionally aligned pores. Journal of the Ceramic Society of Japan, 110(1283), 627-631. | 2002 | 134 | http://doi.org/10.2109/jcersj.110.627 | 782 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 20.0 | 23.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 15 | 0 | dendritic | sintered | 69.5 | 0.0 | 0.25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
FUKASAWA, T., ANDO, M., & OHJI, T. (2002). Filtering properties of porous ceramics with unidirectionally aligned pores. Journal of the Ceramic Society of Japan, 110(1283), 627-631. | 2002 | 134 | http://doi.org/10.2109/jcersj.110.627 | 783 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 20.0 | 23.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 15 | 0 | dendritic | sintered | 66.2 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
FUKASAWA, T., ANDO, M., & OHJI, T. (2002). Filtering properties of porous ceramics with unidirectionally aligned pores. Journal of the Ceramic Society of Japan, 110(1283), 627-631. | 2002 | 134 | http://doi.org/10.2109/jcersj.110.627 | 784 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 20.0 | 23.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 248.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 15 | 0 | dendritic | sintered | 62.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukasawa, T., Deng, Z. Y., Ando, M., Ohji, T., & Kanzaki, S. (2002). Synthesis of Porous Silicon Nitride with Unidirectionally Aligned Channels Using Freeze?Drying Process. Journal of the American Ceramic Society, 85(9), 2151-2155. | 2002 | 137 | 10.1111/j.1151-2916.2002.tb00426.x | 797 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 20.0 | 23.0 | 94 | powder | 0.55 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukasawa, T., Deng, Z. Y., Ando, M., Ohji, T., & Kanzaki, S. (2002). Synthesis of Porous Silicon Nitride with Unidirectionally Aligned Channels Using Freeze?Drying Process. Journal of the American Ceramic Society, 85(9), 2151-2155. | 2002 | 137 | 10.1111/j.1151-2916.2002.tb00426.x | 798 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 25.0 | 23.0 | 94 | powder | 0.55 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 60.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukasawa, T., Deng, Z. Y., Ando, M., Ohji, T., & Kanzaki, S. (2002). Synthesis of Porous Silicon Nitride with Unidirectionally Aligned Channels Using Freeze?Drying Process. Journal of the American Ceramic Society, 85(9), 2151-2155. | 2002 | 137 | 10.1111/j.1151-2916.2002.tb00426.x | 799 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 30.0 | 23.0 | 94 | powder | 0.55 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 55.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukasawa, T., Deng, Z. Y., Ando, M., Ohji, T., & Kanzaki, S. (2002). Synthesis of Porous Silicon Nitride with Unidirectionally Aligned Channels Using Freeze?Drying Process. Journal of the American Ceramic Society, 85(9), 2151-2155. | 2002 | 137 | 10.1111/j.1151-2916.2002.tb00426.x | 800 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 20.0 | 23.0 | 94 | powder | 0.55 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukasawa, T., Deng, Z. Y., Ando, M., Ohji, T., & Kanzaki, S. (2002). Synthesis of Porous Silicon Nitride with Unidirectionally Aligned Channels Using Freeze?Drying Process. Journal of the American Ceramic Society, 85(9), 2151-2155. | 2002 | 137 | 10.1111/j.1151-2916.2002.tb00426.x | 801 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 25.0 | 23.0 | 94 | powder | 0.55 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 58.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukasawa, T., Deng, Z. Y., Ando, M., Ohji, T., & Kanzaki, S. (2002). Synthesis of Porous Silicon Nitride with Unidirectionally Aligned Channels Using Freeze?Drying Process. Journal of the American Ceramic Society, 85(9), 2151-2155. | 2002 | 137 | 10.1111/j.1151-2916.2002.tb00426.x | 802 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 30.0 | 23.0 | 94 | powder | 0.55 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 49.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukasawa, T., Deng, Z. Y., Ando, M., Ohji, T., & Kanzaki, S. (2002). Synthesis of Porous Silicon Nitride with Unidirectionally Aligned Channels Using Freeze?Drying Process. Journal of the American Ceramic Society, 85(9), 2151-2155. | 2002 | 137 | 10.1111/j.1151-2916.2002.tb00426.x | 803 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 20.0 | 23.0 | 94 | powder | 0.55 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 69.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukasawa, T., Deng, Z. Y., Ando, M., Ohji, T., & Kanzaki, S. (2002). Synthesis of Porous Silicon Nitride with Unidirectionally Aligned Channels Using Freeze?Drying Process. Journal of the American Ceramic Society, 85(9), 2151-2155. | 2002 | 137 | 10.1111/j.1151-2916.2002.tb00426.x | 804 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 25.0 | 23.0 | 94 | powder | 0.55 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 58.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukasawa, T., Deng, Z. Y., Ando, M., Ohji, T., & Kanzaki, S. (2002). Synthesis of Porous Silicon Nitride with Unidirectionally Aligned Channels Using Freeze?Drying Process. Journal of the American Ceramic Society, 85(9), 2151-2155. | 2002 | 137 | 10.1111/j.1151-2916.2002.tb00426.x | 805 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 30.0 | 23.0 | 94 | powder | 0.55 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 49.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hu, H. L., Zeng, Y. P., Xia, Y. F., Yao, D. X., & Zuo, K. H. (2014). High-strength porous Si 3 N 4 ceramics prepared by freeze casting and silicon powder nitridation process. Materials Letters, 133, 285-288. | 2014 | 219 | 10.1016/j.matlet.2014.06.176 | 1915 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 28.57 | 70.0 | 50 | powder | 1.3 | 5 | 0 | 0 | 255.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 89 | cellular | sintered | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hu, H. L., Zeng, Y. P., Xia, Y. F., Yao, D. X., & Zuo, K. H. (2014). High-strength porous Si 3 N 4 ceramics prepared by freeze casting and silicon powder nitridation process. Materials Letters, 133, 285-288. | 2014 | 219 | 10.1016/j.matlet.2014.06.176 | 1916 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 28.57 | 70.0 | 50 | powder | 1.3 | 5 | 0 | 0 | 255.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 64 | cellular | sintered | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, D. S., & Kim, D. K. (2015). Hierarchical Structure of Porous Silicon Nitride Ceramics with Aligned Pore Channels Prepared by Ice?Templating and Nitridation of Silicon Powder. International Journal of Applied Ceramic Technology, 12(5), 921-931. | 2015 | 259 | 10.1111/ijac.12432 | 3126 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 20.0 | 70.0 | 100 | 0 | 7.0 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 5.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.0 | 120.0 | 30.0 | 85.0 | 0.0 | 18.0 | 0.0 | 0.0 |
Kim, D. S., & Kim, D. K. (2015). Hierarchical Structure of Porous Silicon Nitride Ceramics with Aligned Pore Channels Prepared by Ice?Templating and Nitridation of Silicon Powder. International Journal of Applied Ceramic Technology, 12(5), 921-931. | 2015 | 259 | 10.1111/ijac.12432 | 3127 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 20.0 | 70.0 | 100 | 0 | 7.0 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 10.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.0 | 90.0 | 22.0 | 61.0 | 0.0 | 25.0 | 0.0 | 0.0 |
Kim, D. S., & Kim, D. K. (2015). Hierarchical Structure of Porous Silicon Nitride Ceramics with Aligned Pore Channels Prepared by Ice?Templating and Nitridation of Silicon Powder. International Journal of Applied Ceramic Technology, 12(5), 921-931. | 2015 | 259 | 10.1111/ijac.12432 | 3128 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 20.0 | 70.0 | 100 | 0 | 7.0 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 25.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.0 | 42.0 | 15.0 | 30.0 | 0.0 | 33.0 | 0.0 | 0.0 |
Kim, D. S., & Kim, D. K. (2015). Hierarchical Structure of Porous Silicon Nitride Ceramics with Aligned Pore Channels Prepared by Ice?Templating and Nitridation of Silicon Powder. International Journal of Applied Ceramic Technology, 12(5), 921-931. | 2015 | 259 | 10.1111/ijac.12432 | 3129 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 20.0 | 70.0 | 100 | 0 | 7.0 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 60.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.0 | 38.0 | 12.0 | 30.0 | 0.0 | 35.0 | 0.0 | 0.0 |
Li, L., Wang, H., & Su, S. (2015). Porous Si 3 N 4 Ceramics Prepared by TBA-based Gel-casting. Journal of Materials Science & Technology, 31(3), 295-299. | 2015 | 312 | 10.1016/j.jmst.2014.01.016 | 3383 | ceramic | Si3N4 | TBA | 100 | 0.0 | 0 | 6.78 | 23.0 | 0 | 0 | 0.85 | 0 | 3 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 38.0 | 0.0 |
Li, L., Wang, H., & Su, S. (2015). Porous Si 3 N 4 Ceramics Prepared by TBA-based Gel-casting. Journal of Materials Science & Technology, 31(3), 295-299. | 2015 | 312 | 10.1016/j.jmst.2014.01.016 | 3384 | ceramic | Si3N4 | TBA | 100 | 0.0 | 0 | 11.08 | 23.0 | 0 | 0 | 0.85 | 0 | 3 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 52.0 | 0.0 |
Li, L., Wang, H., & Su, S. (2015). Porous Si 3 N 4 Ceramics Prepared by TBA-based Gel-casting. Journal of Materials Science & Technology, 31(3), 295-299. | 2015 | 312 | 10.1016/j.jmst.2014.01.016 | 3385 | ceramic | Si3N4 | TBA | 100 | 0.0 | 0 | 16.23 | 23.0 | 0 | 0 | 0.85 | 0 | 3 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 90.0 | 0.0 |
Li, L., Wang, H., & Su, S. (2015). Porous Si 3 N 4 Ceramics Prepared by TBA-based Gel-casting. Journal of Materials Science & Technology, 31(3), 295-299. | 2015 | 312 | 10.1016/j.jmst.2014.01.016 | 3386 | ceramic | Si3N4 | TBA | 100 | 0.0 | 0 | 22.52 | 23.0 | 0 | 0 | 0.85 | 0 | 3 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 48.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 125.0 | 0.0 |
Li, L., Wang, H., & Su, S. (2015). Porous Si 3 N 4 Ceramics Prepared by TBA-based Gel-casting. Journal of Materials Science & Technology, 31(3), 295-299. | 2015 | 312 | 10.1016/j.jmst.2014.01.016 | 3387 | ceramic | Si3N4 | TBA | 100 | 0.0 | 0 | 30.36 | 23.0 | 0 | 0 | 0.85 | 0 | 3 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 42.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 0.0 |
Li, L., Wang, H., & Su, S. (2015). Porous Si 3 N 4 Ceramics Prepared by TBA-based Gel-casting. Journal of Materials Science & Technology, 31(3), 295-299. | 2015 | 312 | 10.1016/j.jmst.2014.01.016 | 3388 | ceramic | Si3N4 | TBA | 100 | 0.0 | 0 | 35.06 | 23.0 | 0 | 0 | 0.85 | 0 | 3 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, L., Wang, H., & Su, S. (2015). Porous Si 3 N 4 Ceramics Prepared by TBA-based Gel-casting. Journal of Materials Science & Technology, 31(3), 295-299. | 2015 | 312 | 10.1016/j.jmst.2014.01.016 | 3389 | ceramic | Si3N4 | TBA | 100 | 0.0 | 0 | 40.42 | 23.0 | 0 | 0 | 0.85 | 0 | 3 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, L., Wang, H., & Su, S. (2015). Porous Si 3 N 4 Ceramics Prepared by TBA-based Gel-casting. Journal of Materials Science & Technology, 31(3), 295-299. | 2015 | 312 | 10.1016/j.jmst.2014.01.016 | 3390 | ceramic | Si3N4 | TBA | 100 | 0.0 | 0 | 16.23 | 23.0 | 0 | 0 | 0.85 | 0 | 3 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 51.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 95.0 | 0.0 |
Li, L., Wang, H., & Su, S. (2015). Porous Si 3 N 4 Ceramics Prepared by TBA-based Gel-casting. Journal of Materials Science & Technology, 31(3), 295-299. | 2015 | 312 | 10.1016/j.jmst.2014.01.016 | 3391 | ceramic | Si3N4 | TBA | 100 | 0.0 | 0 | 16.23 | 23.0 | 0 | 0 | 0.85 | 0 | 3 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 50.0 | 0.0 | 1.5 | 0.0 | 0.0 | 0.0 | 94.0 | 0.0 |
Li, L., Wang, H., & Su, S. (2015). Porous Si 3 N 4 Ceramics Prepared by TBA-based Gel-casting. Journal of Materials Science & Technology, 31(3), 295-299. | 2015 | 312 | 10.1016/j.jmst.2014.01.016 | 3392 | ceramic | Si3N4 | TBA | 100 | 0.0 | 0 | 16.23 | 23.0 | 0 | 0 | 0.85 | 0 | 3 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 50.0 | 0.0 | 2.0 | 0.0 | 0.0 | 0.0 | 125.0 | 0.0 |
Li, L., Wang, H., & Su, S. (2015). Porous Si 3 N 4 Ceramics Prepared by TBA-based Gel-casting. Journal of Materials Science & Technology, 31(3), 295-299. | 2015 | 312 | 10.1016/j.jmst.2014.01.016 | 3393 | ceramic | Si3N4 | TBA | 100 | 0.0 | 0 | 16.23 | 23.0 | 0 | 0 | 0.85 | 0 | 3 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 48.0 | 0.0 | 1.8 | 0.0 | 0.0 | 0.0 | 112.0 | 0.0 |
Ma, N., Du, L., Liu, W., Zhang, X., Huo, W., Qu, Y., ... & Yang, J. (2016). Preparation of porous Si 3 N 4 ceramics with unidirectionally aligned channels. Ceramics International, 42(7), 9145-9151. | 2016 | 369 | 10.1016/j.ceramint.2016.03.004 | 5776 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 73.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ma, N., Du, L., Liu, W., Zhang, X., Huo, W., Qu, Y., ... & Yang, J. (2016). Preparation of porous Si 3 N 4 ceramics with unidirectionally aligned channels. Ceramics International, 42(7), 9145-9151. | 2016 | 369 | 10.1016/j.ceramint.2016.03.004 | 5777 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ma, N., Du, L., Liu, W., Zhang, X., Huo, W., Qu, Y., ... & Yang, J. (2016). Preparation of porous Si 3 N 4 ceramics with unidirectionally aligned channels. Ceramics International, 42(7), 9145-9151. | 2016 | 369 | 10.1016/j.ceramint.2016.03.004 | 5778 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 68.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ma, N., Du, L., Liu, W., Zhang, X., Huo, W., Qu, Y., ... & Yang, J. (2016). Preparation of porous Si 3 N 4 ceramics with unidirectionally aligned channels. Ceramics International, 42(7), 9145-9151. | 2016 | 369 | 10.1016/j.ceramint.2016.03.004 | 5779 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 4.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ma, N., Du, L., Liu, W., Zhang, X., Huo, W., Qu, Y., ... & Yang, J. (2016). Preparation of porous Si 3 N 4 ceramics with unidirectionally aligned channels. Ceramics International, 42(7), 9145-9151. | 2016 | 369 | 10.1016/j.ceramint.2016.03.004 | 5780 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 56.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ma, N., Du, L., Liu, W., Zhang, X., Huo, W., Qu, Y., ... & Yang, J. (2016). Preparation of porous Si 3 N 4 ceramics with unidirectionally aligned channels. Ceramics International, 42(7), 9145-9151. | 2016 | 369 | 10.1016/j.ceramint.2016.03.004 | 5781 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 54.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Y., Zeng, Y. P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si 3 N 4 ceramics prepared by freeze-casting. Materials & Design, 33, 98-103. | 2012 | 672 | 10.1016/j.matdes.2011.06.023 | 2470 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 22.52 | 23.0 | 60 | 0 | 0.5 | 0 | 1 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 68.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 |
Xia, Y., Zeng, Y. P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si 3 N 4 ceramics prepared by freeze-casting. Materials & Design, 33, 98-103. | 2012 | 672 | 10.1016/j.matdes.2011.06.023 | 2471 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 22.52 | 23.0 | 60 | 0 | 0.5 | 0 | 1 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 68.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 |
Xia, Y., Zeng, Y. P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si 3 N 4 ceramics prepared by freeze-casting. Materials & Design, 33, 98-103. | 2012 | 672 | 10.1016/j.matdes.2011.06.023 | 2472 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 22.52 | 23.0 | 60 | 0 | 0.5 | 0 | 1 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 62.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20.0 | 0.0 |
Xia, Y., Zeng, Y. P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si 3 N 4 ceramics prepared by freeze-casting. Materials & Design, 33, 98-103. | 2012 | 672 | 10.1016/j.matdes.2011.06.023 | 2473 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 22.52 | 23.0 | 60 | 0 | 0.5 | 0 | 1 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 34.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 55.0 | 0.0 |
Xia, Y., Zeng, Y. P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si 3 N 4 ceramics prepared by freeze-casting. Materials & Design, 33, 98-103. | 2012 | 672 | 10.1016/j.matdes.2011.06.023 | 2474 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 22.52 | 23.0 | 60 | 0 | 0.5 | 0 | 1 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 68.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 |
Xia, Y., Zeng, Y. P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si 3 N 4 ceramics prepared by freeze-casting. Materials & Design, 33, 98-103. | 2012 | 672 | 10.1016/j.matdes.2011.06.023 | 2475 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 22.52 | 23.0 | 60 | 0 | 0.5 | 0 | 1 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 64.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 |
Xia, Y., Zeng, Y. P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si 3 N 4 ceramics prepared by freeze-casting. Materials & Design, 33, 98-103. | 2012 | 672 | 10.1016/j.matdes.2011.06.023 | 2476 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 22.52 | 23.0 | 60 | 0 | 0.5 | 0 | 1 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 50.0 | 0.0 |
Xia, Y., Zeng, Y. P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si 3 N 4 ceramics prepared by freeze-casting. Materials & Design, 33, 98-103. | 2012 | 672 | 10.1016/j.matdes.2011.06.023 | 2477 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 22.52 | 23.0 | 60 | 0 | 0.5 | 0 | 1 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 22.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 280.0 | 0.0 |
Xia, Y., Zeng, Y. P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si 3 N 4 ceramics prepared by freeze-casting. Materials & Design, 33, 98-103. | 2012 | 672 | 10.1016/j.matdes.2011.06.023 | 2478 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 22.52 | 23.0 | 60 | 0 | 0.5 | 0 | 1 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 62.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 40.0 | 0.0 |
Xia, Y., Zeng, Y. P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si 3 N 4 ceramics prepared by freeze-casting. Materials & Design, 33, 98-103. | 2012 | 672 | 10.1016/j.matdes.2011.06.023 | 2479 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 22.52 | 23.0 | 60 | 0 | 0.5 | 0 | 1 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 90.0 | 0.0 |
Xia, Y., Zeng, Y. P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si 3 N 4 ceramics prepared by freeze-casting. Materials & Design, 33, 98-103. | 2012 | 672 | 10.1016/j.matdes.2011.06.023 | 2480 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 22.52 | 23.0 | 60 | 0 | 0.5 | 0 | 1 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 32.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 220.0 | 0.0 |
Xia, Y., Zeng, Y. P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si 3 N 4 ceramics prepared by freeze-casting. Materials & Design, 33, 98-103. | 2012 | 672 | 10.1016/j.matdes.2011.06.023 | 2481 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 22.52 | 23.0 | 60 | 0 | 0.5 | 0 | 1 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 420.0 | 0.0 |
Xia, Y., Zeng, Y. P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si 3 N 4 ceramics prepared by freeze-casting. Materials & Design, 33, 98-103. | 2012 | 672 | 10.1016/j.matdes.2011.06.023 | 2482 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 22.52 | 23.0 | 60 | 0 | 0.5 | 0 | 1 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Y., Zeng, Y. P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si 3 N 4 ceramics prepared by freeze-casting. Materials & Design, 33, 98-103. | 2012 | 672 | 10.1016/j.matdes.2011.06.023 | 2483 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 22.52 | 23.0 | 60 | 0 | 0.5 | 0 | 1 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Y., Zeng, Y. P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si 3 N 4 ceramics prepared by freeze-casting. Materials & Design, 33, 98-103. | 2012 | 672 | 10.1016/j.matdes.2011.06.023 | 2484 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 22.52 | 23.0 | 60 | 0 | 0.5 | 0 | 1 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Y., Zeng, Y. P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si 3 N 4 ceramics prepared by freeze-casting. Materials & Design, 33, 98-103. | 2012 | 672 | 10.1016/j.matdes.2011.06.023 | 2485 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 22.52 | 23.0 | 60 | 0 | 0.5 | 0 | 1 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Y., Zeng, Y. P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si 3 N 4 ceramics prepared by freeze-casting. Materials & Design, 33, 98-103. | 2012 | 672 | 10.1016/j.matdes.2011.06.023 | 2486 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 22.52 | 23.0 | 60 | 0 | 0.5 | 0 | 1 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Y., Zeng, Y. P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si 3 N 4 ceramics prepared by freeze-casting. Materials & Design, 33, 98-103. | 2012 | 672 | 10.1016/j.matdes.2011.06.023 | 2487 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 22.52 | 23.0 | 60 | 0 | 0.5 | 0 | 1 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Y., Zeng, Y. P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si 3 N 4 ceramics prepared by freeze-casting. Materials & Design, 33, 98-103. | 2012 | 672 | 10.1016/j.matdes.2011.06.023 | 2488 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 22.52 | 23.0 | 60 | 0 | 0.5 | 0 | 1 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Y., Zeng, Y. P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si 3 N 4 ceramics prepared by freeze-casting. Materials & Design, 33, 98-103. | 2012 | 672 | 10.1016/j.matdes.2011.06.023 | 2489 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 22.52 | 23.0 | 60 | 0 | 0.5 | 0 | 1 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Y., Zeng, Y. P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si 3 N 4 ceramics prepared by freeze-casting. Materials & Design, 33, 98-103. | 2012 | 672 | 10.1016/j.matdes.2011.06.023 | 2490 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 22.52 | 23.0 | 60 | 0 | 0.5 | 0 | 1 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Y., Zeng, Y. P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si 3 N 4 ceramics prepared by freeze-casting. Materials & Design, 33, 98-103. | 2012 | 672 | 10.1016/j.matdes.2011.06.023 | 2491 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 22.52 | 23.0 | 60 | 0 | 0.5 | 0 | 1 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Y., Zeng, Y. P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si 3 N 4 ceramics prepared by freeze-casting. Materials & Design, 33, 98-103. | 2012 | 672 | 10.1016/j.matdes.2011.06.023 | 2492 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 22.52 | 23.0 | 60 | 0 | 0.5 | 0 | 1 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Y., Zeng, Y. P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si 3 N 4 ceramics prepared by freeze-casting. Materials & Design, 33, 98-103. | 2012 | 672 | 10.1016/j.matdes.2011.06.023 | 2493 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 22.52 | 23.0 | 60 | 0 | 0.5 | 0 | 1 | 0 | 255.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yao, D., Xia, Y., Zeng, Y. P., Zuo, K. H., & Jiang, D. (2012). Fabrication porous Si 3 N 4 ceramics via starch consolidation?freeze drying process. Materials Letters, 68, 75-77. | 2012 | 716 | 10.1016/j.matlet.2011.09.092 | 2711 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 23.0 | 23.0 | 97 | 0 | 0.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 71.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.7 | 0.0 |
Yao, D., Xia, Y., Zeng, Y. P., Zuo, K. H., & Jiang, D. (2012). Fabrication porous Si 3 N 4 ceramics via starch consolidation?freeze drying process. Materials Letters, 68, 75-77. | 2012 | 716 | 10.1016/j.matlet.2011.09.092 | 2712 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 23.0 | 23.0 | 97 | 0 | 0.5 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 74.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 22.7 | 0.0 |
Yao, D., Xia, Y., Zeng, Y. P., Zuo, K. H., & Jiang, D. (2012). Fabrication porous Si 3 N 4 ceramics via starch consolidation?freeze drying process. Materials Letters, 68, 75-77. | 2012 | 716 | 10.1016/j.matlet.2011.09.092 | 2713 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 23.0 | 23.0 | 97 | 0 | 0.5 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 73.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 42.3 | 0.0 |
Ye, F., Zhang, J., Zhang, H., & Liu, L. (2010). Effect of sintering temperature on microstructure and mechanical properties of highly porous silicon nitride ceramics produced by freeze casting. Materials Science and Engineering: A, 527(24), 6501-6504. | 2010 | 718 | 10.1016/j.msea.2010.07.038 | 2714 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 20.0 | 23.0 | 100 | 0 | 0.75 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 73.2 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ye, F., Zhang, J., Zhang, H., & Liu, L. (2010). Effect of sintering temperature on microstructure and mechanical properties of highly porous silicon nitride ceramics produced by freeze casting. Materials Science and Engineering: A, 527(24), 6501-6504. | 2010 | 718 | 10.1016/j.msea.2010.07.038 | 2715 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 20.0 | 23.0 | 100 | 0 | 0.75 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 72.6 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ye, F., Zhang, J., Zhang, H., & Liu, L. (2010). Effect of sintering temperature on microstructure and mechanical properties of highly porous silicon nitride ceramics produced by freeze casting. Materials Science and Engineering: A, 527(24), 6501-6504. | 2010 | 718 | 10.1016/j.msea.2010.07.038 | 2716 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 20.0 | 23.0 | 100 | 0 | 0.75 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 72.1 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ye, F., Zhang, J., Zhang, H., & Liu, L. (2010). Pore structure and mechanical properties in freeze cast porous Si 3 N 4 composites using polyacrylamide as an addition agent. Journal of Alloys and Compounds, 506(1), 423-427. | 2010 | 719 | 10.1016/j.jallcom.2010.07.020 | 2717 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 40.0 | 23.0 | 94 | 0 | 0.75 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 36.6 | 0.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ye, F., Zhang, J., Zhang, H., & Liu, L. (2010). Pore structure and mechanical properties in freeze cast porous Si 3 N 4 composites using polyacrylamide as an addition agent. Journal of Alloys and Compounds, 506(1), 423-427. | 2010 | 719 | 10.1016/j.jallcom.2010.07.020 | 2718 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 40.0 | 23.0 | 94 | 0 | 0.75 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 40.7 | 0.0 | 1.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ye, F., Zhang, J., Zhang, H., & Liu, L. (2010). Pore structure and mechanical properties in freeze cast porous Si 3 N 4 composites using polyacrylamide as an addition agent. Journal of Alloys and Compounds, 506(1), 423-427. | 2010 | 719 | 10.1016/j.jallcom.2010.07.020 | 2719 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 40.0 | 23.0 | 94 | 0 | 0.75 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 42.0 | 0.0 | 1.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ye, F., Zhang, J., Liu, L., & Zhan, H. (2011). Effect of solid content on pore structure and mechanical properties of porous silicon nitride ceramics produced by freeze casting. Materials Science and Engineering: A, 528(3), 1421-1424. | 2011 | 720 | 10.1016/j.msea.2010.10.066 | 2720 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 30.0 | 23.0 | 94 | 0 | 0.75 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 66.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ye, F., Zhang, J., Liu, L., & Zhan, H. (2011). Effect of solid content on pore structure and mechanical properties of porous silicon nitride ceramics produced by freeze casting. Materials Science and Engineering: A, 528(3), 1421-1424. | 2011 | 720 | 10.1016/j.msea.2010.10.066 | 2721 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 40.0 | 23.0 | 94 | 0 | 0.75 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 53.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ye, F., Zhang, J., Liu, L., & Zhan, H. (2011). Effect of solid content on pore structure and mechanical properties of porous silicon nitride ceramics produced by freeze casting. Materials Science and Engineering: A, 528(3), 1421-1424. | 2011 | 720 | 10.1016/j.msea.2010.10.066 | 2722 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 50.0 | 23.0 | 94 | 0 | 0.75 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 42.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yue, J., Dong, B., & Wang, H. (2011). Porous Si3N4 fabricated by phase separation method using benzoic acid as pore?forming agent. Journal of the American Ceramic Society, 94(7), 1989-1991. | 2011 | 745 | 10.1111/j.1551-2916.2011.04611.x | 2121 | ceramic | Si3N4 | benzoic acid | 100 | 0.0 | 0 | 16.0 | 23.0 | 94 | powder | 0.1 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 57.0 | 0.0 | 0.6 | 0.0 | 0.0 | 0.0 | 125.0 | 0.0 |
Yue, J., Dong, B., & Wang, H. (2011). Porous Si3N4 fabricated by phase separation method using benzoic acid as pore?forming agent. Journal of the American Ceramic Society, 94(7), 1989-1991. | 2011 | 745 | 10.1111/j.1551-2916.2011.04611.x | 2122 | ceramic | Si3N4 | benzoic acid | 100 | 0.0 | 0 | 16.0 | 23.0 | 94 | powder | 0.1 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 62.0 | 0.0 | 0.65 | 0.0 | 0.0 | 0.0 | 118.0 | 0.0 |
Yue, J., Dong, B., & Wang, H. (2011). Porous Si3N4 fabricated by phase separation method using benzoic acid as pore?forming agent. Journal of the American Ceramic Society, 94(7), 1989-1991. | 2011 | 745 | 10.1111/j.1551-2916.2011.04611.x | 2123 | ceramic | Si3N4 | benzoic acid | 100 | 0.0 | 0 | 16.0 | 23.0 | 94 | powder | 0.1 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 64.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 105.0 | 0.0 |
Yue, J., Dong, B., & Wang, H. (2011). Porous Si3N4 fabricated by phase separation method using benzoic acid as pore?forming agent. Journal of the American Ceramic Society, 94(7), 1989-1991. | 2011 | 745 | 10.1111/j.1551-2916.2011.04611.x | 2124 | ceramic | Si3N4 | benzoic acid | 100 | 0.0 | 0 | 16.0 | 23.0 | 94 | powder | 0.1 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 66.0 | 0.0 | 0.8 | 0.0 | 0.0 | 0.0 | 85.0 | 0.0 |
Zhang, R., Fang, D., Pei, Y., & Zhou, L. (2012). Microstructure, mechanical and dielectric properties of highly porous silicon nitride ceramics produced by a new water-based freeze casting. Ceramics International, 38(5), 4373-4377. | 2012 | 767 | 10.1016/j.ceramint.2012.03.056 | 2252 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 25.0 | 23.0 | 93 | 0 | 2.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 62.0 | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | 34.0 | 0.0 |
Zhang, R., Fang, D., Pei, Y., & Zhou, L. (2012). Microstructure, mechanical and dielectric properties of highly porous silicon nitride ceramics produced by a new water-based freeze casting. Ceramics International, 38(5), 4373-4377. | 2012 | 767 | 10.1016/j.ceramint.2012.03.056 | 2253 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 25.0 | 23.0 | 93 | 0 | 2.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 35.0 | 0.0 |
Zhang, R., Fang, D., Pei, Y., & Zhou, L. (2012). Microstructure, mechanical and dielectric properties of highly porous silicon nitride ceramics produced by a new water-based freeze casting. Ceramics International, 38(5), 4373-4377. | 2012 | 767 | 10.1016/j.ceramint.2012.03.056 | 2254 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 25.0 | 23.0 | 93 | 0 | 2.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14.0 | 0.0 |
Zhang, R., Fang, D., Pei, Y., & Zhou, L. (2012). Microstructure, mechanical and dielectric properties of highly porous silicon nitride ceramics produced by a new water-based freeze casting. Ceramics International, 38(5), 4373-4377. | 2012 | 767 | 10.1016/j.ceramint.2012.03.056 | 2255 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 25.0 | 23.0 | 93 | 0 | 2.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 25.0 | 0.0 |
Zhang, R., Fang, D., Pei, Y., & Zhou, L. (2012). Microstructure, mechanical and dielectric properties of highly porous silicon nitride ceramics produced by a new water-based freeze casting. Ceramics International, 38(5), 4373-4377. | 2012 | 768 | 10.1016/j.ceramint.2012.01.012 | 2256 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 25.0 | 23.0 | 93 | 0 | 2.0 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 12 | dendritic | sintered | 62.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 33.5 | 0.0 |
Zhang, R., Fang, D., Pei, Y., & Zhou, L. (2012). Microstructure, mechanical and dielectric properties of highly porous silicon nitride ceramics produced by a new water-based freeze casting. Ceramics International, 38(5), 4373-4377. | 2012 | 768 | 10.1016/j.ceramint.2012.01.012 | 2257 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 20.0 | 23.0 | 93 | 0 | 2.0 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 18 | dendritic | sintered | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 26.9 | 0.0 |
Zhang, R., Fang, D., Pei, Y., & Zhou, L. (2012). Microstructure, mechanical and dielectric properties of highly porous silicon nitride ceramics produced by a new water-based freeze casting. Ceramics International, 38(5), 4373-4377. | 2012 | 768 | 10.1016/j.ceramint.2012.01.012 | 2258 | ceramic | Si3N4 | water | 100 | 0.0 | 0 | 15.0 | 23.0 | 93 | 0 | 2.0 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 25 | dendritic | sintered | 74.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14.3 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication of highly porous honeycomb-shaped mullite?zirconia insulators by gelation freezing. Advanced Powder Technology, 27(3), 908-913. | 2016 | 140 | 10.1016/j.apt.2016.02.015 | 4320 | ceramic | Mullite-2wt% ZrO2 | water | 100 | 0.0 | 0 | 0.0 | 21.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 213.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 89.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.3 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication of highly porous honeycomb-shaped mullite?zirconia insulators by gelation freezing. Advanced Powder Technology, 27(3), 908-913. | 2016 | 140 | 10.1016/j.apt.2016.02.015 | 4321 | ceramic | Mullite-2wt% ZrO2 | water | 100 | 0.0 | 0 | 0.0 | 21.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 213.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 90.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.1 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication of highly porous honeycomb-shaped mullite?zirconia insulators by gelation freezing. Advanced Powder Technology, 27(3), 908-913. | 2016 | 140 | 10.1016/j.apt.2016.02.015 | 4322 | ceramic | Mullite-2wt% ZrO2 | water | 100 | 0.0 | 0 | 0.0 | 21.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 213.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 91.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.8 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication of highly porous honeycomb-shaped mullite?zirconia insulators by gelation freezing. Advanced Powder Technology, 27(3), 908-913. | 2016 | 140 | 10.1016/j.apt.2016.02.015 | 4323 | ceramic | Mullite-2wt% ZrO2 | water | 100 | 0.0 | 0 | 0.0 | 21.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 91.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9.4 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication of highly porous honeycomb-shaped mullite?zirconia insulators by gelation freezing. Advanced Powder Technology, 27(3), 908-913. | 2016 | 140 | 10.1016/j.apt.2016.02.015 | 4324 | ceramic | Mullite-2wt% ZrO2 | water | 100 | 0.0 | 0 | 0.0 | 21.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 213.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 86.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.3 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication of highly porous honeycomb-shaped mullite?zirconia insulators by gelation freezing. Advanced Powder Technology, 27(3), 908-913. | 2016 | 140 | 10.1016/j.apt.2016.02.015 | 4325 | ceramic | Mullite-2wt% ZrO2 | water | 100 | 0.0 | 0 | 0.0 | 21.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 213.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 88.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9.8 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication of highly porous honeycomb-shaped mullite?zirconia insulators by gelation freezing. Advanced Powder Technology, 27(3), 908-913. | 2016 | 140 | 10.1016/j.apt.2016.02.015 | 4326 | ceramic | Mullite-2wt% ZrO2 | water | 100 | 0.0 | 0 | 0.0 | 21.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 213.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 89.0 | 0.0 | 0.0 | 0.0 | 0.0 | 11.3 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication of highly porous honeycomb-shaped mullite?zirconia insulators by gelation freezing. Advanced Powder Technology, 27(3), 908-913. | 2016 | 140 | 10.1016/j.apt.2016.02.015 | 4327 | ceramic | Mullite-2wt% ZrO2 | water | 100 | 0.0 | 0 | 0.0 | 21.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 213.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 91.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.9 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication of highly porous honeycomb-shaped mullite?zirconia insulators by gelation freezing. Advanced Powder Technology, 27(3), 908-913. | 2016 | 140 | 10.1016/j.apt.2016.02.015 | 4328 | ceramic | Mullite-2wt% ZrO2 | water | 100 | 0.0 | 0 | 0.0 | 21.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 89.0 | 0.0 | 0.0 | 0.0 | 0.0 | 16.7 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2016). Fabrication of highly porous honeycomb-shaped mullite?zirconia insulators by gelation freezing. Advanced Powder Technology, 27(3), 908-913. | 2016 | 140 | 10.1016/j.apt.2016.02.015 | 4329 | ceramic | Mullite-2wt% ZrO2 | water | 100 | 0.0 | 0 | 0.0 | 21.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 92.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.3 | 0.0 | 0.0 |
Fukushima, M., Nakata, M., & Yoshizawa, Y. I. (2008). Fabrication and properties of ultra highly porous cordierite with oriented micrometer-sized cylindrical pores by gelation and freezing method. Journal of the Ceramic Society of Japan, 116(1360), 1322-1325. | 2008 | 141 | http://doi.org/10.2109/jcersj2.116.1322 | 823 | ceramic | cordierite | water | 100 | 0.0 | 0 | 5.0 | 43.0 | 100 | powder | 1.7 | 2 | 0 | 0 | 223.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 93.0 | 0.0 | 46.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., Nakata, M., & Yoshizawa, Y. I. (2008). Fabrication and properties of ultra highly porous cordierite with oriented micrometer-sized cylindrical pores by gelation and freezing method. Journal of the Ceramic Society of Japan, 116(1360), 1322-1325. | 2008 | 141 | http://doi.org/10.2109/jcersj2.116.1322 | 824 | ceramic | cordierite | water | 100 | 0.0 | 0 | 10.0 | 43.0 | 100 | powder | 1.7 | 2 | 0 | 0 | 223.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 87.0 | 28.0 | 25.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., Nakata, M., & Yoshizawa, Y. I. (2008). Fabrication and properties of ultra highly porous cordierite with oriented micrometer-sized cylindrical pores by gelation and freezing method. Journal of the Ceramic Society of Japan, 116(1360), 1322-1325. | 2008 | 141 | http://doi.org/10.2109/jcersj2.116.1322 | 825 | ceramic | cordierite | water | 100 | 0.0 | 0 | 5.0 | 43.0 | 100 | powder | 1.7 | 2 | 0 | 0 | 223.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 92.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., Nakata, M., & Yoshizawa, Y. I. (2008). Fabrication and properties of ultra highly porous cordierite with oriented micrometer-sized cylindrical pores by gelation and freezing method. Journal of the Ceramic Society of Japan, 116(1360), 1322-1325. | 2008 | 141 | http://doi.org/10.2109/jcersj2.116.1322 | 826 | ceramic | cordierite | water | 100 | 0.0 | 0 | 10.0 | 43.0 | 100 | powder | 1.7 | 2 | 0 | 0 | 223.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 86.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.1 | 0.0 | 0.0 |
Fukushima, M., Nakata, M., & Yoshizawa, Y. I. (2008). Fabrication and properties of ultra highly porous cordierite with oriented micrometer-sized cylindrical pores by gelation and freezing method. Journal of the Ceramic Society of Japan, 116(1360), 1322-1325. | 2008 | 141 | http://doi.org/10.2109/jcersj2.116.1322 | 827 | ceramic | cordierite | water | 100 | 0.0 | 0 | 5.0 | 43.0 | 100 | powder | 1.7 | 2 | 0 | 0 | 223.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 88.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., Nakata, M., & Yoshizawa, Y. I. (2008). Fabrication and properties of ultra highly porous cordierite with oriented micrometer-sized cylindrical pores by gelation and freezing method. Journal of the Ceramic Society of Japan, 116(1360), 1322-1325. | 2008 | 141 | http://doi.org/10.2109/jcersj2.116.1322 | 828 | ceramic | cordierite | water | 100 | 0.0 | 0 | 10.0 | 43.0 | 100 | powder | 1.7 | 2 | 0 | 0 | 223.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., Nakata, M., & Yoshizawa, Y. I. (2008). Fabrication and properties of ultra highly porous cordierite with oriented micrometer-sized cylindrical pores by gelation and freezing method. Journal of the Ceramic Society of Japan, 116(1360), 1322-1325. | 2008 | 141 | http://doi.org/10.2109/jcersj2.116.1322 | 829 | ceramic | cordierite | water | 100 | 0.0 | 0 | 5.0 | 43.0 | 100 | powder | 1.7 | 2 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 80.0 | 110.0 | 182.0 | 29.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., Nakata, M., & Yoshizawa, Y. I. (2009, December). Processing Strategy for Producing Ultra-Highly Porous Cordierite. In Ceramic Engineering and Science Proceedings (Vol. 30, No. 8, p. 59). | 2010 | 143 | 10.1002/9780470584392.ch9 | 835 | ceramic | cordierite | water | 100 | 0.0 | 0 | 0.0 | 43.0 | 100 | powder | 1.7 | 2 | 0 | 0 | 223.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 94.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., Nakata, M., & Yoshizawa, Y. I. (2009, December). Processing Strategy for Producing Ultra-Highly Porous Cordierite. In Ceramic Engineering and Science Proceedings (Vol. 30, No. 8, p. 59). | 2010 | 143 | 10.1002/9780470584392.ch9 | 836 | ceramic | cordierite | water | 100 | 0.0 | 0 | 0.0 | 43.0 | 100 | powder | 1.7 | 2 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 87.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., Nakata, M., & Yoshizawa, Y. I. (2009, December). Processing Strategy for Producing Ultra-Highly Porous Cordierite. In Ceramic Engineering and Science Proceedings (Vol. 30, No. 8, p. 59). | 2010 | 143 | 10.1002/9780470584392.ch9 | 837 | ceramic | cordierite | water | 100 | 0.0 | 0 | 0.0 | 43.0 | 100 | powder | 1.7 | 2 | 0 | 0 | 223.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 94.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., Nakata, M., & Yoshizawa, Y. I. (2009, December). Processing Strategy for Producing Ultra-Highly Porous Cordierite. In Ceramic Engineering and Science Proceedings (Vol. 30, No. 8, p. 59). | 2010 | 143 | 10.1002/9780470584392.ch9 | 838 | ceramic | cordierite | water | 100 | 0.0 | 0 | 0.0 | 43.0 | 100 | powder | 1.7 | 2 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 87.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., Nakata, M., & Yoshizawa, Y. I. (2009, December). Processing Strategy for Producing Ultra-Highly Porous Cordierite. In Ceramic Engineering and Science Proceedings (Vol. 30, No. 8, p. 59). | 2010 | 143 | 10.1002/9780470584392.ch9 | 839 | ceramic | cordierite | water | 100 | 0.0 | 0 | 0.0 | 43.0 | 100 | powder | 1.7 | 2 | 0 | 0 | 223.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 93.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., Nakata, M., & Yoshizawa, Y. I. (2009, December). Processing Strategy for Producing Ultra-Highly Porous Cordierite. In Ceramic Engineering and Science Proceedings (Vol. 30, No. 8, p. 59). | 2010 | 143 | 10.1002/9780470584392.ch9 | 840 | ceramic | cordierite | water | 100 | 0.0 | 0 | 0.0 | 43.0 | 100 | powder | 1.7 | 2 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., Nakata, M., & Yoshizawa, Y. I. (2009, December). Processing Strategy for Producing Ultra-Highly Porous Cordierite. In Ceramic Engineering and Science Proceedings (Vol. 30, No. 8, p. 59). | 2010 | 143 | 10.1002/9780470584392.ch9 | 841 | ceramic | cordierite | water | 100 | 0.0 | 0 | 0.0 | 43.0 | 100 | powder | 1.7 | 2 | 0 | 0 | 223.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 93.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., Nakata, M., & Yoshizawa, Y. I. (2009, December). Processing Strategy for Producing Ultra-Highly Porous Cordierite. In Ceramic Engineering and Science Proceedings (Vol. 30, No. 8, p. 59). | 2010 | 143 | 10.1002/9780470584392.ch9 | 842 | ceramic | cordierite | water | 100 | 0.0 | 0 | 0.0 | 43.0 | 100 | powder | 1.7 | 2 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., Nakata, M., & Yoshizawa, Y. I. (2009, December). Processing Strategy for Producing Ultra-Highly Porous Cordierite. In Ceramic Engineering and Science Proceedings (Vol. 30, No. 8, p. 59). | 2010 | 143 | 10.1002/9780470584392.ch9 | 843 | ceramic | cordierite | water | 100 | 0.0 | 0 | 0.0 | 43.0 | 100 | powder | 1.7 | 2 | 0 | 0 | 223.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 87.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.1 | 0.0 | 0.0 |
Fukushima, M., Nakata, M., & Yoshizawa, Y. I. (2009, December). Processing Strategy for Producing Ultra-Highly Porous Cordierite. In Ceramic Engineering and Science Proceedings (Vol. 30, No. 8, p. 59). | 2010 | 143 | 10.1002/9780470584392.ch9 | 844 | ceramic | cordierite | water | 100 | 0.0 | 0 | 0.0 | 43.0 | 100 | powder | 1.7 | 2 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., Nakata, M., & Yoshizawa, Y. I. (2009, December). Processing Strategy for Producing Ultra-Highly Porous Cordierite. In Ceramic Engineering and Science Proceedings (Vol. 30, No. 8, p. 59). | 2010 | 143 | 10.1002/9780470584392.ch9 | 845 | ceramic | cordierite | water | 100 | 0.0 | 0 | 0.0 | 43.0 | 100 | powder | 1.7 | 2 | 0 | 0 | 223.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 87.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.1 | 0.0 | 0.0 |
Fukushima, M., Nakata, M., & Yoshizawa, Y. I. (2009, December). Processing Strategy for Producing Ultra-Highly Porous Cordierite. In Ceramic Engineering and Science Proceedings (Vol. 30, No. 8, p. 59). | 2010 | 143 | 10.1002/9780470584392.ch9 | 846 | ceramic | cordierite | water | 100 | 0.0 | 0 | 0.0 | 43.0 | 100 | powder | 1.7 | 2 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2015). Fabrication of highly porous nickel with oriented micrometer-sized cylindrical pores by gelation freezing method. Materials Letters, 153, 99-101. | 2015 | 147 | 10.1016/j.matlet.2015.04.029 | 865 | metal | Ni | water | 100 | 0.0 | 0 | 5.0 | 22.0 | 100 | powder | 0.4 | 5 | 0 | 0 | 263.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 18 | honeycomb | sintered | 91.0 | 0.0 | 176.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2015). Fabrication of highly porous nickel with oriented micrometer-sized cylindrical pores by gelation freezing method. Materials Letters, 153, 99-101. | 2015 | 147 | 10.1016/j.matlet.2015.04.029 | 866 | metal | Ni | water | 100 | 0.0 | 0 | 10.0 | 22.0 | 100 | powder | 0.4 | 10 | 0 | 0 | 263.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 18 | honeycomb | sintered | 85.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2015). Fabrication of highly porous nickel with oriented micrometer-sized cylindrical pores by gelation freezing method. Materials Letters, 153, 99-101. | 2015 | 147 | 10.1016/j.matlet.2015.04.029 | 867 | metal | Ni | water | 100 | 0.0 | 0 | 5.0 | 22.0 | 100 | powder | 0.4 | 5 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 18 | honeycomb | sintered | 91.0 | 0.0 | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2015). Fabrication of highly porous nickel with oriented micrometer-sized cylindrical pores by gelation freezing method. Materials Letters, 153, 99-101. | 2015 | 147 | 10.1016/j.matlet.2015.04.029 | 868 | metal | Ni | water | 100 | 0.0 | 0 | 10.0 | 22.0 | 100 | powder | 0.4 | 10 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 18 | honeycomb | sintered | 85.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2015). Fabrication of highly porous nickel with oriented micrometer-sized cylindrical pores by gelation freezing method. Materials Letters, 153, 99-101. | 2015 | 147 | 10.1016/j.matlet.2015.04.029 | 869 | metal | Ni | water | 100 | 0.0 | 0 | 5.0 | 22.0 | 100 | powder | 0.4 | 5 | 0 | 0 | 233.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 18 | honeycomb | sintered | 91.0 | 0.0 | 45.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Fukushima, M., & Yoshizawa, Y. I. (2015). Fabrication of highly porous nickel with oriented micrometer-sized cylindrical pores by gelation freezing method. Materials Letters, 153, 99-101. | 2015 | 147 | 10.1016/j.matlet.2015.04.029 | 870 | metal | Ni | water | 100 | 0.0 | 0 | 10.0 | 22.0 | 100 | powder | 0.4 | 10 | 0 | 0 | 233.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 18 | honeycomb | sintered | 85.0 | 0.0 | 49.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jo, H., Kim, M. J., Choi, H., Sung, Y. E., Choe, H., & Dunand, D. C. (2016). Morphological study of directionally freeze-cast nickel foams. Metallurgical and Materials Transactions E, 3(1), 46-54. | 2016 | 244 | 10.1007/s40553-016-0068-y | 2051 | metal | Ni | water | 100 | 0.0 | 0 | 4.0 | 22.0 | 100 | 0 | 0.02 | 68 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 82 | 0 | lamellar | sintered | 62.1 | 0.0 | 14.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jo, H., Kim, M. J., Choi, H., Sung, Y. E., Choe, H., & Dunand, D. C. (2016). Morphological study of directionally freeze-cast nickel foams. Metallurgical and Materials Transactions E, 3(1), 46-54. | 2016 | 244 | 10.1007/s40553-016-0068-y | 2052 | metal | Ni | water | 100 | 0.0 | 0 | 4.0 | 22.0 | 100 | 0 | 0.02 | 68 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 82 | 0 | lamellar | sintered | 52.1 | 0.0 | 10.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Furusawa, T., Minatoya, T., Okudera, T., Sakai, Y., Sato, T., Matsushima, Y., & Unuma, H. (2016). Enhancement of mechanical strength and in vivo cytocompatibility of porous ?-tricalcium phosphate ceramics by gelatin coating. International journal of implant dentistry, 2(1), 4. | 2016 | 148 | 10.1186/s40729-016-0037-3 | 871 | ceramic | BCP | water | 100 | 0.0 | 0 | 45.0 | 26.0 | 100 | powder | 0.0 | 0 | 8 | 0 | 233.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 92.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.45 | 0.0 | 0.0 |
He, F., & Ye, J. (2013). Bi-layered calcium phosphate cement-based composite scaffold mimicking natural bone structure. Science and technology of advanced materials, 14(4), 045010. | 2016 | 192 | 10.1088/1468-6996/14/4/045010 | 1864 | ceramic | BCP | water | 100 | 0.0 | 0 | 10.91 | 18.0 | 20 | powder | 12.0 | 1 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 90.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 |
He, F., & Ye, J. (2013). Bi-layered calcium phosphate cement-based composite scaffold mimicking natural bone structure. Science and technology of advanced materials, 14(4), 045010. | 2016 | 192 | 10.1088/1468-6996/14/4/045010 | 1865 | ceramic | BCP | water | 100 | 0.0 | 0 | 10.91 | 18.0 | 20 | powder | 12.0 | 1 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 72.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18.0 | 0.0 | 0.0 |
He, F., & Ye, J. (2013). Bi-layered calcium phosphate cement-based composite scaffold mimicking natural bone structure. Science and technology of advanced materials, 14(4), 045010. | 2016 | 192 | 10.1088/1468-6996/14/4/045010 | 1866 | ceramic | BCP | water | 100 | 0.0 | 0 | 10.91 | 18.0 | 20 | powder | 12.0 | 1 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 51.0 | 0.0 | 0.0 | 0.0 | 0.0 | 38.0 | 0.0 | 0.0 |
He, F., & Ye, J. (2013). Bi-layered calcium phosphate cement-based composite scaffold mimicking natural bone structure. Science and technology of advanced materials, 14(4), 045010. | 2016 | 192 | 10.1088/1468-6996/14/4/045010 | 1867 | ceramic | BCP | water | 100 | 0.0 | 0 | 10.91 | 18.0 | 20 | powder | 12.0 | 1 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 49.0 | 0.0 | 0.0 | 0.0 | 0.0 | 40.0 | 0.0 | 0.0 |
He, F., & Ye, J. (2013). Bi-layered calcium phosphate cement-based composite scaffold mimicking natural bone structure. Science and technology of advanced materials, 14(4), 045010. | 2016 | 192 | 10.1088/1468-6996/14/4/045010 | 1868 | ceramic | BCP | water | 100 | 0.0 | 0 | 10.91 | 18.0 | 20 | powder | 12.0 | 1 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 52.0 | 0.0 | 0.0 |
He, F., & Ye, J. (2013). Bi-layered calcium phosphate cement-based composite scaffold mimicking natural bone structure. Science and technology of advanced materials, 14(4), 045010. | 2016 | 192 | 10.1088/1468-6996/14/4/045010 | 1869 | ceramic | BCP | water | 100 | 0.0 | 0 | 10.91 | 18.0 | 20 | powder | 12.0 | 1 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 90.0 | 0.0 | 0.0 |
He, F., Chen, Y., Li, J., Lin, B., Ouyang, Y., Yu, B., ... & Ye, J. (2015). Improving bone repair of femoral and radial defects in rabbit by incorporating PRP into PLGA/CPC composite scaffold with unidirectional pore structure. Journal of Biomedical Materials Research Part A, 103(4), 1312-1324. | 2015 | 193 | 10.1002/jbm.a.35248 | 1876 | ceramic | BCP | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 125.0 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 |
He, F., Li, J., & Ye, J. (2013). Improvement of cell response of the poly (lactic-co-glycolic acid)/calcium phosphate cement composite scaffold with unidirectional pore structure by the surface immobilization of collagen via plasma treatment. Colloids and Surfaces B: Biointerfaces, 103, 209-216. | 2013 | 194 | 10.1016/j.colsurfb.2012.10.018 | 1877 | ceramic | BCP | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 150.0 | 0.0 | 3.2 | 0.0 | 0.0 | 0.0 |
He, F., & Ye, J. (2012). In vitro degradation, biocompatibility, and in vivo osteogenesis of poly (lactic?co?glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure. Journal of Biomedical Materials Research Part A, 100(12), 3239-3250. | 2012 | 195 | 10.1002/jbm.a.34265 | 1878 | ceramic | BCP | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 150.0 | 0.0 | 2.7 | 0.0 | 0.0 | 0.0 |
Kim, K. L., Ok, K. M., Kim, D. H., Park, H. C., & Yoon, S. Y. (2013). Fabrication and characterization of biphasic calcium phosphate scaffolds with an unidirectional macropore structure using tertiary-butyl alcohol-based freeze-gel casting method. Journal of the Korean Ceramic Society, 50(4), 263-268. | 2013 | 264 | 10.4191/kcers.2013.50.4.263 | 6044 | ceramic | BCP | TBA | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 7 | honeycomb | sintered | 74.9 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 |
Kim, K. L., Ok, K. M., Kim, D. H., Park, H. C., & Yoon, S. Y. (2013). Fabrication and characterization of biphasic calcium phosphate scaffolds with an unidirectional macropore structure using tertiary-butyl alcohol-based freeze-gel casting method. Journal of the Korean Ceramic Society, 50(4), 263-268. | 2013 | 264 | 10.4191/kcers.2013.50.4.263 | 6045 | ceramic | BCP | TBA | 100 | 0.0 | 0 | 25.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 7 | honeycomb | sintered | 66.9 | 0.0 | 0.0 | 0.0 | 0.0 | 6.9 | 0.0 | 0.0 |
Kim, K. L., Ok, K. M., Kim, D. H., Park, H. C., & Yoon, S. Y. (2013). Fabrication and characterization of biphasic calcium phosphate scaffolds with an unidirectional macropore structure using tertiary-butyl alcohol-based freeze-gel casting method. Journal of the Korean Ceramic Society, 50(4), 263-268. | 2013 | 264 | 10.4191/kcers.2013.50.4.263 | 6046 | ceramic | BCP | TBA | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 8 | honeycomb | sintered | 61.1 | 0.0 | 0.0 | 0.0 | 0.0 | 10.9 | 0.0 | 0.0 |
Kim, K. L., Ok, K. M., Kim, D. H., Park, H. C., & Yoon, S. Y. (2013). Fabrication and characterization of biphasic calcium phosphate scaffolds with an unidirectional macropore structure using tertiary-butyl alcohol-based freeze-gel casting method. Journal of the Korean Ceramic Society, 50(4), 263-268. | 2013 | 264 | 10.4191/kcers.2013.50.4.263 | 6047 | ceramic | BCP | TBA | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 19 | honeycomb | sintered | 58.3 | 0.0 | 0.0 | 0.0 | 0.0 | 15.6 | 0.0 | 0.0 |
Kim, K. L., Ok, K. M., Kim, D. H., Park, H. C., & Yoon, S. Y. (2013). Fabrication and characterization of biphasic calcium phosphate scaffolds with an unidirectional macropore structure using tertiary-butyl alcohol-based freeze-gel casting method. Journal of the Korean Ceramic Society, 50(4), 263-268. | 2013 | 264 | 10.4191/kcers.2013.50.4.263 | 6048 | ceramic | BCP | TBA | 100 | 0.0 | 0 | 25.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 20 | honeycomb | sintered | 45.9 | 0.0 | 0.0 | 0.0 | 0.0 | 33.1 | 0.0 | 0.0 |
Kim, K. L., Ok, K. M., Kim, D. H., Park, H. C., & Yoon, S. Y. (2013). Fabrication and characterization of biphasic calcium phosphate scaffolds with an unidirectional macropore structure using tertiary-butyl alcohol-based freeze-gel casting method. Journal of the Korean Ceramic Society, 50(4), 263-268. | 2013 | 264 | 10.4191/kcers.2013.50.4.263 | 6049 | ceramic | BCP | TBA | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 20 | honeycomb | sintered | 40.3 | 0.0 | 0.0 | 0.0 | 0.0 | 54.9 | 0.0 | 0.0 |
Kim, K. L., Ok, K. M., Kim, D. H., Park, H. C., & Yoon, S. Y. (2013). Fabrication and characterization of biphasic calcium phosphate scaffolds with an unidirectional macropore structure using tertiary-butyl alcohol-based freeze-gel casting method. Journal of the Korean Ceramic Society, 50(4), 263-268. | 2013 | 264 | 10.4191/kcers.2013.50.4.263 | 6050 | ceramic | BCP | TBA | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 21 | honeycomb | sintered | 54.5 | 0.0 | 0.0 | 0.0 | 0.0 | 16.7 | 0.0 | 0.0 |
Kim, K. L., Ok, K. M., Kim, D. H., Park, H. C., & Yoon, S. Y. (2013). Fabrication and characterization of biphasic calcium phosphate scaffolds with an unidirectional macropore structure using tertiary-butyl alcohol-based freeze-gel casting method. Journal of the Korean Ceramic Society, 50(4), 263-268. | 2013 | 264 | 10.4191/kcers.2013.50.4.263 | 6051 | ceramic | BCP | TBA | 100 | 0.0 | 0 | 25.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 21 | honeycomb | sintered | 43.0 | 0.0 | 0.0 | 0.0 | 0.0 | 46.8 | 0.0 | 0.0 |
Kim, K. L., Ok, K. M., Kim, D. H., Park, H. C., & Yoon, S. Y. (2013). Fabrication and characterization of biphasic calcium phosphate scaffolds with an unidirectional macropore structure using tertiary-butyl alcohol-based freeze-gel casting method. Journal of the Korean Ceramic Society, 50(4), 263-268. | 2013 | 264 | 10.4191/kcers.2013.50.4.263 | 6052 | ceramic | BCP | TBA | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 22 | honeycomb | sintered | 35.1 | 0.0 | 0.0 | 0.0 | 0.0 | 65.1 | 0.0 | 0.0 |
Yang, Y., He, F., & Ye, J. (2016). Preparation, mechanical property and cytocompatibility of freeze-cast porous calcium phosphate ceramics reinforced by phosphate-based glass. Materials Science and Engineering: C, 69, 1004-1009. | 2016 | 901 | 10.1016/j.msec.2016.08.008 | 4459 | ceramic | BCP | water | 100 | 0.0 | 0 | 13.0 | 8.0 | 100 | powder | 7.6 | 1 | 0 | 0 | 263.0 | 0.0 | 0.0 | incline | constant | 0.0 | 0.0 | 0 | 0 | 11 | lamellar | sintered | 75.0 | 0.0 | 75.0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 |
Yang, Y., He, F., & Ye, J. (2016). Preparation, mechanical property and cytocompatibility of freeze-cast porous calcium phosphate ceramics reinforced by phosphate-based glass. Materials Science and Engineering: C, 69, 1004-1009. | 2016 | 901 | 10.1016/j.msec.2016.08.008 | 4465 | ceramic | BCP | water | 100 | 0.0 | 0 | 13.0 | 8.0 | 100 | powder | 7.6 | 1 | 0 | 0 | 263.0 | 0.0 | 0.0 | incline | constant | 0.0 | 0.0 | 0 | 0 | 49 | lamellar | sintered | 22.0 | 0.0 | 75.0 | 0.0 | 0.0 | 26.0 | 0.0 | 0.0 |
Furusawa, T., Minatoya, T., Okudera, T., Sakai, Y., Sato, T., Matsushima, Y., & Unuma, H. (2016). Enhancement of mechanical strength and in vivo cytocompatibility of porous ?-tricalcium phosphate ceramics by gelatin coating. International journal of implant dentistry, 2(1), 4. | 2016 | 148 | 10.1186/s40729-016-0037-3 | 872 | ceramic/polymer | BCP-gelatin (coated) | water | 100 | 0.0 | 0 | 45.0 | 26.0 | 100 | powder | 0.0 | 0 | 8 | 0 | 233.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 92.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.36 | 0.0 | 0.0 |
Furusawa, T., Minatoya, T., Okudera, T., Sakai, Y., Sato, T., Matsushima, Y., & Unuma, H. (2016). Enhancement of mechanical strength and in vivo cytocompatibility of porous ?-tricalcium phosphate ceramics by gelatin coating. International journal of implant dentistry, 2(1), 4. | 2016 | 148 | 10.1186/s40729-016-0037-3 | 873 | ceramic/polymer | BCP-gelatin (coated) | water | 100 | 0.0 | 0 | 45.0 | 26.0 | 100 | powder | 0.0 | 0 | 8 | 0 | 233.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 91.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.38 | 0.0 | 0.0 |
Furusawa, T., Minatoya, T., Okudera, T., Sakai, Y., Sato, T., Matsushima, Y., & Unuma, H. (2016). Enhancement of mechanical strength and in vivo cytocompatibility of porous ?-tricalcium phosphate ceramics by gelatin coating. International journal of implant dentistry, 2(1), 4. | 2016 | 148 | 10.1186/s40729-016-0037-3 | 874 | ceramic/polymer | BCP-gelatin (coated) | water | 100 | 0.0 | 0 | 45.0 | 26.0 | 100 | powder | 0.0 | 0 | 8 | 0 | 233.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 91.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.42 | 0.0 | 0.0 |
Furusawa, T., Minatoya, T., Okudera, T., Sakai, Y., Sato, T., Matsushima, Y., & Unuma, H. (2016). Enhancement of mechanical strength and in vivo cytocompatibility of porous ?-tricalcium phosphate ceramics by gelatin coating. International journal of implant dentistry, 2(1), 4. | 2016 | 148 | 10.1186/s40729-016-0037-3 | 875 | ceramic/polymer | BCP-gelatin (coated) | water | 100 | 0.0 | 0 | 45.0 | 26.0 | 100 | powder | 0.0 | 0 | 8 | 0 | 233.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 91.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.59 | 0.0 | 0.0 |
Furusawa, T., Minatoya, T., Okudera, T., Sakai, Y., Sato, T., Matsushima, Y., & Unuma, H. (2016). Enhancement of mechanical strength and in vivo cytocompatibility of porous ?-tricalcium phosphate ceramics by gelatin coating. International journal of implant dentistry, 2(1), 4. | 2016 | 148 | 10.1186/s40729-016-0037-3 | 876 | ceramic/polymer | BCP-gelatin (coated) | water | 100 | 0.0 | 0 | 45.0 | 26.0 | 100 | powder | 0.0 | 0 | 8 | 0 | 233.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 91.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.14 | 0.0 | 0.0 |
Furusawa, T., Minatoya, T., Okudera, T., Sakai, Y., Sato, T., Matsushima, Y., & Unuma, H. (2016). Enhancement of mechanical strength and in vivo cytocompatibility of porous ?-tricalcium phosphate ceramics by gelatin coating. International journal of implant dentistry, 2(1), 4. | 2016 | 148 | 10.1186/s40729-016-0037-3 | 877 | ceramic/polymer | BCP-gelatin (coated) | water | 100 | 0.0 | 0 | 45.0 | 26.0 | 100 | powder | 0.0 | 0 | 8 | 0 | 233.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 91.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.04 | 0.0 | 0.0 |
Gannon, P., Sofie, S., Deibert, M., Smith, R., & Gorokhovsky, V. (2009). Thin film YSZ coatings on functionally graded freeze cast NiO/YSZ SOFC anode supports. Journal of applied electrochemistry, 39(4), 497-502. | 2009 | 149 | 10.1007/s10800-008-9682-4 | 878 | ceramic | NiO-YSZ (layered) | water | 100 | 0.0 | 0 | 30.0 | 63.0 | 40 | powder | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moon, J. W., Hwang, H. J., Awano, M., & Maeda, K. (2003). Preparation of NiO?YSZ tubular support with radially aligned pore channels. Materials Letters, 57(8), 1428-1434. | 2003 | 392 | 10.1016/s0167-577x(02)01002-9 | 3788 | ceramic | NiO-YSZ (layered) | water | 100 | 0.0 | 0 | 30.0 | 63.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moon, J. W., Hwang, H. J., Awano, M., & Maeda, K. (2003). Preparation of NiO?YSZ tubular support with radially aligned pore channels. Materials Letters, 57(8), 1428-1434. | 2003 | 392 | 10.1016/s0167-577x(02)01002-9 | 3789 | ceramic | NiO-YSZ (layered) | water | 100 | 0.0 | 0 | 40.0 | 63.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 242.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Moon, J. W., Hwang, H. J., Awano, M., & Maeda, K. (2003). Preparation of NiO?YSZ tubular support with radially aligned pore channels. Materials Letters, 57(8), 1428-1434. | 2003 | 392 | 10.1016/s0167-577x(02)01002-9 | 3790 | ceramic | NiO-YSZ (layered) | water | 100 | 0.0 | 0 | 50.0 | 63.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gao, H. L., Xu, L., Long, F., Pan, Z., Du, Y. X., Lu, Y., ... & Yu, S. H. (2014). Macroscopic Free?Standing Hierarchical 3D Architectures Assembled from Silver Nanowires by Ice Templating. Angewandte Chemie International Edition, 53(18), 4561-4566. | 2014 | 151 | 10.1002/anie.201400457 | 4315 | metal/polymer | Ag-PDMS (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gaudillere, C., Garcia?Fayos, J., & Serra, J. M. (2014). Oxygen Permeation Improvement under CO2?Rich Environments through Catalytic Activation of Hierarchically Structured Perovskite Membranes. ChemPlusChem, 79(12), 1720-1725. | 2014 | 153 | 10.1002/cplu.201402142 | 879 | ceramic | LSCF | water | 100 | 0.0 | 0 | 14.0 | 59.0 | 100 | powder | 0.0 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gaudillere, C., Garcia?Fayos, J., Balaguer, M., & Serra, J. M. (2014). Enhanced Oxygen Separation through Robust Freeze?Cast Bilayered Dual?Phase Membranes. ChemSusChem, 7(9), 2554-2561. | 2014 | 155 | 10.1002/cssc.201402324 | 880 | ceramic | LSCF | water | 100 | 0.0 | 0 | 14.0 | 59.0 | 100 | powder | 1.0 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gaudillere, C., Garcia?Fayos, J., Balaguer, M., & Serra, J. M. (2014). Enhanced Oxygen Separation through Robust Freeze?Cast Bilayered Dual?Phase Membranes. ChemSusChem, 7(9), 2554-2561. | 2014 | 155 | 10.1002/cssc.201402324 | 881 | ceramic | LSCF | water | 100 | 0.0 | 0 | 14.0 | 59.0 | 100 | powder | 1.0 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gaudillere, C., Garcia-Fayos, J., & Serra, J. M. (2014). Enhancing oxygen permeation through hierarchically-structured perovskite membranes elaborated by freeze-casting. Journal of Materials Chemistry A, 2(11), 3828-3833. | 2014 | 156 | 10.1039/c3ta14069e | 4523 | ceramic | LSCF | water | 100 | 0.0 | 0 | 14.0 | 60.0 | 100 | powder | 2.0 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 58.0 | 12.0 | 7.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 |
MOON, J. W., HWANG, H. J., AWANO, M., MAEDA, K., & KANZAKI, S. (2002). Preparation of dense thin-flm solid electrolyte on novel porous structure with parallel pore channel. Journal of the Ceramic Society of Japan, 110(1281), 479-484. | 2002 | 391 | 10.2109/jcersj.110.479 | 3786 | ceramic | LSCF | water | 100 | 0.0 | 0 | 27.0 | 60.0 | 50 | 0 | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 68.2 | 0.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
MOON, J. W., HWANG, H. J., AWANO, M., MAEDA, K., & KANZAKI, S. (2002). Preparation of dense thin-flm solid electrolyte on novel porous structure with parallel pore channel. Journal of the Ceramic Society of Japan, 110(1281), 479-484. | 2002 | 391 | 10.2109/jcersj.110.479 | 3787 | ceramic | LSCF | water | 100 | 0.0 | 0 | 27.0 | 60.0 | 50 | 0 | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 43.1 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zou, Y., Araki, W., Balaguer, M., & Malzbender, J. (2016). Elastic properties of freeze-cast La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3??. Journal of the European Ceramic Society, 36(7), 1651-1657. | 2016 | 802 | 10.1016/j.jeurceramsoc.2016.01.034 | 1791 | ceramic | LSCF | water | 100 | 0.0 | 0 | 0.0 | 60.0 | 100 | powder | 7.0 | 2 | 1 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 44.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 60000.0 |
Zou, Y., Araki, W., Balaguer, M., & Malzbender, J. (2016). Elastic properties of freeze-cast La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3??. Journal of the European Ceramic Society, 36(7), 1651-1657. | 2016 | 802 | 10.1016/j.jeurceramsoc.2016.01.034 | 1792 | ceramic | LSCF | water | 100 | 0.0 | 0 | 0.0 | 60.0 | 100 | powder | 7.0 | 2 | 1 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 44.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8000.0 |
Gaudillere, C., Garcia-Fayos, J., & Serra, J. M. (2014). Enhancing oxygen permeation through hierarchically-structured perovskite membranes elaborated by freeze-casting. Journal of Materials Chemistry A, 2(11), 3828-3833. | 2014 | 156 | 10.1039/c3ta14069e | 4521 | ceramic | BSCF | water | 100 | 0.0 | 0 | 14.0 | 104.0 | 100 | powder | 0.0 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.0 | 0.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gaudillere, C., Garcia-Fayos, J., & Serra, J. M. (2014). Enhancing oxygen permeation through hierarchically-structured perovskite membranes elaborated by freeze-casting. Journal of Materials Chemistry A, 2(11), 3828-3833. | 2014 | 156 | 10.1039/c3ta14069e | 4522 | ceramic | CeGdO | water | 100 | 0.0 | 0 | 14.0 | 105.0 | 100 | powder | 0.0 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.0 | 0.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2013). Phase transformation, microstructural and mechanical properties of hydroxyapatite/alumina nanocomposite scaffolds produced by freeze casting. Ceramics International, 39(8), 9835-9844. | 2013 | 159 | 10.1016/j.ceramint.2013.05.096 | 882 | ceramic | HAP-5wt.%Al2O3 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 0 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 9 | lamellar | sintered | 84.96 | 0.0 | 37.51 | 0.0 | 6.47 | 0.26 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2013). Phase transformation, microstructural and mechanical properties of hydroxyapatite/alumina nanocomposite scaffolds produced by freeze casting. Ceramics International, 39(8), 9835-9844. | 2013 | 159 | 10.1016/j.ceramint.2013.05.096 | 883 | ceramic | HAP-5wt.%Al2O3 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 0 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 39 | lamellar | sintered | 79.36 | 0.0 | 33.2 | 0.0 | 6.61 | 1.56 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2013). Phase transformation, microstructural and mechanical properties of hydroxyapatite/alumina nanocomposite scaffolds produced by freeze casting. Ceramics International, 39(8), 9835-9844. | 2013 | 159 | 10.1016/j.ceramint.2013.05.096 | 884 | ceramic | HAP-5wt.%Al2O3 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 0 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 10 | lamellar | sintered | 84.45 | 0.0 | 22.44 | 0.0 | 7.32 | 0.27 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2013). Phase transformation, microstructural and mechanical properties of hydroxyapatite/alumina nanocomposite scaffolds produced by freeze casting. Ceramics International, 39(8), 9835-9844. | 2013 | 159 | 10.1016/j.ceramint.2013.05.096 | 885 | ceramic | HAP-5wt.%Al2O3 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 0 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 39 | lamellar | sintered | 80.01 | 0.0 | 19.83 | 0.0 | 7.05 | 2.56 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2013). Phase transformation, microstructural and mechanical properties of hydroxyapatite/alumina nanocomposite scaffolds produced by freeze casting. Ceramics International, 39(8), 9835-9844. | 2013 | 159 | 10.1016/j.ceramint.2013.05.096 | 886 | ceramic | HAP-10wt.%Al2O3 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 0 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 32 | lamellar | sintered | 83.81 | 0.0 | 38.19 | 0.0 | 7.55 | 0.68 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2013). Phase transformation, microstructural and mechanical properties of hydroxyapatite/alumina nanocomposite scaffolds produced by freeze casting. Ceramics International, 39(8), 9835-9844. | 2013 | 159 | 10.1016/j.ceramint.2013.05.096 | 887 | ceramic | HAP-10wt.%Al2O3 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 0 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 43 | lamellar | sintered | 79.16 | 0.0 | 36.15 | 0.0 | 7.58 | 1.55 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2013). Phase transformation, microstructural and mechanical properties of hydroxyapatite/alumina nanocomposite scaffolds produced by freeze casting. Ceramics International, 39(8), 9835-9844. | 2013 | 159 | 10.1016/j.ceramint.2013.05.096 | 888 | ceramic | HAP-10wt.%Al2O3 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 0 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 31 | lamellar | sintered | 82.59 | 0.0 | 30.24 | 0.0 | 5.5 | 0.92 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2013). Phase transformation, microstructural and mechanical properties of hydroxyapatite/alumina nanocomposite scaffolds produced by freeze casting. Ceramics International, 39(8), 9835-9844. | 2013 | 159 | 10.1016/j.ceramint.2013.05.096 | 889 | ceramic | HAP-10wt.%Al2O3 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 0 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 44 | lamellar | sintered | 79.06 | 0.0 | 28.25 | 0.0 | 5.5 | 3.28 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2013). Phase transformation, microstructural and mechanical properties of hydroxyapatite/alumina nanocomposite scaffolds produced by freeze casting. Ceramics International, 39(8), 9835-9844. | 2013 | 159 | 10.1016/j.ceramint.2013.05.096 | 890 | ceramic | HAP-15wt.%Al2O3 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 0 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 41 | lamellar | sintered | 79.94 | 0.0 | 52.14 | 0.0 | 5.6 | 1.37 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2013). Phase transformation, microstructural and mechanical properties of hydroxyapatite/alumina nanocomposite scaffolds produced by freeze casting. Ceramics International, 39(8), 9835-9844. | 2013 | 159 | 10.1016/j.ceramint.2013.05.096 | 891 | ceramic | HAP-15wt.%Al2O3 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 0 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 45 | lamellar | sintered | 78.73 | 0.0 | 50.12 | 0.0 | 5.7 | 2.05 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2013). Phase transformation, microstructural and mechanical properties of hydroxyapatite/alumina nanocomposite scaffolds produced by freeze casting. Ceramics International, 39(8), 9835-9844. | 2013 | 159 | 10.1016/j.ceramint.2013.05.096 | 892 | ceramic | HAP-15wt.%Al2O3 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 0 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 40 | lamellar | sintered | 80.37 | 0.0 | 32.96 | 0.0 | 6.12 | 2.21 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2013). Phase transformation, microstructural and mechanical properties of hydroxyapatite/alumina nanocomposite scaffolds produced by freeze casting. Ceramics International, 39(8), 9835-9844. | 2013 | 159 | 10.1016/j.ceramint.2013.05.096 | 893 | ceramic | HAP-15wt.%Al2O3 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 0 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 45 | lamellar | sintered | 78.38 | 0.0 | 31.32 | 0.0 | 6.32 | 4.01 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2014). Effect of nanosilica addition on the physicomechanical properties, pore morphology, and phase transformation of freeze cast hydroxyapatite scaffolds. Journal of materials science, 49(15), 5492-5504. | 2014 | 160 | 10.1007/s10853-014-8263-7 | 894 | ceramic | HAP-SiO2 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 99 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 18 | lamellar | sintered | 84.43 | 0.0 | 30.0 | 0.0 | 0.0 | 0.36 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2014). Effect of nanosilica addition on the physicomechanical properties, pore morphology, and phase transformation of freeze cast hydroxyapatite scaffolds. Journal of materials science, 49(15), 5492-5504. | 2014 | 160 | 10.1007/s10853-014-8263-7 | 895 | ceramic | HAP-SiO2 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 99 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 17 | lamellar | sintered | 84.66 | 0.0 | 25.0 | 0.0 | 0.0 | 0.53 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2014). Effect of nanosilica addition on the physicomechanical properties, pore morphology, and phase transformation of freeze cast hydroxyapatite scaffolds. Journal of materials science, 49(15), 5492-5504. | 2014 | 160 | 10.1007/s10853-014-8263-7 | 896 | ceramic | HAP-SiO2 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 99 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 48 | lamellar | sintered | 78.05 | 0.0 | 40.0 | 0.0 | 0.0 | 2.68 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2014). Effect of nanosilica addition on the physicomechanical properties, pore morphology, and phase transformation of freeze cast hydroxyapatite scaffolds. Journal of materials science, 49(15), 5492-5504. | 2014 | 160 | 10.1007/s10853-014-8263-7 | 897 | ceramic | HAP-SiO2 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 99 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 48 | lamellar | sintered | 78.0 | 0.0 | 35.0 | 0.0 | 0.0 | 5.66 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2014). Effect of nanosilica addition on the physicomechanical properties, pore morphology, and phase transformation of freeze cast hydroxyapatite scaffolds. Journal of materials science, 49(15), 5492-5504. | 2014 | 160 | 10.1007/s10853-014-8263-7 | 898 | ceramic | HAP-SiO2 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 99 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 15 | lamellar | sintered | 85.19 | 0.0 | 0.0 | 0.0 | 0.0 | 0.24 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2014). Effect of nanosilica addition on the physicomechanical properties, pore morphology, and phase transformation of freeze cast hydroxyapatite scaffolds. Journal of materials science, 49(15), 5492-5504. | 2014 | 160 | 10.1007/s10853-014-8263-7 | 899 | ceramic | HAP-SiO2 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 99 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 16 | lamellar | sintered | 84.96 | 0.0 | 0.0 | 0.0 | 0.0 | 0.46 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2014). Effect of nanosilica addition on the physicomechanical properties, pore morphology, and phase transformation of freeze cast hydroxyapatite scaffolds. Journal of materials science, 49(15), 5492-5504. | 2014 | 160 | 10.1007/s10853-014-8263-7 | 900 | ceramic | HAP-SiO2 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 99 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 43 | lamellar | sintered | 79.52 | 0.0 | 0.0 | 0.0 | 0.0 | 2.58 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2014). Effect of nanosilica addition on the physicomechanical properties, pore morphology, and phase transformation of freeze cast hydroxyapatite scaffolds. Journal of materials science, 49(15), 5492-5504. | 2014 | 160 | 10.1007/s10853-014-8263-7 | 901 | ceramic | HAP-SiO2 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 99 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 42 | lamellar | sintered | 79.09 | 0.0 | 0.0 | 0.0 | 0.0 | 4.67 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2014). Effect of nanosilica addition on the physicomechanical properties, pore morphology, and phase transformation of freeze cast hydroxyapatite scaffolds. Journal of materials science, 49(15), 5492-5504. | 2014 | 160 | 10.1007/s10853-014-8263-7 | 902 | ceramic | HAP-SiO2 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 98 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 16 | lamellar | sintered | 85.82 | 0.0 | 0.0 | 0.0 | 0.0 | 0.22 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2014). Effect of nanosilica addition on the physicomechanical properties, pore morphology, and phase transformation of freeze cast hydroxyapatite scaffolds. Journal of materials science, 49(15), 5492-5504. | 2014 | 160 | 10.1007/s10853-014-8263-7 | 903 | ceramic | HAP-SiO2 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 98 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 16 | lamellar | sintered | 85.83 | 0.0 | 0.0 | 0.0 | 0.0 | 0.42 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2014). Effect of nanosilica addition on the physicomechanical properties, pore morphology, and phase transformation of freeze cast hydroxyapatite scaffolds. Journal of materials science, 49(15), 5492-5504. | 2014 | 160 | 10.1007/s10853-014-8263-7 | 904 | ceramic | HAP-SiO2 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 98 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 41 | lamellar | sintered | 79.7 | 0.0 | 0.0 | 0.0 | 0.0 | 2.15 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2014). Effect of nanosilica addition on the physicomechanical properties, pore morphology, and phase transformation of freeze cast hydroxyapatite scaffolds. Journal of materials science, 49(15), 5492-5504. | 2014 | 160 | 10.1007/s10853-014-8263-7 | 905 | ceramic | HAP-SiO2 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 98 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 40 | lamellar | sintered | 80.71 | 0.0 | 0.0 | 0.0 | 0.0 | 4.1 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2014). Effect of nanosilica addition on the physicomechanical properties, pore morphology, and phase transformation of freeze cast hydroxyapatite scaffolds. Journal of materials science, 49(15), 5492-5504. | 2014 | 160 | 10.1007/s10853-014-8263-7 | 906 | ceramic | HAP-SiO2 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 94 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 13 | lamellar | sintered | 86.12 | 0.0 | 40.0 | 0.0 | 0.0 | 0.16 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2014). Effect of nanosilica addition on the physicomechanical properties, pore morphology, and phase transformation of freeze cast hydroxyapatite scaffolds. Journal of materials science, 49(15), 5492-5504. | 2014 | 160 | 10.1007/s10853-014-8263-7 | 907 | ceramic | HAP-SiO2 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 94 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 12 | lamellar | sintered | 86.46 | 0.0 | 30.0 | 0.0 | 0.0 | 0.34 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2014). Effect of nanosilica addition on the physicomechanical properties, pore morphology, and phase transformation of freeze cast hydroxyapatite scaffolds. Journal of materials science, 49(15), 5492-5504. | 2014 | 160 | 10.1007/s10853-014-8263-7 | 908 | ceramic | HAP-SiO2 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 94 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 50 | lamellar | sintered | 73.71 | 0.0 | 50.0 | 0.0 | 0.0 | 6.38 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2014). Effect of nanosilica addition on the physicomechanical properties, pore morphology, and phase transformation of freeze cast hydroxyapatite scaffolds. Journal of materials science, 49(15), 5492-5504. | 2014 | 160 | 10.1007/s10853-014-8263-7 | 909 | ceramic | HAP-SiO2 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 94 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 73.02 | 0.0 | 45.0 | 0.0 | 0.0 | 7.72 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2014). Effect of nanosilica addition on the physicomechanical properties, pore morphology, and phase transformation of freeze cast hydroxyapatite scaffolds. Journal of materials science, 49(15), 5492-5504. | 2014 | 160 | 10.1007/s10853-014-8263-7 | 910 | ceramic | HAP-SiO2 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 89 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 23 | lamellar | sintered | 84.04 | 0.0 | 0.0 | 0.0 | 0.0 | 0.58 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2014). Effect of nanosilica addition on the physicomechanical properties, pore morphology, and phase transformation of freeze cast hydroxyapatite scaffolds. Journal of materials science, 49(15), 5492-5504. | 2014 | 160 | 10.1007/s10853-014-8263-7 | 911 | ceramic | HAP-SiO2 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 89 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 24 | lamellar | sintered | 83.9 | 0.0 | 0.0 | 0.0 | 0.0 | 1.37 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2014). Effect of nanosilica addition on the physicomechanical properties, pore morphology, and phase transformation of freeze cast hydroxyapatite scaffolds. Journal of materials science, 49(15), 5492-5504. | 2014 | 160 | 10.1007/s10853-014-8263-7 | 912 | ceramic | HAP-SiO2 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 89 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 79 | cellular | sintered | 40.95 | 0.0 | 0.0 | 0.0 | 0.0 | 49.08 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2014). Effect of nanosilica addition on the physicomechanical properties, pore morphology, and phase transformation of freeze cast hydroxyapatite scaffolds. Journal of materials science, 49(15), 5492-5504. | 2014 | 160 | 10.1007/s10853-014-8263-7 | 913 | ceramic | HAP-SiO2 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 89 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 80 | cellular | sintered | 39.25 | 0.0 | 0.0 | 0.0 | 0.0 | 53.55 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2014). Effect of nanosilica addition on the physicomechanical properties, pore morphology, and phase transformation of freeze cast hydroxyapatite scaffolds. Journal of materials science, 49(15), 5492-5504. | 2014 | 160 | 10.1007/s10853-014-8263-7 | 914 | ceramic | HAP-SiO2 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 85 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 28 | cellular | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.04 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2014). Effect of nanosilica addition on the physicomechanical properties, pore morphology, and phase transformation of freeze cast hydroxyapatite scaffolds. Journal of materials science, 49(15), 5492-5504. | 2014 | 160 | 10.1007/s10853-014-8263-7 | 915 | ceramic | HAP-SiO2 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 85 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 29 | cellular | sintered | 80.95 | 0.0 | 0.0 | 0.0 | 0.0 | 2.74 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2014). Effect of nanosilica addition on the physicomechanical properties, pore morphology, and phase transformation of freeze cast hydroxyapatite scaffolds. Journal of materials science, 49(15), 5492-5504. | 2014 | 160 | 10.1007/s10853-014-8263-7 | 916 | ceramic | HAP-SiO2 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 85 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 82 | cellular | sintered | 31.27 | 0.0 | 0.0 | 0.0 | 0.0 | 69.06 | 0.0 | 0.0 |
Ghazanfari, S. M. H., & Zamanian, A. (2014). Effect of nanosilica addition on the physicomechanical properties, pore morphology, and phase transformation of freeze cast hydroxyapatite scaffolds. Journal of materials science, 49(15), 5492-5504. | 2014 | 160 | 10.1007/s10853-014-8263-7 | 917 | ceramic | HAP-SiO2 (mixed) | water | 100 | 0.0 | 0 | 15.0 | 18.0 | 85 | powder | 1.69 | 3 | 3 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 83 | cellular | sintered | 29.82 | 0.0 | 0.0 | 0.0 | 0.0 | 71.96 | 0.0 | 0.0 |
Ghorbani, F., Nojehdehian, H., & Zamanian, A. (2016). Physicochemical and mechanical properties of freeze cast hydroxyapatite-gelatin scaffolds with dexamethasone loaded PLGA microspheres for hard tissue engineering applications. Materials Science and Engineering: C, 69, 208-220. | 2016 | 161 | 0 | 918 | ceramic/polymer | HAP-0.5wt.% gelatin (mixed) | water | 100 | 0.0 | 0 | 5.0 | 18.0 | 100 | powder | 1.69 | 15 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 130.0 | 0.0 | 0.0 | 1.6 | 0.0 | 0.0 |
Ghorbani, F., Nojehdehian, H., & Zamanian, A. (2016). Physicochemical and mechanical properties of freeze cast hydroxyapatite-gelatin scaffolds with dexamethasone loaded PLGA microspheres for hard tissue engineering applications. Materials Science and Engineering: C, 69, 208-220. | 2016 | 161 | 0 | 919 | ceramic/polymer | HAP-0.5wt.% gelatin (mixed) | water | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | powder | 1.69 | 30 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 95.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 |
Ghorbani, F., Nojehdehian, H., & Zamanian, A. (2016). Physicochemical and mechanical properties of freeze cast hydroxyapatite-gelatin scaffolds with dexamethasone loaded PLGA microspheres for hard tissue engineering applications. Materials Science and Engineering: C, 69, 208-220. | 2016 | 161 | 0 | 920 | ceramic/polymer | HAP-0.5wt.% gelatin (mixed) | water | 100 | 0.0 | 0 | 22.0 | 18.0 | 100 | powder | 1.69 | 50 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 120.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 |
Ghorbani, F., Nojehdehian, H., & Zamanian, A. (2016). Physicochemical and mechanical properties of freeze cast hydroxyapatite-gelatin scaffolds with dexamethasone loaded PLGA microspheres for hard tissue engineering applications. Materials Science and Engineering: C, 69, 208-220. | 2016 | 161 | 0 | 921 | ceramic/polymer | HAP-0.5wt.% gelatin (mixed) | water | 100 | 0.0 | 0 | 5.0 | 18.0 | 100 | powder | 1.69 | 15 | 0 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 95.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 |
Ghorbani, F., Nojehdehian, H., & Zamanian, A. (2016). Physicochemical and mechanical properties of freeze cast hydroxyapatite-gelatin scaffolds with dexamethasone loaded PLGA microspheres for hard tissue engineering applications. Materials Science and Engineering: C, 69, 208-220. | 2016 | 161 | 0 | 922 | ceramic/polymer | HAP-0.5wt.% gelatin (mixed) | water | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | powder | 1.69 | 30 | 0 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 110.0 | 0.0 | 0.0 | 2.3 | 0.0 | 0.0 |
Ghorbani, F., Nojehdehian, H., & Zamanian, A. (2016). Physicochemical and mechanical properties of freeze cast hydroxyapatite-gelatin scaffolds with dexamethasone loaded PLGA microspheres for hard tissue engineering applications. Materials Science and Engineering: C, 69, 208-220. | 2016 | 161 | 0 | 923 | ceramic/polymer | HAP-0.5wt.% gelatin (mixed) | water | 100 | 0.0 | 0 | 22.0 | 18.0 | 100 | powder | 1.69 | 50 | 0 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 85.0 | 0.0 | 0.0 | 2.5 | 0.0 | 0.0 |
Gorzkowski, E. P., Pan, M. J., & Bender, B. A. (2011, July). Prototype capacitor produced by freeze tape-casting. In Applications of Ferroelectrics (ISAF/PFM), 2011 International Symposium on and 2011 International Symposium on Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials (pp. 1-3). IEEE. | 2011 | 165 | 10.1109/ISAF.2011.6014141 | 928 | ceramic | BaTiO3 | camphene | 100 | 0.0 | 0 | 3.99 | 7.0 | 100 | 0 | 0.0 | 5 | 0 | 5 | 0.0 | 0.0 | 0.0 | tape-casting | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, G., Button, T. W., & Zhang, D. (2014). Lamellar BaTiO 3 and its composites fabricated by the freeze casting technique. Journal of the European Ceramic Society, 34(15), 4083-4088. | 2014 | 333 | 10.1016/j.jeurceramsoc.2014.05.043 | 3504 | ceramic | BaTiO3 | water | 100 | 0.0 | 0 | 20.0 | 7.0 | 100 | 0 | 0.05 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 45.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, G., Button, T. W., & Zhang, D. (2014). Lamellar BaTiO 3 and its composites fabricated by the freeze casting technique. Journal of the European Ceramic Society, 34(15), 4083-4088. | 2014 | 333 | 10.1016/j.jeurceramsoc.2014.05.043 | 3505 | ceramic | BaTiO3 | water | 100 | 0.0 | 0 | 25.0 | 7.0 | 100 | 0 | 0.05 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 45.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 49.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, G., Button, T. W., & Zhang, D. (2014). Lamellar BaTiO 3 and its composites fabricated by the freeze casting technique. Journal of the European Ceramic Society, 34(15), 4083-4088. | 2014 | 333 | 10.1016/j.jeurceramsoc.2014.05.043 | 3506 | ceramic | BaTiO3 | water | 100 | 0.0 | 0 | 30.0 | 7.0 | 100 | 0 | 0.05 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 45.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 37.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, G., Button, T. W., & Zhang, D. (2014). Lamellar BaTiO 3 and its composites fabricated by the freeze casting technique. Journal of the European Ceramic Society, 34(15), 4083-4088. | 2014 | 333 | 10.1016/j.jeurceramsoc.2014.05.043 | 3507 | ceramic | BaTiO3 | water | 100 | 0.0 | 0 | 45.0 | 7.0 | 100 | 0 | 0.05 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 45.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 22.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, G., Button, T. W., & Zhang, D. (2014). Lamellar BaTiO 3 and its composites fabricated by the freeze casting technique. Journal of the European Ceramic Society, 34(15), 4083-4088. | 2014 | 333 | 10.1016/j.jeurceramsoc.2014.05.043 | 3508 | ceramic | BaTiO3 | water | 100 | 0.0 | 0 | 20.0 | 7.0 | 99 | 0 | 0.05 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 45.0 | 0.0 | 0 | 0 | 22 | lamellar | sintered | 41.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.99 | 0.0 | 0.0 |
Liu, G., Button, T. W., & Zhang, D. (2014). Lamellar BaTiO 3 and its composites fabricated by the freeze casting technique. Journal of the European Ceramic Society, 34(15), 4083-4088. | 2014 | 333 | 10.1016/j.jeurceramsoc.2014.05.043 | 3509 | ceramic | BaTiO3 | water | 100 | 0.0 | 0 | 20.0 | 7.0 | 99 | 0 | 0.05 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 45.0 | 0.0 | 0 | 0 | 23 | lamellar | sintered | 40.3 | 0.0 | 0.0 | 0.0 | 0.0 | 1.15 | 0.0 | 0.0 |
Liu, G., Button, T. W., & Zhang, D. (2014). Lamellar BaTiO 3 and its composites fabricated by the freeze casting technique. Journal of the European Ceramic Society, 34(15), 4083-4088. | 2014 | 333 | 10.1016/j.jeurceramsoc.2014.05.043 | 3510 | ceramic | BaTiO3 | water | 100 | 0.0 | 0 | 20.0 | 7.0 | 98 | 0 | 0.05 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 45.0 | 0.0 | 0 | 0 | 24 | cellular | sintered | 24.6 | 0.0 | 0.0 | 0.0 | 0.0 | 1.25 | 0.0 | 0.0 |
Liu, G., Button, T. W., & Zhang, D. (2014). Lamellar BaTiO 3 and its composites fabricated by the freeze casting technique. Journal of the European Ceramic Society, 34(15), 4083-4088. | 2014 | 333 | 10.1016/j.jeurceramsoc.2014.05.043 | 3511 | ceramic | BaTiO3 | water | 100 | 0.0 | 0 | 20.0 | 7.0 | 94 | 0 | 0.05 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 45.0 | 0.0 | 0 | 0 | 26 | cellular | sintered | 26.4 | 0.0 | 0.0 | 0.0 | 0.0 | 1.75 | 0.0 | 0.0 |
Xu, T., & Wang, C. A. (2016). Effect of two-step sintering on micro-honeycomb BaTiO 3 ceramics prepared by freeze-casting process. Journal of the European Ceramic Society, 36(10), 2647-2652. | 2016 | 691 | 10.1016/j.jeurceramsoc.2016.03.032 | 2568 | ceramic | BaTiO3 | water | 100 | 0.0 | 0 | 17.5 | 7.0 | 100 | 0 | 0.1 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 65.0 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Guo, R., Wang, C. A., & Yang, A. (2011). Effects of pore size and orientation on dielectric and piezoelectric properties of 1?3 type porous PZT ceramics. Journal of the European Ceramic Society, 31(4), 605-609. | 2011 | 170 | doi:10.1016/j.jeurceramsoc.2010.10.019 | 931 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 15.0 | 69.0 | 100 | powder | 1.8 | 1 | 1 | 0 | 243.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 66.0 | 0.0 | 40.96 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Guo, R., Wang, C. A., Yang, A., & Fu, J. (2010). Enhanced piezoelectric property of porous lead zirconate titanate ceramics with one dimensional ordered pore structure. Journal of Applied Physics, 108(12), 124112. | 2010 | 174 | 10.1063/1.3525056 | 953 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 15.0 | 69.0 | 100 | powder | 1.8 | 1 | 1 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 68.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Guo, R., Wang, C. A., Yang, A., & Fu, J. (2010). Enhanced piezoelectric property of porous lead zirconate titanate ceramics with one dimensional ordered pore structure. Journal of Applied Physics, 108(12), 124112. | 2010 | 174 | 10.1063/1.3525056 | 954 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 20.0 | 69.0 | 100 | powder | 1.8 | 1 | 1 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 62.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Guo, R., Wang, C. A., Yang, A., & Fu, J. (2010). Enhanced piezoelectric property of porous lead zirconate titanate ceramics with one dimensional ordered pore structure. Journal of Applied Physics, 108(12), 124112. | 2010 | 174 | 10.1063/1.3525056 | 955 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 25.0 | 69.0 | 100 | powder | 1.8 | 1 | 1 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 55.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Guo, R., Wang, C. A., Yang, A., & Fu, J. (2010). Enhanced piezoelectric property of porous lead zirconate titanate ceramics with one dimensional ordered pore structure. Journal of Applied Physics, 108(12), 124112. | 2010 | 174 | 10.1063/1.3525056 | 956 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 30.0 | 69.0 | 100 | powder | 1.8 | 1 | 1 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 46.0 | 0.0 | 21.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Guo, R., Wang, C. A., Yang, A., & Fu, J. (2010). Enhanced piezoelectric property of porous lead zirconate titanate ceramics with one dimensional ordered pore structure. Journal of Applied Physics, 108(12), 124112. | 2010 | 174 | 10.1063/1.3525056 | 957 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 35.0 | 69.0 | 100 | powder | 1.8 | 1 | 1 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 42.0 | 0.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Guo, R., Wang, C. A., Yang, A., & Fu, J. (2010). Enhanced piezoelectric property of porous lead zirconate titanate ceramics with one dimensional ordered pore structure. Journal of Applied Physics, 108(12), 124112. | 2010 | 174 | 10.1063/1.3525056 | 958 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 40.0 | 69.0 | 100 | powder | 1.8 | 1 | 1 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 28.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Guo, R., Wang, C. A., & Yang, A. (2011). Piezoelectric properties of the 1?3 type porous lead zirconate titanate ceramics. Journal of the American Ceramic Society, 94(6), 1794-1799. | 2011 | 175 | 10.1111/j.1551-2916.2010.04294.x | 959 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 15.0 | 69.0 | 100 | powder | 1.8 | 1 | 1 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Guo, R., Wang, C. A., & Yang, A. (2011). Piezoelectric properties of the 1?3 type porous lead zirconate titanate ceramics. Journal of the American Ceramic Society, 94(6), 1794-1799. | 2011 | 175 | 10.1111/j.1551-2916.2010.04294.x | 960 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 20.0 | 69.0 | 100 | powder | 1.8 | 1 | 1 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 62.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Guo, R., Wang, C. A., & Yang, A. (2011). Piezoelectric properties of the 1?3 type porous lead zirconate titanate ceramics. Journal of the American Ceramic Society, 94(6), 1794-1799. | 2011 | 175 | 10.1111/j.1551-2916.2010.04294.x | 961 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 25.0 | 69.0 | 100 | powder | 1.8 | 1 | 1 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Guo, R., Wang, C. A., & Yang, A. (2011). Piezoelectric properties of the 1?3 type porous lead zirconate titanate ceramics. Journal of the American Ceramic Society, 94(6), 1794-1799. | 2011 | 175 | 10.1111/j.1551-2916.2010.04294.x | 962 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 30.0 | 69.0 | 100 | powder | 1.8 | 1 | 1 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 46.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Guo, R., Wang, C. A., & Yang, A. (2011). Piezoelectric properties of the 1?3 type porous lead zirconate titanate ceramics. Journal of the American Ceramic Society, 94(6), 1794-1799. | 2011 | 175 | 10.1111/j.1551-2916.2010.04294.x | 963 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 35.0 | 69.0 | 100 | powder | 1.8 | 1 | 1 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 42.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Guo, R., Wang, C. A., & Yang, A. (2011). Piezoelectric properties of the 1?3 type porous lead zirconate titanate ceramics. Journal of the American Ceramic Society, 94(6), 1794-1799. | 2011 | 175 | 10.1111/j.1551-2916.2010.04294.x | 964 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 40.0 | 69.0 | 100 | powder | 1.8 | 1 | 1 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 28.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lee, S. H., Jun, S. H., Kim, H. E., & Koh, Y. H. (2007). Fabrication of Porous PZT?PZN Piezoelectric Ceramics With High Hydrostatic Figure of Merits Using Camphene?Based Freeze Casting. Journal of the American Ceramic Society, 90(9), 2807-2813. | 2007 | 304 | 10.1111/j.1551-2916.2007.01834.x | 3375 | ceramic | PZT | camphene | 100 | 0.0 | 0 | 25.0 | 69.0 | 100 | 0 | 0.0 | 0 | 2 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lee, S. H., Jun, S. H., Kim, H. E., & Koh, Y. H. (2007). Fabrication of Porous PZT?PZN Piezoelectric Ceramics With High Hydrostatic Figure of Merits Using Camphene?Based Freeze Casting. Journal of the American Ceramic Society, 90(9), 2807-2813. | 2007 | 304 | 10.1111/j.1551-2916.2007.01834.x | 3376 | ceramic | PZT | camphene | 100 | 0.0 | 0 | 20.0 | 69.0 | 100 | 0 | 0.0 | 0 | 2 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lee, S. H., Jun, S. H., Kim, H. E., & Koh, Y. H. (2007). Fabrication of Porous PZT?PZN Piezoelectric Ceramics With High Hydrostatic Figure of Merits Using Camphene?Based Freeze Casting. Journal of the American Ceramic Society, 90(9), 2807-2813. | 2007 | 304 | 10.1111/j.1551-2916.2007.01834.x | 3377 | ceramic | PZT | camphene | 100 | 0.0 | 0 | 15.0 | 69.0 | 100 | 0 | 0.0 | 0 | 2 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 71.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lee, S. H., Jun, S. H., Kim, H. E., & Koh, Y. H. (2007). Fabrication of Porous PZT?PZN Piezoelectric Ceramics With High Hydrostatic Figure of Merits Using Camphene?Based Freeze Casting. Journal of the American Ceramic Society, 90(9), 2807-2813. | 2007 | 304 | 10.1111/j.1551-2916.2007.01834.x | 3378 | ceramic | PZT | camphene | 100 | 0.0 | 0 | 10.0 | 69.0 | 100 | 0 | 0.0 | 0 | 2 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lee, S. H., Jun, S. H., Kim, H. E., & Koh, Y. H. (2008). Piezoelectric Properties of PZT?Based Ceramic with Highly Aligned Pores. Journal of the American Ceramic Society, 91(6), 1912-1915. | 2008 | 305 | 10.1111/j.1551-2916.2008.02359.x | 3379 | ceramic | PZT | camphene | 100 | 0.0 | 0 | 5.0 | 69.0 | 100 | 0 | 0.0 | 0 | 2 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 90.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lee, S. H., Jun, S. H., Kim, H. E., & Koh, Y. H. (2008). Piezoelectric Properties of PZT?Based Ceramic with Highly Aligned Pores. Journal of the American Ceramic Society, 91(6), 1912-1915. | 2008 | 305 | 10.1111/j.1551-2916.2008.02359.x | 3380 | ceramic | PZT | camphene | 100 | 0.0 | 0 | 0.0 | 69.0 | 100 | 0 | 0.0 | 0 | 2 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lee, S. H., Jun, S. H., Kim, H. E., & Koh, Y. H. (2008). Piezoelectric Properties of PZT?Based Ceramic with Highly Aligned Pores. Journal of the American Ceramic Society, 91(6), 1912-1915. | 2008 | 305 | 10.1111/j.1551-2916.2008.02359.x | 3381 | ceramic | PZT | camphene | 100 | 0.0 | 0 | 0.0 | 69.0 | 100 | 0 | 0.0 | 0 | 2 | 0 | 293.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, T., & Wang, C. A. (2016). Control of pore size and wall thickness of 3-1 type porous PZT ceramics during freeze-casting process. Materials & Design, 91, 242-247. | 2016 | 690 | 10.1016/j.matdes.2015.11.101 | 2556 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 15.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 195.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 70.0 | 24.0 | 18.0 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, T., & Wang, C. A. (2016). Control of pore size and wall thickness of 3-1 type porous PZT ceramics during freeze-casting process. Materials & Design, 91, 242-247. | 2016 | 690 | 10.1016/j.matdes.2015.11.101 | 2557 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 20.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 195.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 58.0 | 37.0 | 28.0 | 9.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, T., & Wang, C. A. (2016). Control of pore size and wall thickness of 3-1 type porous PZT ceramics during freeze-casting process. Materials & Design, 91, 242-247. | 2016 | 690 | 10.1016/j.matdes.2015.11.101 | 2558 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 25.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 195.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 58.0 | 32.5 | 25.0 | 7.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, T., & Wang, C. A. (2016). Control of pore size and wall thickness of 3-1 type porous PZT ceramics during freeze-casting process. Materials & Design, 91, 242-247. | 2016 | 690 | 10.1016/j.matdes.2015.11.101 | 2559 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 30.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 195.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 50.0 | 40.0 | 30.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, T., & Wang, C. A. (2016). Control of pore size and wall thickness of 3-1 type porous PZT ceramics during freeze-casting process. Materials & Design, 91, 242-247. | 2016 | 690 | 10.1016/j.matdes.2015.11.101 | 2560 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 35.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 195.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 40.0 | 16.0 | 10.0 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, T., & Wang, C. A. (2016). Control of pore size and wall thickness of 3-1 type porous PZT ceramics during freeze-casting process. Materials & Design, 91, 242-247. | 2016 | 690 | 10.1016/j.matdes.2015.11.101 | 2561 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 40.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 195.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 28.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, T., & Wang, C. A. (2016). Control of pore size and wall thickness of 3-1 type porous PZT ceramics during freeze-casting process. Materials & Design, 91, 242-247. | 2016 | 690 | 10.1016/j.matdes.2015.11.101 | 2562 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 30.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 173.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 48.0 | 40.0 | 20.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, T., & Wang, C. A. (2016). Control of pore size and wall thickness of 3-1 type porous PZT ceramics during freeze-casting process. Materials & Design, 91, 242-247. | 2016 | 690 | 10.1016/j.matdes.2015.11.101 | 2563 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 30.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 195.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 50.0 | 45.0 | 35.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, T., & Wang, C. A. (2016). Control of pore size and wall thickness of 3-1 type porous PZT ceramics during freeze-casting process. Materials & Design, 91, 242-247. | 2016 | 690 | 10.1016/j.matdes.2015.11.101 | 2564 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 30.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 213.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 50.0 | 58.0 | 40.0 | 18.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, T., & Wang, C. A. (2016). Control of pore size and wall thickness of 3-1 type porous PZT ceramics during freeze-casting process. Materials & Design, 91, 242-247. | 2016 | 690 | 10.1016/j.matdes.2015.11.101 | 2565 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 30.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 49.0 | 78.0 | 52.0 | 26.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, T., & Wang, C. A. (2016). Control of pore size and wall thickness of 3-1 type porous PZT ceramics during freeze-casting process. Materials & Design, 91, 242-247. | 2016 | 690 | 10.1016/j.matdes.2015.11.101 | 2566 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 30.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 248.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 53.0 | 104.0 | 70.0 | 34.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, T., & Wang, C. A. (2016). Control of pore size and wall thickness of 3-1 type porous PZT ceramics during freeze-casting process. Materials & Design, 91, 242-247. | 2016 | 690 | 10.1016/j.matdes.2015.11.101 | 2567 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 30.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 53.0 | 0.0 | 95.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, T., & Wang, C. A. (2015). Grain Orientation and Domain Configuration in 3?1 Type Porous PZT Ceramics with Ultrahigh Piezoelectric Properties. Journal of the American Ceramic Society, 98(9), 2700-2702. | 2015 | 692 | 10.1111/jace.13725 | 4804 | ceramic | PZT | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, T., Wang, C. A., & Wang, C. (2015). Synthesis and magnetoelectric effect of composites with CoFe 2 O 4-epoxy embedded in 3?1 type porous PZT ceramics. Ceramics International, 41(9), 11080-11085. | 2015 | 693 | 10.1016/j.ceramint.2015.05.054 | 2569 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 20.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, T., Wang, C. A., & Wang, C. (2015). Synthesis and magnetoelectric effect of composites with CoFe 2 O 4-epoxy embedded in 3?1 type porous PZT ceramics. Ceramics International, 41(9), 11080-11085. | 2015 | 693 | 10.1016/j.ceramint.2015.05.054 | 2570 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 25.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 57.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, T., Wang, C. A., & Wang, C. (2015). Synthesis and magnetoelectric effect of composites with CoFe 2 O 4-epoxy embedded in 3?1 type porous PZT ceramics. Ceramics International, 41(9), 11080-11085. | 2015 | 693 | 10.1016/j.ceramint.2015.05.054 | 2571 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 30.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 49.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, T., Wang, C. A., & Wang, C. (2015). Synthesis and magnetoelectric effect of composites with CoFe 2 O 4-epoxy embedded in 3?1 type porous PZT ceramics. Ceramics International, 41(9), 11080-11085. | 2015 | 693 | 10.1016/j.ceramint.2015.05.054 | 2572 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 35.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 41.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, T., Wang, C. A., & Wang, C. (2015). Synthesis and magnetoelectric effect of composites with CoFe 2 O 4-epoxy embedded in 3?1 type porous PZT ceramics. Ceramics International, 41(9), 11080-11085. | 2015 | 693 | 10.1016/j.ceramint.2015.05.054 | 2573 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 40.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, T. T., Wang, C. A., & Guo, R. (2012). Microstructure and electrical properties of porous PZT ceramics with unidirectional pore channel structure fabricated by freeze-casting. In Key Engineering Materials (Vol. 512, pp. 1347-1350). Trans Tech Publications. | 2012 | 694 | 10.4028/www.scientific.net/KEM.512-515.1347 | 2574 | ceramic | PZT | water | 3 | TBA | 95 | 15.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 67.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, T. T., Wang, C. A., & Guo, R. (2012). Microstructure and electrical properties of porous PZT ceramics with unidirectional pore channel structure fabricated by freeze-casting. In Key Engineering Materials (Vol. 512, pp. 1347-1350). Trans Tech Publications. | 2012 | 694 | 10.4028/www.scientific.net/KEM.512-515.1347 | 2575 | ceramic | PZT | water | 3 | TBA | 95 | 20.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 58.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, T. T., Wang, C. A., & Guo, R. (2012). Microstructure and electrical properties of porous PZT ceramics with unidirectional pore channel structure fabricated by freeze-casting. In Key Engineering Materials (Vol. 512, pp. 1347-1350). Trans Tech Publications. | 2012 | 694 | 10.4028/www.scientific.net/KEM.512-515.1347 | 2576 | ceramic | PZT | water | 3 | TBA | 95 | 25.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 58.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, T. T., Wang, C. A., & Guo, R. (2012). Microstructure and electrical properties of porous PZT ceramics with unidirectional pore channel structure fabricated by freeze-casting. In Key Engineering Materials (Vol. 512, pp. 1347-1350). Trans Tech Publications. | 2012 | 694 | 10.4028/www.scientific.net/KEM.512-515.1347 | 2577 | ceramic | PZT | water | 3 | TBA | 95 | 30.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, T. T., Wang, C. A., & Guo, R. (2012). Microstructure and electrical properties of porous PZT ceramics with unidirectional pore channel structure fabricated by freeze-casting. In Key Engineering Materials (Vol. 512, pp. 1347-1350). Trans Tech Publications. | 2012 | 694 | 10.4028/www.scientific.net/KEM.512-515.1347 | 2578 | ceramic | PZT | water | 3 | TBA | 95 | 35.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, T. T., Wang, C. A., & Guo, R. (2012). Microstructure and electrical properties of porous PZT ceramics with unidirectional pore channel structure fabricated by freeze-casting. In Key Engineering Materials (Vol. 512, pp. 1347-1350). Trans Tech Publications. | 2012 | 694 | 10.4028/www.scientific.net/KEM.512-515.1347 | 2579 | ceramic | PZT | water | 3 | TBA | 95 | 40.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 28.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, T., & Wang, C. A. (2014). Piezoelectric properties of a pioneering 3?1 type PZT/epoxy composites based on freeze?casting processing. Journal of the American Ceramic Society, 97(5), 1511-1516. | 2014 | 695 | 10.1111/jace.12793 | 2585 | ceramic | PZT | water | 3 | TBA | 95 | 20.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 30.0 | 0.0 | 0.0 |
Xu, T., & Wang, C. A. (2014). Piezoelectric properties of a pioneering 3?1 type PZT/epoxy composites based on freeze?casting processing. Journal of the American Ceramic Society, 97(5), 1511-1516. | 2014 | 695 | 10.1111/jace.12793 | 2586 | ceramic | PZT | water | 3 | TBA | 95 | 25.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 40.0 | 0.0 | 0.0 |
Xu, T., & Wang, C. A. (2014). Piezoelectric properties of a pioneering 3?1 type PZT/epoxy composites based on freeze?casting processing. Journal of the American Ceramic Society, 97(5), 1511-1516. | 2014 | 695 | 10.1111/jace.12793 | 2587 | ceramic | PZT | water | 3 | TBA | 95 | 30.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 65.0 | 0.0 | 0.0 |
Xu, T., & Wang, C. A. (2014). Piezoelectric properties of a pioneering 3?1 type PZT/epoxy composites based on freeze?casting processing. Journal of the American Ceramic Society, 97(5), 1511-1516. | 2014 | 695 | 10.1111/jace.12793 | 2588 | ceramic | PZT | water | 3 | TBA | 95 | 35.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 44.0 | 0.0 | 0.0 | 0.0 | 0.0 | 75.0 | 0.0 | 0.0 |
Xu, T., & Wang, C. A. (2014). Piezoelectric properties of a pioneering 3?1 type PZT/epoxy composites based on freeze?casting processing. Journal of the American Ceramic Society, 97(5), 1511-1516. | 2014 | 695 | 10.1111/jace.12793 | 2589 | ceramic | PZT | water | 3 | TBA | 95 | 40.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 32.0 | 0.0 | 0.0 | 0.0 | 0.0 | 80.0 | 0.0 | 0.0 |
Yang, A., Wang, C. A., Guo, R., Huang, Y., & Nan, C. W. (2010). Effects of sintering behavior on microstructure and piezoelectric properties of porous PZT ceramics. Ceramics International, 36(2), 549-554. | 2010 | 701 | 10.1016/j.ceramint.2009.09.022 | 2597 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 15.0 | 69.0 | 100 | 0 | 1.87 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 15 | cellular | sintered | 57.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, A., Wang, C. A., Guo, R., Huang, Y., & Nan, C. W. (2010). Effects of sintering behavior on microstructure and piezoelectric properties of porous PZT ceramics. Ceramics International, 36(2), 549-554. | 2010 | 701 | 10.1016/j.ceramint.2009.09.022 | 2598 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 15.0 | 69.0 | 100 | 0 | 1.87 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 23 | cellular | sintered | 49.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, A., Wang, C. A., Guo, R., Huang, Y., & Nan, C. W. (2010). Effects of sintering behavior on microstructure and piezoelectric properties of porous PZT ceramics. Ceramics International, 36(2), 549-554. | 2010 | 701 | 10.1016/j.ceramint.2009.09.022 | 2599 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 15.0 | 69.0 | 100 | 0 | 1.87 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 28 | cellular | sintered | 45.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, A., Wang, C. A., Guo, R., Huang, Y., & Nan, C. W. (2010). Effects of sintering behavior on microstructure and piezoelectric properties of porous PZT ceramics. Ceramics International, 36(2), 549-554. | 2010 | 701 | 10.1016/j.ceramint.2009.09.022 | 2600 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 15.0 | 69.0 | 100 | 0 | 1.87 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 30 | cellular | sintered | 37.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, A., Wang, C. A., Guo, R., Huang, Y., & Nan, C. W. (2010). Effects of sintering behavior on microstructure and piezoelectric properties of porous PZT ceramics. Ceramics International, 36(2), 549-554. | 2010 | 701 | 10.1016/j.ceramint.2009.09.022 | 2601 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 15.0 | 69.0 | 100 | 0 | 1.87 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 34 | cellular | sintered | 23.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, A., Wang, C. A., Guo, R., Huang, Y., & Nan, C. W. (2010). Porous PZT Ceramics with High Hydrostatic Figure of Merit and Low Acoustic Impedance by TBA?Based Gel?Casting Process. Journal of the American Ceramic Society, 93(5), 1427-1431. | 2010 | 702 | 10.1111/j.1551-2916.2009.03585.x | 2602 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 10.0 | 69.0 | 100 | 0 | 1.87 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 58.6 | 0.0 | 2.16 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, A., Wang, C. A., Guo, R., Huang, Y., & Nan, C. W. (2010). Porous PZT Ceramics with High Hydrostatic Figure of Merit and Low Acoustic Impedance by TBA?Based Gel?Casting Process. Journal of the American Ceramic Society, 93(5), 1427-1431. | 2010 | 702 | 10.1111/j.1551-2916.2009.03585.x | 2603 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 10.0 | 69.0 | 100 | 0 | 1.87 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 51.0 | 0.0 | 2.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, A., Wang, C. A., Guo, R., Huang, Y., & Nan, C. W. (2010). Porous PZT Ceramics with High Hydrostatic Figure of Merit and Low Acoustic Impedance by TBA?Based Gel?Casting Process. Journal of the American Ceramic Society, 93(5), 1427-1431. | 2010 | 702 | 10.1111/j.1551-2916.2009.03585.x | 2604 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 10.0 | 69.0 | 100 | 0 | 1.87 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 41.0 | 0.0 | 3.58 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, A., Wang, C. A., Guo, R., Huang, Y., & Nan, C. W. (2010). Porous PZT Ceramics with High Hydrostatic Figure of Merit and Low Acoustic Impedance by TBA?Based Gel?Casting Process. Journal of the American Ceramic Society, 93(5), 1427-1431. | 2010 | 702 | 10.1111/j.1551-2916.2009.03585.x | 2605 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 10.0 | 69.0 | 100 | 0 | 1.87 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 37.1 | 0.0 | 3.74 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, A., Wang, C. A., Guo, R., Huang, Y., & Nan, C. W. (2010). Porous PZT Ceramics with High Hydrostatic Figure of Merit and Low Acoustic Impedance by TBA?Based Gel?Casting Process. Journal of the American Ceramic Society, 93(5), 1427-1431. | 2010 | 702 | 10.1111/j.1551-2916.2009.03585.x | 2606 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 15.0 | 69.0 | 100 | 0 | 1.87 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 49.9 | 0.0 | 1.71 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, A., Wang, C. A., Guo, R., Huang, Y., & Nan, C. W. (2010). Porous PZT Ceramics with High Hydrostatic Figure of Merit and Low Acoustic Impedance by TBA?Based Gel?Casting Process. Journal of the American Ceramic Society, 93(5), 1427-1431. | 2010 | 702 | 10.1111/j.1551-2916.2009.03585.x | 2607 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 15.0 | 69.0 | 100 | 0 | 1.87 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 41.3 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, A., Wang, C. A., Guo, R., Huang, Y., & Nan, C. W. (2010). Porous PZT Ceramics with High Hydrostatic Figure of Merit and Low Acoustic Impedance by TBA?Based Gel?Casting Process. Journal of the American Ceramic Society, 93(5), 1427-1431. | 2010 | 702 | 10.1111/j.1551-2916.2009.03585.x | 2608 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 15.0 | 69.0 | 100 | 0 | 1.87 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 33.1 | 0.0 | 3.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, A., Wang, C. A., Guo, R., Huang, Y., & Nan, C. W. (2010). Porous PZT Ceramics with High Hydrostatic Figure of Merit and Low Acoustic Impedance by TBA?Based Gel?Casting Process. Journal of the American Ceramic Society, 93(5), 1427-1431. | 2010 | 702 | 10.1111/j.1551-2916.2009.03585.x | 2609 | ceramic | PZT | TBA | 100 | 0.0 | 0 | 15.0 | 69.0 | 100 | 0 | 1.87 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 31.3 | 0.0 | 3.98 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Bao, Y., Zhang, D., & Bowen, C. R. (2015). Porous PZT ceramics with aligned pore channels for energy harvesting applications. Journal of the American Ceramic Society, 98(10), 2980-2983. | 2015 | 772 | 10.1111/jace.13797 | 2280 | ceramic | PZT | water | 100 | 0.0 | 0 | 0.0 | 69.0 | 100 | 0 | 0.25 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Bao, Y., Zhang, D., & Bowen, C. R. (2015). Porous PZT ceramics with aligned pore channels for energy harvesting applications. Journal of the American Ceramic Society, 98(10), 2980-2983. | 2015 | 772 | 10.1111/jace.13797 | 2281 | ceramic | PZT | water | 100 | 0.0 | 0 | 0.0 | 69.0 | 100 | 0 | 0.25 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 25.0 | 32.0 | 25.0 | 7.0 | 0.0 | 36.0 | 0.0 | 0.0 |
Zhang, Y., Bao, Y., Zhang, D., & Bowen, C. R. (2015). Porous PZT ceramics with aligned pore channels for energy harvesting applications. Journal of the American Ceramic Society, 98(10), 2980-2983. | 2015 | 772 | 10.1111/jace.13797 | 2282 | ceramic | PZT | water | 100 | 0.0 | 0 | 0.0 | 69.0 | 100 | 0 | 0.25 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 35.0 | 0.0 | 0.0 | 0.0 | 0.0 | 27.0 | 0.0 | 0.0 |
Zhang, Y., Bao, Y., Zhang, D., & Bowen, C. R. (2015). Porous PZT ceramics with aligned pore channels for energy harvesting applications. Journal of the American Ceramic Society, 98(10), 2980-2983. | 2015 | 772 | 10.1111/jace.13797 | 2283 | ceramic | PZT | water | 100 | 0.0 | 0 | 0.0 | 69.0 | 100 | 0 | 0.25 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 45.0 | 35.0 | 5.0 | 30.0 | 0.0 | 22.0 | 0.0 | 0.0 |
Zhou, Q. F., Zhu, B. P., Hu, C. H., Shung, K. K., Gorzkowski, E. P., & Pan, M. J. (2009, September). Novel piezoelectric ceramic-polymer aligned composites via the freeze casting method for high frequency transducer applications. In Ultrasonics Symposium (IUS), 2009 IEEE International (pp. 1707-1710). IEEE. | 2009 | 791 | 10.1109/ULTSYM.2009.0417 | 4605 | ceramic | PZT | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhu, B. P., Zhou, Q. F., Hu, C. H., Shung, K. K., Gorzkowski, E. P., & Pan, M. J. (2011). Novel lead zirconate titanate composite via freezing technology for high frequency transducer applications. Journal of advanced dielectrics, 1(01), 85-89. | 2011 | 793 | 10.1142/S2010135X11000112. | 2401 | ceramic | PZT | water | 100 | 0.0 | 0 | 0.0 | 69.0 | 100 | 0 | 0.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Xie, M., Roscow, J., Bao, Y., Zhou, K., Zhang, D., & Bowen, C. R. (2017). Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications. Journal of Materials Chemistry A, 5(14), 6569-6580. | 2017 | 963 | 10.1039/C7TA00967D | 6171 | ceramic | PZT | water | 100 | 0.0 | 0 | 0.0 | 69.0 | 100 | powder | 0.5 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 |
Zhang, Y., Xie, M., Roscow, J., Bao, Y., Zhou, K., Zhang, D., & Bowen, C. R. (2017). Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications. Journal of Materials Chemistry A, 5(14), 6569-6580. | 2017 | 963 | 10.1039/C7TA00967D | 6172 | ceramic | PZT | water | 100 | 0.0 | 0 | 0.0 | 69.0 | 100 | powder | 0.5 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 12.0 | 0.0 | 0.0 |
Zhang, Y., Xie, M., Roscow, J., Bao, Y., Zhou, K., Zhang, D., & Bowen, C. R. (2017). Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications. Journal of Materials Chemistry A, 5(14), 6569-6580. | 2017 | 963 | 10.1039/C7TA00967D | 6173 | ceramic | PZT | water | 100 | 0.0 | 0 | 0.0 | 69.0 | 100 | powder | 0.5 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 40.0 | 0.0 | 12.0 | 6.0 | 0.0 | 7.0 | 0.0 | 0.0 |
Zhang, Y., Xie, M., Roscow, J., Bao, Y., Zhou, K., Zhang, D., & Bowen, C. R. (2017). Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications. Journal of Materials Chemistry A, 5(14), 6569-6580. | 2017 | 963 | 10.1039/C7TA00967D | 6174 | ceramic | PZT | water | 100 | 0.0 | 0 | 0.0 | 69.0 | 100 | powder | 0.5 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 |
Zhang, Y., Xie, M., Roscow, J., Bao, Y., Zhou, K., Zhang, D., & Bowen, C. R. (2017). Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications. Journal of Materials Chemistry A, 5(14), 6569-6580. | 2017 | 963 | 10.1039/C7TA00967D | 6175 | ceramic | PZT | water | 100 | 0.0 | 0 | 0.0 | 69.0 | 100 | powder | 0.5 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 |
Guo, R. F., Shen, P., Sun, C., Wang, Y., Shaga, A., & Jiang, Q. C. (2016). Processing and mechanical properties of lamellar-structured Al?7Si?5Cu/TiC composites. Materials & Design, 106, 446-453. | 2016 | 172 | 10.1016/j.matdes.2016.06.008 | 932 | metal/ceramic | TiC-Al7Si5Cu (impregnate) | water | 100 | 0.0 | 0 | 25.0 | 55.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 930.0 | 350.0 | 170000.0 |
Guo, R. F., Shen, P., Sun, C., Wang, Y., Shaga, A., & Jiang, Q. C. (2016). Processing and mechanical properties of lamellar-structured Al?7Si?5Cu/TiC composites. Materials & Design, 106, 446-453. | 2016 | 172 | 10.1016/j.matdes.2016.06.008 | 933 | metal/ceramic | TiC-Al7Si5Cu (impregnate) | water | 100 | 0.0 | 0 | 30.0 | 55.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1010.0 | 345.0 | 189000.0 |
Guo, R. F., Shen, P., Sun, C., Wang, Y., Shaga, A., & Jiang, Q. C. (2016). Processing and mechanical properties of lamellar-structured Al?7Si?5Cu/TiC composites. Materials & Design, 106, 446-453. | 2016 | 172 | 10.1016/j.matdes.2016.06.008 | 934 | metal/ceramic | TiC-Al7Si5Cu (impregnate) | water | 100 | 0.0 | 0 | 35.0 | 55.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1156.0 | 340.0 | 209000.0 |
Guo, R. F., Shen, P., Sun, C., Wang, Y., Shaga, A., & Jiang, Q. C. (2016). Processing and mechanical properties of lamellar-structured Al?7Si?5Cu/TiC composites. Materials & Design, 106, 446-453. | 2016 | 172 | 10.1016/j.matdes.2016.06.008 | 935 | ceramic | TiC | water | 100 | 0.0 | 0 | 25.0 | 55.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 50.0 | 20.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Guo, R. F., Shen, P., Sun, C., Wang, Y., Shaga, A., & Jiang, Q. C. (2016). Processing and mechanical properties of lamellar-structured Al?7Si?5Cu/TiC composites. Materials & Design, 106, 446-453. | 2016 | 172 | 10.1016/j.matdes.2016.06.008 | 936 | ceramic | TiC | water | 100 | 0.0 | 0 | 30.0 | 55.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Guo, R. F., Shen, P., Sun, C., Wang, Y., Shaga, A., & Jiang, Q. C. (2016). Processing and mechanical properties of lamellar-structured Al?7Si?5Cu/TiC composites. Materials & Design, 106, 446-453. | 2016 | 172 | 10.1016/j.matdes.2016.06.008 | 937 | ceramic | TiC | water | 100 | 0.0 | 0 | 35.0 | 55.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, Y., Shen, P., Guo, R. F., Hu, Z. J., & Jiang, Q. C. (2017). Developing high toughness and strength Al/TiC composites using ice-templating and pressure infiltration. Ceramics International, 43(4), 3831-3838. | 2016 | 894 | 10.1016/j.ceramint.2016.12.038 | 4434 | ceramic | TiC | water | 100 | 0.0 | 0 | 15.0 | 55.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 62.0 | 58.0 | 36.0 | 22.0 | 0.0 | 1.4 | 0.0 | 0.0 |
Wang, Y., Shen, P., Guo, R. F., Hu, Z. J., & Jiang, Q. C. (2017). Developing high toughness and strength Al/TiC composites using ice-templating and pressure infiltration. Ceramics International, 43(4), 3831-3838. | 2016 | 894 | 10.1016/j.ceramint.2016.12.038 | 4435 | ceramic | TiC | water | 100 | 0.0 | 0 | 25.0 | 55.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 48.0 | 66.0 | 32.0 | 34.0 | 0.0 | 10.0 | 0.0 | 0.0 |
Wang, Y., Shen, P., Guo, R. F., Hu, Z. J., & Jiang, Q. C. (2017). Developing high toughness and strength Al/TiC composites using ice-templating and pressure infiltration. Ceramics International, 43(4), 3831-3838. | 2016 | 894 | 10.1016/j.ceramint.2016.12.038 | 4436 | ceramic | TiC | water | 100 | 0.0 | 0 | 30.0 | 55.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 42.0 | 65.0 | 27.0 | 38.0 | 0.0 | 19.0 | 0.0 | 0.0 |
Guo, R. F., Shen, P., Sun, C., Fu, Y. J., Liu, Y. H., Ren, Z. A., & Jiang, Q. C. (2015). Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2O3?ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, 50(14), 5039-5046. | 2015 | 173 | 10.1007/s10853-015-9053-6 | 938 | ceramic | Al2O3-0.9wt.% ZrO2 (mixed) | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 14 | powder | 5.0 | 0 | 1 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 47.0 | 0.0 | 0.0 |
Guo, R. F., Shen, P., Sun, C., Fu, Y. J., Liu, Y. H., Ren, Z. A., & Jiang, Q. C. (2015). Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2O3?ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, 50(14), 5039-5046. | 2015 | 173 | 10.1007/s10853-015-9053-6 | 939 | ceramic | Al2O3-0.9wt.% ZrO2 (mixed) | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 14 | powder | 5.0 | 0 | 1 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 54.0 | 0.0 | 0.0 | 0.0 | 0.0 | 78.0 | 0.0 | 0.0 |
Guo, R. F., Shen, P., Sun, C., Fu, Y. J., Liu, Y. H., Ren, Z. A., & Jiang, Q. C. (2015). Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2O3?ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, 50(14), 5039-5046. | 2015 | 173 | 10.1007/s10853-015-9053-6 | 940 | ceramic | Al2O3-0.9wt.% ZrO2 (mixed) | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 14 | powder | 5.0 | 0 | 1 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 45.0 | 0.0 | 0.0 | 0.0 | 0.0 | 80.0 | 0.0 | 0.0 |
Guo, R. F., Shen, P., Sun, C., Fu, Y. J., Liu, Y. H., Ren, Z. A., & Jiang, Q. C. (2015). Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2O3?ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, 50(14), 5039-5046. | 2015 | 173 | 10.1007/s10853-015-9053-6 | 941 | ceramic | Al2O3-0.7wt. %ZrO2 (mixed) | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 37 | powder | 5.0 | 0 | 1 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 60.0 | 0.0 | 0.0 |
Guo, R. F., Shen, P., Sun, C., Fu, Y. J., Liu, Y. H., Ren, Z. A., & Jiang, Q. C. (2015). Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2O3?ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, 50(14), 5039-5046. | 2015 | 173 | 10.1007/s10853-015-9053-6 | 942 | ceramic | Al2O3-0.7wt. %ZrO2 (mixed) | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 37 | powder | 5.0 | 0 | 1 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 55.0 | 52.0 | 0.0 | 0.0 | 0.0 | 105.0 | 0.0 | 0.0 |
Guo, R. F., Shen, P., Sun, C., Fu, Y. J., Liu, Y. H., Ren, Z. A., & Jiang, Q. C. (2015). Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2O3?ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, 50(14), 5039-5046. | 2015 | 173 | 10.1007/s10853-015-9053-6 | 943 | ceramic | Al2O3-0.7wt. %ZrO2 (mixed) | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 37 | powder | 5.0 | 0 | 1 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 48.0 | 0.0 | 0.0 | 0.0 | 0.0 | 91.0 | 0.0 | 0.0 |
Guo, R. F., Shen, P., Sun, C., Fu, Y. J., Liu, Y. H., Ren, Z. A., & Jiang, Q. C. (2015). Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2O3?ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, 50(14), 5039-5046. | 2015 | 173 | 10.1007/s10853-015-9053-6 | 944 | ceramic | Al2O3-0.5wt.% ZrO2 (mixed) | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 60 | powder | 5.0 | 0 | 1 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 62.0 | 0.0 | 0.0 | 0.0 | 0.0 | 28.0 | 0.0 | 0.0 |
Guo, R. F., Shen, P., Sun, C., Fu, Y. J., Liu, Y. H., Ren, Z. A., & Jiang, Q. C. (2015). Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2O3?ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, 50(14), 5039-5046. | 2015 | 173 | 10.1007/s10853-015-9053-6 | 945 | ceramic | Al2O3-0.5wt.% ZrO2 (mixed) | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 60 | powder | 5.0 | 0 | 1 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 57.0 | 0.0 | 0.0 | 0.0 | 0.0 | 61.0 | 0.0 | 0.0 |
Guo, R. F., Shen, P., Sun, C., Fu, Y. J., Liu, Y. H., Ren, Z. A., & Jiang, Q. C. (2015). Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2O3?ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, 50(14), 5039-5046. | 2015 | 173 | 10.1007/s10853-015-9053-6 | 946 | ceramic | Al2O3-0.5wt.% ZrO2 (mixed) | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 60 | powder | 5.0 | 0 | 1 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 86.0 | 0.0 | 0.0 |
Guo, R. F., Shen, P., Sun, C., Fu, Y. J., Liu, Y. H., Ren, Z. A., & Jiang, Q. C. (2015). Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2O3?ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, 50(14), 5039-5046. | 2015 | 173 | 10.1007/s10853-015-9053-6 | 947 | ceramic | Al2O3-0.3wt.% ZrO2 (mixed) | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 76 | powder | 5.0 | 0 | 1 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14.0 | 0.0 | 0.0 |
Guo, R. F., Shen, P., Sun, C., Fu, Y. J., Liu, Y. H., Ren, Z. A., & Jiang, Q. C. (2015). Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2O3?ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, 50(14), 5039-5046. | 2015 | 173 | 10.1007/s10853-015-9053-6 | 948 | ceramic | Al2O3-0.3wt.% ZrO2 (mixed) | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 76 | powder | 5.0 | 0 | 1 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 41.0 | 0.0 | 0.0 |
Guo, R. F., Shen, P., Sun, C., Fu, Y. J., Liu, Y. H., Ren, Z. A., & Jiang, Q. C. (2015). Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2O3?ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, 50(14), 5039-5046. | 2015 | 173 | 10.1007/s10853-015-9053-6 | 949 | ceramic | Al2O3-0.3wt.% ZrO2 (mixed) | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 76 | powder | 5.0 | 0 | 1 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 48.0 | 0.0 | 0.0 |
Guo, R. F., Shen, P., Sun, C., Fu, Y. J., Liu, Y. H., Ren, Z. A., & Jiang, Q. C. (2015). Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2O3?ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, 50(14), 5039-5046. | 2015 | 173 | 10.1007/s10853-015-9053-6 | 950 | ceramic | Al2O3-1wt.% ZrO2 (mixed) | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 93 | powder | 5.0 | 0 | 1 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 53.0 | 0.0 | 0.0 | 0.0 | 0.0 | 36.0 | 0.0 | 0.0 |
Guo, R. F., Shen, P., Sun, C., Fu, Y. J., Liu, Y. H., Ren, Z. A., & Jiang, Q. C. (2015). Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2O3?ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, 50(14), 5039-5046. | 2015 | 173 | 10.1007/s10853-015-9053-6 | 951 | ceramic | Al2O3-1wt.% ZrO2 (mixed) | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 93 | powder | 5.0 | 0 | 1 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 66.0 | 0.0 | 0.0 |
Guo, R. F., Shen, P., Sun, C., Fu, Y. J., Liu, Y. H., Ren, Z. A., & Jiang, Q. C. (2015). Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2O3?ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, 50(14), 5039-5046. | 2015 | 173 | 10.1007/s10853-015-9053-6 | 952 | ceramic | Al2O3-1wt.% ZrO2 (mixed) | water | 100 | 0.0 | 0 | 30.0 | 1.0 | 93 | powder | 5.0 | 0 | 1 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 48.0 | 0.0 | 0.0 |
Hafezi, M., Nezafati, N., Nadernezhad, A., Yasaei, M., Zamanian, A., & Mobini, S. (2014). Effect of sintering temperature and cooling rate on the morphology, mechanical behavior and apatite-forming ability of a novel nanostructured magnesium calcium silicate scaffold prepared by a freeze casting method. Journal of materials science, 49(3), 1297-1305. | 2014 | 181 | 10.1007/s10853-013-7813-8 | 982 | ceramic | Merwinite | water | 100 | 0.0 | 0 | 10.0 | 61.0 | 100 | powder | 0.1 | 5 | 2 | 0 | 238.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 38 | 0 | 16 | dendritic | sintered | 58.75 | 0.0 | 0.0 | 0.0 | 0.0 | 0.19 | 0.0 | 3.61 |
Hafezi, M., Nezafati, N., Nadernezhad, A., Yasaei, M., Zamanian, A., & Mobini, S. (2014). Effect of sintering temperature and cooling rate on the morphology, mechanical behavior and apatite-forming ability of a novel nanostructured magnesium calcium silicate scaffold prepared by a freeze casting method. Journal of materials science, 49(3), 1297-1305. | 2014 | 181 | 10.1007/s10853-013-7813-8 | 983 | ceramic | Merwinite | water | 100 | 0.0 | 0 | 10.0 | 61.0 | 100 | powder | 0.1 | 5 | 2 | 0 | 238.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 36 | 0 | 13 | dendritic | sintered | 56.07 | 0.0 | 0.0 | 0.0 | 0.0 | 0.39 | 0.0 | 8.16 |
Hafezi, M., Nezafati, N., Nadernezhad, A., Yasaei, M., Zamanian, A., & Mobini, S. (2014). Effect of sintering temperature and cooling rate on the morphology, mechanical behavior and apatite-forming ability of a novel nanostructured magnesium calcium silicate scaffold prepared by a freeze casting method. Journal of materials science, 49(3), 1297-1305. | 2014 | 181 | 10.1007/s10853-013-7813-8 | 984 | ceramic | Merwinite | water | 100 | 0.0 | 0 | 10.0 | 61.0 | 100 | powder | 0.1 | 5 | 2 | 0 | 238.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 48 | 0 | 19 | dendritic | sintered | 49.41 | 0.0 | 0.0 | 0.0 | 0.0 | 1.18 | 0.0 | 31.74 |
Hafezi, M., Nezafati, N., Nadernezhad, A., Yasaei, M., Zamanian, A., & Mobini, S. (2014). Effect of sintering temperature and cooling rate on the morphology, mechanical behavior and apatite-forming ability of a novel nanostructured magnesium calcium silicate scaffold prepared by a freeze casting method. Journal of materials science, 49(3), 1297-1305. | 2014 | 181 | 10.1007/s10853-013-7813-8 | 985 | ceramic | Merwinite | water | 100 | 0.0 | 0 | 10.0 | 61.0 | 100 | powder | 0.1 | 5 | 2 | 0 | 238.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 47 | 0 | 19 | dendritic | sintered | 46.61 | 0.0 | 0.0 | 0.0 | 0.0 | 1.92 | 0.0 | 48.19 |
Nezafati, N., Hafezi, M., Zamanian, A., & Naserirad, M. (2015). Effect of adding nano?titanium dioxide on the microstructure, mechanical properties and in vitro bioactivity of a freeze cast merwinite scaffold. Biotechnology progress, 31(2), 550-556. | 2015 | 425 | 10.1002/btpr.2042 | 3968 | ceramic | Merwinite | water | 100 | 0.0 | 0 | 6.0 | 61.0 | 100 | 0 | 0.0 | 3 | 0 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 47 | 0 | 19 | dendritic | sintered | 45.15 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nezafati, N., Hafezi, M., Zamanian, A., & Naserirad, M. (2015). Effect of adding nano?titanium dioxide on the microstructure, mechanical properties and in vitro bioactivity of a freeze cast merwinite scaffold. Biotechnology progress, 31(2), 550-556. | 2015 | 425 | 10.1002/btpr.2042 | 3969 | ceramic | Merwinite | water | 100 | 0.0 | 0 | 6.0 | 61.0 | 92 | 0 | 0.0 | 3 | 0 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 45 | 0 | 17 | dendritic | sintered | 42.07 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nezafati, N., Hafezi, M., Zamanian, A., & Naserirad, M. (2015). Effect of adding nano?titanium dioxide on the microstructure, mechanical properties and in vitro bioactivity of a freeze cast merwinite scaffold. Biotechnology progress, 31(2), 550-556. | 2015 | 425 | 10.1002/btpr.2042 | 3970 | ceramic | Merwinite | water | 100 | 0.0 | 0 | 6.0 | 61.0 | 89 | 0 | 0.0 | 3 | 0 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 29 | 0 | 14 | cellular | sintered | 21.31 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hamamoto, K., Fukushima, M., Mamiya, M., Yoshizawa, Y., Akimoto, J., Suzuki, T., & Fujishiro, Y. (2012). Morphology control and electrochemical properties of LiFePO 4/C composite cathode for lithium ion batteries. Solid State Ionics, 225, 560-563. | 2012 | 182 | 10.1016/j.ssi.2012.01.034 | 5788 | carbon/ceramic | LiFePO4-C | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 88.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Orlenius, J., Lyckfeldt, O., Kasvayee, K. A., & Johander, P. (2012). Water based processing of LiFePO 4/C cathode material for Li-ion batteries utilizing freeze granulation. Journal of Power Sources, 213, 119-127. | 2012 | 451 | 10.1016/j.jpowsour.2012.04.037 | 4784 | carbon/ceramic | LiFePO4-C | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Han, B., Zhang, R., & Fang, D. (2016). Preparation and characterization of highly porous Yb2SiO5 ceramics using water-based freeze-casting. Journal of Porous Materials, 23(2), 563-568. | 2016 | 183 | 10.1007/s10934-015-0110-y | 986 | ceramic | Yb2SiO5 | TBA | 100 | 0.0 | 0 | 15.0 | 53.0 | 100 | powder | 0.0 | 0 | 2 | 7 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 1 | dendritic | sintered | 85.65 | 0.0 | 0.0 | 0.0 | 0.0 | 1.89 | 0.0 | 0.0 |
Han, B., Zhang, R., & Fang, D. (2016). Preparation and characterization of highly porous Yb2SiO5 ceramics using water-based freeze-casting. Journal of Porous Materials, 23(2), 563-568. | 2016 | 183 | 10.1007/s10934-015-0110-y | 987 | ceramic | Yb2SiO5 | TBA | 100 | 0.0 | 0 | 15.0 | 53.0 | 100 | powder | 0.0 | 0 | 2 | 7 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 2 | dendritic | sintered | 85.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Han, B., Zhang, R., & Fang, D. (2016). Preparation and characterization of highly porous Yb2SiO5 ceramics using water-based freeze-casting. Journal of Porous Materials, 23(2), 563-568. | 2016 | 183 | 10.1007/s10934-015-0110-y | 988 | ceramic | Yb2SiO5 | TBA | 100 | 0.0 | 0 | 15.0 | 53.0 | 100 | powder | 0.0 | 0 | 2 | 7 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 3 | dendritic | sintered | 84.65 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Han, B., Zhang, R., & Fang, D. (2016). Preparation and characterization of highly porous Yb2SiO5 ceramics using water-based freeze-casting. Journal of Porous Materials, 23(2), 563-568. | 2016 | 183 | 10.1007/s10934-015-0110-y | 989 | ceramic | Yb2SiO5 | TBA | 100 | 0.0 | 0 | 15.0 | 53.0 | 100 | powder | 0.0 | 0 | 2 | 7 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 4 | dendritic | sintered | 83.95 | 0.0 | 0.0 | 0.0 | 0.0 | 2.15 | 0.0 | 0.0 |
Han, B., Zhang, R., & Fang, D. (2016). Preparation and characterization of highly porous Yb2SiO5 ceramics using water-based freeze-casting. Journal of Porous Materials, 23(2), 563-568. | 2016 | 183 | 10.1007/s10934-015-0110-y | 990 | ceramic | Yb2SiO5 | TBA | 100 | 0.0 | 0 | 15.0 | 53.0 | 100 | powder | 0.0 | 0 | 2 | 7 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 7 | dendritic | sintered | 82.15 | 0.0 | 0.0 | 0.0 | 0.0 | 3.36 | 0.0 | 0.0 |
Han, B., Zhang, R., & Fang, D. (2016). Preparation and characterization of highly porous Yb2SiO5 ceramics using water-based freeze-casting. Journal of Porous Materials, 23(2), 563-568. | 2016 | 183 | 10.1007/s10934-015-0110-y | 991 | ceramic | Yb2SiO5 | TBA | 100 | 0.0 | 0 | 15.0 | 53.0 | 100 | powder | 0.0 | 0 | 2 | 7 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 28 | dendritic | sintered | 85.65 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Han, B., Zhang, R., & Fang, D. (2016). Preparation and characterization of highly porous Yb2SiO5 ceramics using water-based freeze-casting. Journal of Porous Materials, 23(2), 563-568. | 2016 | 183 | 10.1007/s10934-015-0110-y | 992 | ceramic | Yb2SiO5 | TBA | 100 | 0.0 | 0 | 15.0 | 53.0 | 100 | powder | 0.0 | 0 | 2 | 7 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 20 | dendritic | sintered | 85.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Han, B., Zhang, R., & Fang, D. (2016). Preparation and characterization of highly porous Yb2SiO5 ceramics using water-based freeze-casting. Journal of Porous Materials, 23(2), 563-568. | 2016 | 183 | 10.1007/s10934-015-0110-y | 993 | ceramic | Yb2SiO5 | TBA | 100 | 0.0 | 0 | 15.0 | 53.0 | 100 | powder | 0.0 | 0 | 2 | 7 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 15 | dendritic | sintered | 84.65 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Han, B., Zhang, R., & Fang, D. (2016). Preparation and characterization of highly porous Yb2SiO5 ceramics using water-based freeze-casting. Journal of Porous Materials, 23(2), 563-568. | 2016 | 183 | 10.1007/s10934-015-0110-y | 994 | ceramic | Yb2SiO5 | TBA | 100 | 0.0 | 0 | 15.0 | 53.0 | 100 | powder | 0.0 | 0 | 2 | 7 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 83.95 | 0.0 | 0.0 | 0.0 | 0.0 | 2.15 | 0.0 | 0.0 |
Han, B., Zhang, R., & Fang, D. (2016). Preparation and characterization of highly porous Yb2SiO5 ceramics using water-based freeze-casting. Journal of Porous Materials, 23(2), 563-568. | 2016 | 183 | 10.1007/s10934-015-0110-y | 995 | ceramic | Yb2SiO5 | TBA | 100 | 0.0 | 0 | 15.0 | 53.0 | 100 | powder | 0.0 | 0 | 2 | 7 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 82.15 | 0.0 | 0.0 | 0.0 | 0.0 | 3.36 | 0.0 | 0.0 |
Zhang, R., Han, B., & Fang, D. (2016). New multifunctional porous Yb 2 SiO 5 ceramics prepared by freeze casting. Ceramics International, 42(5), 6046-6053. | 2016 | 764 | 10.1016/j.ceramint.2015.12.161 | 2234 | ceramic | Yb2SiO5 | water | 100 | 0.0 | 0 | 10.0 | 53.0 | 100 | 0 | 1.0 | 0 | 0 | 10 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 14 | dendritic | sintered | 85.7 | 0.0 | 40.0 | 0.0 | 0.0 | 2.82 | 0.0 | 0.0 |
Zhang, R., Han, B., & Fang, D. (2016). New multifunctional porous Yb 2 SiO 5 ceramics prepared by freeze casting. Ceramics International, 42(5), 6046-6053. | 2016 | 764 | 10.1016/j.ceramint.2015.12.161 | 2235 | ceramic | Yb2SiO5 | water | 100 | 0.0 | 0 | 15.0 | 53.0 | 100 | 0 | 1.0 | 0 | 0 | 10 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 7 | dendritic | sintered | 83.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, R., Han, B., & Fang, D. (2016). New multifunctional porous Yb 2 SiO 5 ceramics prepared by freeze casting. Ceramics International, 42(5), 6046-6053. | 2016 | 764 | 10.1016/j.ceramint.2015.12.161 | 2236 | ceramic | Yb2SiO5 | water | 100 | 0.0 | 0 | 20.0 | 53.0 | 100 | 0 | 1.0 | 0 | 0 | 10 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 4 | dendritic | sintered | 79.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, R., Han, B., & Fang, D. (2016). New multifunctional porous Yb 2 SiO 5 ceramics prepared by freeze casting. Ceramics International, 42(5), 6046-6053. | 2016 | 764 | 10.1016/j.ceramint.2015.12.161 | 2237 | ceramic | Yb2SiO5 | water | 100 | 0.0 | 0 | 25.0 | 53.0 | 100 | 0 | 1.0 | 0 | 0 | 10 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 9 | cellular | sintered | 71.2 | 0.0 | 10.0 | 0.0 | 0.0 | 7.01 | 0.0 | 0.0 |
Zhang, R., Han, B., & Fang, D. (2016). New multifunctional porous Yb 2 SiO 5 ceramics prepared by freeze casting. Ceramics International, 42(5), 6046-6053. | 2016 | 764 | 10.1016/j.ceramint.2015.12.161 | 2238 | ceramic | Yb2SiO5 | water | 100 | 0.0 | 0 | 20.0 | 53.0 | 100 | 0 | 1.0 | 0 | 0 | 10 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 3 | dendritic | sintered | 79.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, R., Han, B., & Fang, D. (2016). New multifunctional porous Yb 2 SiO 5 ceramics prepared by freeze casting. Ceramics International, 42(5), 6046-6053. | 2016 | 764 | 10.1016/j.ceramint.2015.12.161 | 2239 | ceramic | Yb2SiO5 | water | 100 | 0.0 | 0 | 20.0 | 53.0 | 100 | 0 | 1.0 | 0 | 0 | 10 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 2 | dendritic | sintered | 80.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hao, R., Wang, D., Yao, A., & Huang, W. (2011). Preparation and characterization of ?-TCP/CS scaffolds by freeze-extraction and freeze-gelation. Journal of Wuhan University of Technology-Mater. Sci. Ed., 26(2), 371-375. | 2011 | 188 | 10.1007/s11595-011-0232-2 | 4574 | ceramic/polymer | TCP-80wt.% chitosam | water | 100 | 0.0 | 0 | 3.8 | 8.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 89.5 | 0.0 | 0.0 | 0.0 | 0.0 | 1.25 | 0.0 | 0.0 |
Hao, R., Wang, D., Yao, A., & Huang, W. (2011). Preparation and characterization of ?-TCP/CS scaffolds by freeze-extraction and freeze-gelation. Journal of Wuhan University of Technology-Mater. Sci. Ed., 26(2), 371-375. | 2011 | 188 | 10.1007/s11595-011-0232-2 | 4575 | ceramic/polymer | TCP-75wt.% chitosam | water | 100 | 0.0 | 0 | 3.7 | 8.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 90.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.55 | 0.0 | 0.0 |
Hao, R., Wang, D., Yao, A., & Huang, W. (2011). Preparation and characterization of ?-TCP/CS scaffolds by freeze-extraction and freeze-gelation. Journal of Wuhan University of Technology-Mater. Sci. Ed., 26(2), 371-375. | 2011 | 188 | 10.1007/s11595-011-0232-2 | 4576 | ceramic/polymer | TCP-70wt.% chitosam | water | 100 | 0.0 | 0 | 3.6 | 8.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 90.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.7 | 0.0 | 0.0 |
Hao, R., Wang, D., Yao, A., & Huang, W. (2011). Preparation and characterization of ?-TCP/CS scaffolds by freeze-extraction and freeze-gelation. Journal of Wuhan University of Technology-Mater. Sci. Ed., 26(2), 371-375. | 2011 | 188 | 10.1007/s11595-011-0232-2 | 4577 | ceramic/polymer | TCP-60wt.% chitosam | water | 100 | 0.0 | 0 | 3.5 | 8.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 91.5 | 0.0 | 0.0 | 0.0 | 0.0 | 1.55 | 0.0 | 0.0 |
Hao, R., Wang, D., Yao, A., & Huang, W. (2011). Preparation and characterization of ?-TCP/CS scaffolds by freeze-extraction and freeze-gelation. Journal of Wuhan University of Technology-Mater. Sci. Ed., 26(2), 371-375. | 2011 | 188 | 10.1007/s11595-011-0232-2 | 4578 | ceramic/polymer | TCP-50wt.% chitosam | water | 100 | 0.0 | 0 | 3.4 | 8.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 92.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.45 | 0.0 | 0.0 |
Hao, R., Wang, D., Yao, A., & Huang, W. (2011). Preparation and characterization of ?-TCP/CS scaffolds by freeze-extraction and freeze-gelation. Journal of Wuhan University of Technology-Mater. Sci. Ed., 26(2), 371-375. | 2011 | 188 | 10.1007/s11595-011-0232-2 | 4579 | ceramic/polymer | TCP-40wt.% chitosam | water | 100 | 0.0 | 0 | 3.3 | 8.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 92.5 | 0.0 | 0.0 | 0.0 | 0.0 | 1.4 | 0.0 | 0.0 |
Hao, R., Wang, D., Yao, A., & Huang, W. (2011). Preparation and characterization of ?-TCP/CS scaffolds by freeze-extraction and freeze-gelation. Journal of Wuhan University of Technology-Mater. Sci. Ed., 26(2), 371-375. | 2011 | 188 | 10.1007/s11595-011-0232-2 | 4580 | ceramic/polymer | TCP-30wt.% chitosan | water | 100 | 0.0 | 0 | 3.2 | 8.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 95.3 | 0.0 | 0.0 | 0.0 | 0.0 | 1.3 | 0.0 | 0.0 |
Hao, R., Wang, D., Yao, A., & Huang, W. (2011). Preparation and characterization of ?-TCP/CS scaffolds by freeze-extraction and freeze-gelation. Journal of Wuhan University of Technology-Mater. Sci. Ed., 26(2), 371-375. | 2011 | 188 | 10.1007/s11595-011-0232-2 | 4581 | ceramic/polymer | TCP-20wt.% chitosan | water | 100 | 0.0 | 0 | 3.2 | 8.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 95.5 | 0.0 | 0.0 | 0.0 | 0.0 | 1.23 | 0.0 | 0.0 |
Hautcoeur, D., Lorgouilloux, Y., Leriche, A., Gonon, M., Nait-Ali, B., Smith, D. S., ... & Cambier, F. (2016). Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceramics International, 42(12), 14077-14085. | 2016 | 190 | 10.1016/j.ceramint.2016.06.016 | 1830 | metal/ceramic | Al2O3-ZrO2-AlSiMg (alloy impregnation) | water | 100 | 0.0 | 0 | 31.5 | 1.0 | 100 | powder | 0.4 | 0 | 0 | 2 | 233.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 11.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hautcoeur, D., Lorgouilloux, Y., Leriche, A., Gonon, M., Nait-Ali, B., Smith, D. S., ... & Cambier, F. (2016). Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceramics International, 42(12), 14077-14085. | 2016 | 190 | 10.1016/j.ceramint.2016.06.016 | 1831 | metal/ceramic | Al2O3-ZrO2-AlSiMg (alloy impregnation) | water | 100 | 0.0 | 0 | 31.5 | 1.0 | 100 | powder | 0.4 | 0 | 0 | 2 | 233.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 9.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hautcoeur, D., Lorgouilloux, Y., Leriche, A., Gonon, M., Nait-Ali, B., Smith, D. S., ... & Cambier, F. (2016). Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceramics International, 42(12), 14077-14085. | 2016 | 190 | 10.1016/j.ceramint.2016.06.016 | 1832 | metal/ceramic | Al2O3-ZrO2-AlSiMg (alloy impregnation) | water | 100 | 0.0 | 0 | 32.1 | 1.0 | 100 | powder | 0.4 | 0 | 0 | 2 | 233.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 11.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hautcoeur, D., Lorgouilloux, Y., Leriche, A., Gonon, M., Nait-Ali, B., Smith, D. S., ... & Cambier, F. (2016). Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceramics International, 42(12), 14077-14085. | 2016 | 190 | 10.1016/j.ceramint.2016.06.016 | 1833 | metal/ceramic | Al2O3-ZrO2-AlSiMg (alloy impregnation) | water | 100 | 0.0 | 0 | 32.1 | 1.0 | 100 | powder | 0.4 | 0 | 0 | 2 | 233.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 13.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hautcoeur, D., Lorgouilloux, Y., Leriche, A., Gonon, M., Nait-Ali, B., Smith, D. S., ... & Cambier, F. (2016). Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceramics International, 42(12), 14077-14085. | 2016 | 190 | 10.1016/j.ceramint.2016.06.016 | 1834 | metal/ceramic | Al2O3-ZrO2-AlSiMg (alloy impregnation) | water | 100 | 0.0 | 0 | 33.6 | 1.0 | 100 | powder | 0.4 | 0 | 0 | 2 | 233.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 13.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hautcoeur, D., Lorgouilloux, Y., Leriche, A., Gonon, M., Nait-Ali, B., Smith, D. S., ... & Cambier, F. (2016). Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceramics International, 42(12), 14077-14085. | 2016 | 190 | 10.1016/j.ceramint.2016.06.016 | 1835 | metal/ceramic | Al2O3-ZrO2-AlSiMg (alloy impregnation) | water | 100 | 0.0 | 0 | 34.5 | 1.0 | 100 | powder | 0.4 | 0 | 0 | 2 | 233.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 9.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hautcoeur, D., Lorgouilloux, Y., Leriche, A., Gonon, M., Nait-Ali, B., Smith, D. S., ... & Cambier, F. (2016). Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceramics International, 42(12), 14077-14085. | 2016 | 190 | 10.1016/j.ceramint.2016.06.016 | 1836 | metal/ceramic | Al2O3-ZrO2-AlSiMg (alloy impregnation) | water | 100 | 0.0 | 0 | 34.5 | 1.0 | 100 | powder | 0.4 | 0 | 0 | 2 | 233.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 7.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hautcoeur, D., Lorgouilloux, Y., Leriche, A., Gonon, M., Nait-Ali, B., Smith, D. S., ... & Cambier, F. (2016). Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceramics International, 42(12), 14077-14085. | 2016 | 190 | 10.1016/j.ceramint.2016.06.016 | 1837 | metal/ceramic | Al2O3-ZrO2-AlSiMg (alloy impregnation) | water | 100 | 0.0 | 0 | 34.5 | 1.0 | 100 | powder | 0.4 | 0 | 0 | 2 | 233.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 8.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hautcoeur, D., Lorgouilloux, Y., Leriche, A., Gonon, M., Nait-Ali, B., Smith, D. S., ... & Cambier, F. (2016). Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceramics International, 42(12), 14077-14085. | 2016 | 190 | 10.1016/j.ceramint.2016.06.016 | 1838 | metal/ceramic | Al2O3-ZrO2-AlSiMg (alloy impregnation) | water | 100 | 0.0 | 0 | 31.5 | 1.0 | 100 | powder | 0.4 | 0 | 0 | 2 | 233.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 12.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hautcoeur, D., Lorgouilloux, Y., Leriche, A., Gonon, M., Nait-Ali, B., Smith, D. S., ... & Cambier, F. (2016). Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceramics International, 42(12), 14077-14085. | 2016 | 190 | 10.1016/j.ceramint.2016.06.016 | 1839 | metal/ceramic | Al2O3-ZrO2-AlSiMg (alloy impregnation) | water | 100 | 0.0 | 0 | 31.5 | 1.0 | 100 | powder | 0.4 | 0 | 0 | 2 | 233.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 14.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hautcoeur, D., Lorgouilloux, Y., Leriche, A., Gonon, M., Nait-Ali, B., Smith, D. S., ... & Cambier, F. (2016). Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceramics International, 42(12), 14077-14085. | 2016 | 190 | 10.1016/j.ceramint.2016.06.016 | 1840 | metal/ceramic | Al2O3-ZrO2-AlSiMg (alloy impregnation) | water | 100 | 0.0 | 0 | 32.1 | 1.0 | 100 | powder | 0.4 | 0 | 0 | 2 | 233.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 10.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hautcoeur, D., Lorgouilloux, Y., Leriche, A., Gonon, M., Nait-Ali, B., Smith, D. S., ... & Cambier, F. (2016). Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceramics International, 42(12), 14077-14085. | 2016 | 190 | 10.1016/j.ceramint.2016.06.016 | 1841 | metal/ceramic | Al2O3-ZrO2-AlSiMg (alloy impregnation) | water | 100 | 0.0 | 0 | 32.1 | 1.0 | 100 | powder | 0.4 | 0 | 0 | 2 | 233.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 11.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hautcoeur, D., Lorgouilloux, Y., Leriche, A., Gonon, M., Nait-Ali, B., Smith, D. S., ... & Cambier, F. (2016). Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceramics International, 42(12), 14077-14085. | 2016 | 190 | 10.1016/j.ceramint.2016.06.016 | 1842 | metal/ceramic | Al2O3-ZrO2-AlSiMg (alloy impregnation) | water | 100 | 0.0 | 0 | 33.6 | 1.0 | 100 | powder | 0.4 | 0 | 0 | 2 | 233.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 11.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hautcoeur, D., Lorgouilloux, Y., Leriche, A., Gonon, M., Nait-Ali, B., Smith, D. S., ... & Cambier, F. (2016). Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceramics International, 42(12), 14077-14085. | 2016 | 190 | 10.1016/j.ceramint.2016.06.016 | 1843 | metal/ceramic | Al2O3-ZrO2-AlSiMg (alloy impregnation) | water | 100 | 0.0 | 0 | 33.6 | 1.0 | 100 | powder | 0.4 | 0 | 0 | 2 | 233.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 11.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hautcoeur, D., Lorgouilloux, Y., Leriche, A., Gonon, M., Nait-Ali, B., Smith, D. S., ... & Cambier, F. (2016). Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceramics International, 42(12), 14077-14085. | 2016 | 190 | 10.1016/j.ceramint.2016.06.016 | 1844 | metal/ceramic | Al2O3-ZrO2-AlSiMg (alloy impregnation) | water | 100 | 0.0 | 0 | 33.6 | 1.0 | 100 | powder | 0.4 | 0 | 0 | 2 | 233.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 9.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hautcoeur, D., Lorgouilloux, Y., Leriche, A., Gonon, M., Nait-Ali, B., Smith, D. S., ... & Cambier, F. (2016). Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceramics International, 42(12), 14077-14085. | 2016 | 190 | 10.1016/j.ceramint.2016.06.016 | 1845 | metal/ceramic | Al2O3-ZrO2-AlSiMg (alloy impregnation) | water | 100 | 0.0 | 0 | 33.6 | 1.0 | 100 | powder | 0.4 | 0 | 0 | 2 | 233.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 10.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hautcoeur, D., Lorgouilloux, Y., Leriche, A., Gonon, M., Nait-Ali, B., Smith, D. S., ... & Cambier, F. (2016). Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceramics International, 42(12), 14077-14085. | 2016 | 190 | 10.1016/j.ceramint.2016.06.016 | 1847 | metal/ceramic | Al2O3-ZrO2-AlSiMg (alloy impregnation) | water | 100 | 0.0 | 0 | 35.7 | 19.0 | 100 | powder | 0.3 | 0 | 0 | 2 | 233.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 6.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hautcoeur, D., Lorgouilloux, Y., Leriche, A., Gonon, M., Nait-Ali, B., Smith, D. S., ... & Cambier, F. (2016). Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceramics International, 42(12), 14077-14085. | 2016 | 190 | 10.1016/j.ceramint.2016.06.016 | 1848 | metal/ceramic | Al2O3-ZrO2-AlSiMg (alloy impregnation) | water | 100 | 0.0 | 0 | 35.7 | 19.0 | 100 | powder | 0.3 | 0 | 0 | 2 | 233.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 21.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hautcoeur, D., Lorgouilloux, Y., Leriche, A., Gonon, M., Nait-Ali, B., Smith, D. S., ... & Cambier, F. (2016). Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceramics International, 42(12), 14077-14085. | 2016 | 190 | 10.1016/j.ceramint.2016.06.016 | 1849 | metal/ceramic | Al2O3-ZrO2-AlSiMg (alloy impregnation) | water | 100 | 0.0 | 0 | 35.7 | 19.0 | 100 | powder | 0.3 | 0 | 0 | 2 | 233.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hautcoeur, D., Lorgouilloux, Y., Leriche, A., Gonon, M., Nait-Ali, B., Smith, D. S., ... & Cambier, F. (2016). Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceramics International, 42(12), 14077-14085. | 2016 | 190 | 10.1016/j.ceramint.2016.06.016 | 1850 | metal/ceramic | Al2O3-ZrO2-AlSiMg (alloy impregnation) | water | 100 | 0.0 | 0 | 35.7 | 19.0 | 100 | powder | 0.3 | 0 | 0 | 2 | 233.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 32.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hautcoeur, D., Lorgouilloux, Y., Leriche, A., Gonon, M., Nait-Ali, B., Smith, D. S., ... & Cambier, F. (2016). Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceramics International, 42(12), 14077-14085. | 2016 | 190 | 10.1016/j.ceramint.2016.06.016 | 1851 | metal/ceramic | Al2O3-ZrO2-AlSiMg (alloy impregnation) | water | 100 | 0.0 | 0 | 36.5 | 19.0 | 100 | powder | 0.3 | 0 | 0 | 2 | 233.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 21.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hautcoeur, D., Lorgouilloux, Y., Leriche, A., Gonon, M., Nait-Ali, B., Smith, D. S., ... & Cambier, F. (2016). Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceramics International, 42(12), 14077-14085. | 2016 | 190 | 10.1016/j.ceramint.2016.06.016 | 1852 | metal/ceramic | Al2O3-ZrO2-AlSiMg (alloy impregnation) | water | 100 | 0.0 | 0 | 36.5 | 19.0 | 100 | powder | 0.3 | 0 | 0 | 2 | 233.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 11.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hautcoeur, D., Lorgouilloux, Y., Leriche, A., Gonon, M., Nait-Ali, B., Smith, D. S., ... & Cambier, F. (2016). Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceramics International, 42(12), 14077-14085. | 2016 | 190 | 10.1016/j.ceramint.2016.06.016 | 1853 | metal/ceramic | Al2O3-ZrO2-AlSiMg (alloy impregnation) | water | 100 | 0.0 | 0 | 35.7 | 19.0 | 100 | powder | 0.3 | 0 | 0 | 2 | 233.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 18.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hautcoeur, D., Lorgouilloux, Y., Leriche, A., Gonon, M., Nait-Ali, B., Smith, D. S., ... & Cambier, F. (2016). Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceramics International, 42(12), 14077-14085. | 2016 | 190 | 10.1016/j.ceramint.2016.06.016 | 1854 | metal/ceramic | Al2O3-ZrO2-AlSiMg (alloy impregnation) | water | 100 | 0.0 | 0 | 35.7 | 19.0 | 100 | powder | 0.3 | 0 | 0 | 2 | 233.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 25.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hautcoeur, D., Lorgouilloux, Y., Leriche, A., Gonon, M., Nait-Ali, B., Smith, D. S., ... & Cambier, F. (2016). Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceramics International, 42(12), 14077-14085. | 2016 | 190 | 10.1016/j.ceramint.2016.06.016 | 1855 | metal/ceramic | Al2O3-ZrO2-AlSiMg (alloy impregnation) | water | 100 | 0.0 | 0 | 36.0 | 19.0 | 100 | powder | 0.3 | 0 | 0 | 2 | 233.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 25.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hautcoeur, D., Lorgouilloux, Y., Leriche, A., Gonon, M., Nait-Ali, B., Smith, D. S., ... & Cambier, F. (2016). Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceramics International, 42(12), 14077-14085. | 2016 | 190 | 10.1016/j.ceramint.2016.06.016 | 1856 | metal/ceramic | Al2O3-ZrO2-AlSiMg (alloy impregnation) | water | 100 | 0.0 | 0 | 36.0 | 19.0 | 100 | powder | 0.3 | 0 | 0 | 2 | 233.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 24.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hautcoeur, D., Lorgouilloux, Y., Leriche, A., Gonon, M., Nait-Ali, B., Smith, D. S., ... & Cambier, F. (2016). Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceramics International, 42(12), 14077-14085. | 2016 | 190 | 10.1016/j.ceramint.2016.06.016 | 1857 | metal/ceramic | Al2O3-ZrO2-AlSiMg (alloy impregnation) | water | 100 | 0.0 | 0 | 36.0 | 19.0 | 100 | powder | 0.3 | 0 | 0 | 2 | 233.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 24.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hautcoeur, D., Lorgouilloux, Y., Leriche, A., Gonon, M., Nait-Ali, B., Smith, D. S., ... & Cambier, F. (2016). Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting. Ceramics International, 42(12), 14077-14085. | 2016 | 190 | 10.1016/j.ceramint.2016.06.016 | 1858 | metal/ceramic | Al2O3-ZrO2-AlSiMg (alloy impregnation) | water | 100 | 0.0 | 0 | 36.0 | 19.0 | 100 | powder | 0.3 | 0 | 0 | 2 | 233.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 18.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
He, F., Yang, Y., & Ye, J. (2016). Tailoring the pore structure and property of porous biphasic calcium phosphate ceramics by NaCl additive. Ceramics International, 42(13), 14679-14684. | 2016 | 191 | 10.1016/j.ceramint.2016.06.092 | 1859 | ceramic | BCP-20wt% HAP (mixed) | water | 100 | 0.0 | 0 | 10.91 | 18.0 | 20 | powder | 12.0 | 1 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 79.0 | 0.0 | 70.0 | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 |
He, F., Yang, Y., & Ye, J. (2016). Tailoring the pore structure and property of porous biphasic calcium phosphate ceramics by NaCl additive. Ceramics International, 42(13), 14679-14684. | 2016 | 191 | 10.1016/j.ceramint.2016.06.092 | 1860 | ceramic | BCP-20wt% HAP (mixed) | water | 100 | 0.0 | 0 | 10.91 | 18.0 | 20 | powder | 12.0 | 1 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 79.0 | 0.0 | 75.0 | 0.0 | 0.0 | 0.38 | 0.0 | 0.0 |
He, F., Yang, Y., & Ye, J. (2016). Tailoring the pore structure and property of porous biphasic calcium phosphate ceramics by NaCl additive. Ceramics International, 42(13), 14679-14684. | 2016 | 191 | 10.1016/j.ceramint.2016.06.092 | 1861 | ceramic | BCP-20wt% HAP (mixed) | water | 100 | 0.0 | 0 | 10.91 | 18.0 | 20 | powder | 12.0 | 1 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.0 | 0.0 | 80.0 | 0.0 | 0.0 | 0.48 | 0.0 | 0.0 |
He, F., Yang, Y., & Ye, J. (2016). Tailoring the pore structure and property of porous biphasic calcium phosphate ceramics by NaCl additive. Ceramics International, 42(13), 14679-14684. | 2016 | 191 | 10.1016/j.ceramint.2016.06.092 | 1862 | ceramic | BCP-20wt% HAP (mixed) | water | 100 | 0.0 | 0 | 10.91 | 18.0 | 20 | powder | 12.0 | 1 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 61.0 | 0.0 | 115.0 | 0.0 | 0.0 | 0.89 | 0.0 | 0.0 |
He, F., Yang, Y., & Ye, J. (2016). Tailoring the pore structure and property of porous biphasic calcium phosphate ceramics by NaCl additive. Ceramics International, 42(13), 14679-14684. | 2016 | 191 | 10.1016/j.ceramint.2016.06.092 | 1863 | ceramic | BCP-20wt% HAP (mixed) | water | 100 | 0.0 | 0 | 10.91 | 18.0 | 20 | powder | 12.0 | 1 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 61.0 | 0.0 | 115.0 | 0.0 | 0.0 | 0.79 | 0.0 | 0.0 |
He, F., & Ye, J. (2013). Bi-layered calcium phosphate cement-based composite scaffold mimicking natural bone structure. Science and technology of advanced materials, 14(4), 045010. | 2016 | 192 | 10.1088/1468-6996/14/4/045010 | 1870 | ceramic/polymer | BCP-PLGA (impregnate) | water | 100 | 0.0 | 0 | 10.91 | 18.0 | 20 | powder | 12.0 | 1 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 71.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 |
He, F., & Ye, J. (2013). Bi-layered calcium phosphate cement-based composite scaffold mimicking natural bone structure. Science and technology of advanced materials, 14(4), 045010. | 2016 | 192 | 10.1088/1468-6996/14/4/045010 | 1871 | ceramic/polymer | BCP-PLGA (impregnate) | water | 100 | 0.0 | 0 | 10.91 | 18.0 | 20 | powder | 12.0 | 1 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 50.0 | 0.0 | 0.0 |
He, F., & Ye, J. (2013). Bi-layered calcium phosphate cement-based composite scaffold mimicking natural bone structure. Science and technology of advanced materials, 14(4), 045010. | 2016 | 192 | 10.1088/1468-6996/14/4/045010 | 1872 | ceramic/polymer | BCP-PLGA (impregnate) | water | 100 | 0.0 | 0 | 10.91 | 18.0 | 20 | powder | 12.0 | 1 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 54.0 | 0.0 | 0.0 | 0.0 | 0.0 | 60.0 | 0.0 | 0.0 |
He, F., & Ye, J. (2013). Bi-layered calcium phosphate cement-based composite scaffold mimicking natural bone structure. Science and technology of advanced materials, 14(4), 045010. | 2016 | 192 | 10.1088/1468-6996/14/4/045010 | 1873 | ceramic/polymer | BCP-PLGA (impregnate) | water | 100 | 0.0 | 0 | 10.91 | 18.0 | 20 | powder | 12.0 | 1 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 46.0 | 0.0 | 0.0 | 0.0 | 0.0 | 70.0 | 0.0 | 0.0 |
He, F., & Ye, J. (2013). Bi-layered calcium phosphate cement-based composite scaffold mimicking natural bone structure. Science and technology of advanced materials, 14(4), 045010. | 2016 | 192 | 10.1088/1468-6996/14/4/045010 | 1874 | ceramic/polymer | BCP-PLGA (impregnate) | water | 100 | 0.0 | 0 | 10.91 | 18.0 | 20 | powder | 12.0 | 1 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 44.0 | 0.0 | 0.0 | 0.0 | 0.0 | 82.0 | 0.0 | 0.0 |
He, F., & Ye, J. (2013). Bi-layered calcium phosphate cement-based composite scaffold mimicking natural bone structure. Science and technology of advanced materials, 14(4), 045010. | 2016 | 192 | 10.1088/1468-6996/14/4/045010 | 1875 | ceramic/polymer | BCP-PLGA (impregnate) | water | 100 | 0.0 | 0 | 10.91 | 18.0 | 20 | powder | 12.0 | 1 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 90.0 | 0.0 | 0.0 |
He, H., Zhang, D., & Xu, X. (2012). Electrically conductive multiwall carbon nanotubes/poly (vinyl alcohol) composites with aligned porous morphologies. Journal of Macromolecular Science, Part B, 51(12), 2493-2498. | 2012 | 197 | 10.1080/00222348.2012.680359 | 4590 | carbon/polymer | PVA-CNTs | water | 100 | 0.0 | 0 | 10.8 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
He, H., Zhang, D., & Xu, X. (2012). Electrically conductive multiwall carbon nanotubes/poly (vinyl alcohol) composites with aligned porous morphologies. Journal of Macromolecular Science, Part B, 51(12), 2493-2498. | 2012 | 197 | 10.1080/00222348.2012.680359 | 4591 | carbon/polymer | PVA-CNTs | water | 100 | 0.0 | 0 | 16.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hesaraki, S. (2014). Freeze-casted nanostructured apatite scaffold obtained from low temperature biomineralization of reactive calcium phosphates. In Key Engineering Materials (Vol. 587, pp. 21-26). Trans Tech Publications. | 2014 | 202 | 10.4028/www.scientific.net/KEM.587.21 | 4430 | ceramic | apatite | water | 100 | 0.0 | 0 | 22.0 | 26.0 | 100 | powder | 10.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 75.0 | 0.0 | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ho, M. H., Kuo, P. Y., Hsieh, H. J., Hsien, T. Y., Hou, L. T., Lai, J. Y., & Wang, D. M. (2004). Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials, 25(1), 129-138. | 2004 | 204 | 10.1016/s0142-9612(03)00483-6 | 5229 | polymer | PLGA | DMSO | 100 | 0.0 | 0 | 2.0 | 67.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 80.0 | 0.0 | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hong, C. Q., Han, J. C., Zhang, X. H., & Du, J. C. (2013). Novel nanoporous silica aerogel impregnated highly porous ceramics with low thermal conductivity and enhanced mechanical properties. Scripta Materialia, 68(8), 599-602. | 2013 | 206 | 10.1016/j.scriptamat.2012.12.015 | 4311 | ceramic/polymer | ZrO2-SiO2 aerogel (impregnation) | camphene | 100 | 0.0 | 0 | 8.0 | 20.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 69.3 | 0.0 | 0.0 | 0.0 | 0.0 | 15.4 | 0.0 | 0.0 |
Hong, C. Q., Han, J. C., Zhang, X. H., & Du, J. C. (2013). Novel nanoporous silica aerogel impregnated highly porous ceramics with low thermal conductivity and enhanced mechanical properties. Scripta Materialia, 68(8), 599-602. | 2013 | 206 | 10.1016/j.scriptamat.2012.12.015 | 4312 | ceramic/polymer | ZrO2-SiO2 aerogel (impregnation) | camphene | 100 | 0.0 | 0 | 10.0 | 20.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 60.2 | 0.0 | 0.0 | 0.0 | 0.0 | 24.9 | 0.0 | 0.0 |
Hong, C. Q., Han, J. C., Zhang, X. H., & Du, J. C. (2013). Novel nanoporous silica aerogel impregnated highly porous ceramics with low thermal conductivity and enhanced mechanical properties. Scripta Materialia, 68(8), 599-602. | 2013 | 206 | 10.1016/j.scriptamat.2012.12.015 | 4313 | ceramic/polymer | ZrO2-SiO2 aerogel (impregnation) | camphene | 100 | 0.0 | 0 | 12.0 | 20.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 54.8 | 0.0 | 0.0 | 0.0 | 0.0 | 30.2 | 0.0 | 0.0 |
Hong, C. Q., Han, J. C., Zhang, X. H., & Du, J. C. (2013). Novel nanoporous silica aerogel impregnated highly porous ceramics with low thermal conductivity and enhanced mechanical properties. Scripta Materialia, 68(8), 599-602. | 2013 | 206 | 10.1016/j.scriptamat.2012.12.015 | 4314 | ceramic/polymer | ZrO2-SiO2 aerogel (impregnation) | camphene | 100 | 0.0 | 0 | 15.0 | 20.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 46.1 | 0.0 | 0.0 | 0.0 | 0.0 | 36.8 | 0.0 | 0.0 |
Hou, Z., Ye, F., & Liu, L. (2015). Effects of pore shape and porosity on the dielectric constant of porous ?-SiAlON ceramics. Journal of the European Ceramic Society, 35(15), 4115-4120. | 2015 | 212 | 10.1016/j.jeurceramsoc.2015.07.002 | 1885 | ceramic | SiAlON | camphene | 100 | 0.0 | 0 | 10.0 | 71.0 | 100 | powder | 5.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hou, Z., Ye, F., & Liu, L. (2015). Effects of pore shape and porosity on the dielectric constant of porous ?-SiAlON ceramics. Journal of the European Ceramic Society, 35(15), 4115-4120. | 2015 | 212 | 10.1016/j.jeurceramsoc.2015.07.002 | 1886 | ceramic | SiAlON | camphene | 100 | 0.0 | 0 | 20.0 | 71.0 | 100 | powder | 5.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 52.9 | 0.0 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hou, Z., Ye, F., & Liu, L. (2015). Effects of pore shape and porosity on the dielectric constant of porous ?-SiAlON ceramics. Journal of the European Ceramic Society, 35(15), 4115-4120. | 2015 | 212 | 10.1016/j.jeurceramsoc.2015.07.002 | 1887 | ceramic | SiAlON | camphene | 100 | 0.0 | 0 | 30.0 | 71.0 | 100 | powder | 5.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 38.1 | 0.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hou, Z., Ye, F., & Liu, L. (2015). Effects of pore shape and porosity on the dielectric constant of porous ?-SiAlON ceramics. Journal of the European Ceramic Society, 35(15), 4115-4120. | 2015 | 212 | 10.1016/j.jeurceramsoc.2015.07.002 | 1888 | ceramic | SiAlON | camphene | 100 | 0.0 | 0 | 40.0 | 71.0 | 100 | powder | 5.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 27.5 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hou, Z., Ye, F., & Liu, L. (2015). Effects of pore shape and porosity on the dielectric constant of porous ?-SiAlON ceramics. Journal of the European Ceramic Society, 35(15), 4115-4120. | 2015 | 212 | 10.1016/j.jeurceramsoc.2015.07.002 | 1889 | ceramic | SiAlON | camphene | 100 | 0.0 | 0 | 10.0 | 71.0 | 100 | powder | 5.0 | 0 | 0 | 0 | 273.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 71.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hou, Z., Ye, F., & Liu, L. (2015). Effects of pore shape and porosity on the dielectric constant of porous ?-SiAlON ceramics. Journal of the European Ceramic Society, 35(15), 4115-4120. | 2015 | 212 | 10.1016/j.jeurceramsoc.2015.07.002 | 1890 | ceramic | SiAlON | camphene | 100 | 0.0 | 0 | 20.0 | 71.0 | 100 | powder | 5.0 | 0 | 0 | 0 | 273.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 47.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hou, Z., Ye, F., & Liu, L. (2015). Effects of pore shape and porosity on the dielectric constant of porous ?-SiAlON ceramics. Journal of the European Ceramic Society, 35(15), 4115-4120. | 2015 | 212 | 10.1016/j.jeurceramsoc.2015.07.002 | 1891 | ceramic | SiAlON | camphene | 100 | 0.0 | 0 | 30.0 | 71.0 | 100 | powder | 5.0 | 0 | 0 | 0 | 273.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 36.1 | 0.0 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hou, Z., Ye, F., & Liu, L. (2015). Effects of pore shape and porosity on the dielectric constant of porous ?-SiAlON ceramics. Journal of the European Ceramic Society, 35(15), 4115-4120. | 2015 | 212 | 10.1016/j.jeurceramsoc.2015.07.002 | 1892 | ceramic | SiAlON | camphene | 100 | 0.0 | 0 | 40.0 | 71.0 | 100 | powder | 5.0 | 0 | 0 | 0 | 273.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hou, Z., Ye, F., Liu, L., & Liu, Q. (2012). Fabrication of gradient porous ?-SiAlON ceramics via a camphene-based freeze casting process. Materials Science and Engineering: A, 558, 742-746. | 2012 | 214 | 10.1016/j.msea.2012.08.094 | 1909 | ceramic | SiAlON | camphene | 100 | 0.0 | 0 | 10.0 | 71.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 273.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 71.3 | 0.0 | 35.0 | 0.0 | 0.0 | 49.2 | 0.0 | 0.0 |
Hou, Z., Ye, F., Liu, L., & Liu, Q. (2012). Fabrication of gradient porous ?-SiAlON ceramics via a camphene-based freeze casting process. Materials Science and Engineering: A, 558, 742-746. | 2012 | 214 | 10.1016/j.msea.2012.08.094 | 1910 | ceramic | SiAlON | camphene | 100 | 0.0 | 0 | 20.0 | 71.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 273.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 47.0 | 0.0 | 15.0 | 0.0 | 0.0 | 168.4 | 0.0 | 0.0 |
Hou, Z., Ye, F., Liu, L., & Liu, Q. (2012). Fabrication of gradient porous ?-SiAlON ceramics via a camphene-based freeze casting process. Materials Science and Engineering: A, 558, 742-746. | 2012 | 214 | 10.1016/j.msea.2012.08.094 | 1911 | ceramic | SiAlON | camphene | 100 | 0.0 | 0 | 30.0 | 71.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 273.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 36.1 | 0.0 | 6.0 | 0.0 | 0.0 | 312.7 | 0.0 | 0.0 |
Hou, Z., Ye, F., Liu, L., Liu, Q., & Zhang, H. (2013). Effects of solid content on the phase assemblages, mechanical and dielectric properties of porous ?-SiAlON ceramics fabricated by freeze casting. Ceramics International, 39(2), 1075-1079. | 2013 | 215 | 10.1016/j.ceramint.2012.07.029 | 1912 | ceramic | SiAlON | camphene | 100 | 0.0 | 0 | 10.0 | 71.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 273.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 64.3 | 0.0 | 19.0 | 0.0 | 0.0 | 0.0 | 72.4 | 0.0 |
Hou, Z., Ye, F., Liu, L., Liu, Q., & Zhang, H. (2013). Effects of solid content on the phase assemblages, mechanical and dielectric properties of porous ?-SiAlON ceramics fabricated by freeze casting. Ceramics International, 39(2), 1075-1079. | 2013 | 215 | 10.1016/j.ceramint.2012.07.029 | 1913 | ceramic | SiAlON | camphene | 100 | 0.0 | 0 | 20.0 | 71.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 273.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 45.2 | 0.0 | 9.0 | 0.0 | 0.0 | 0.0 | 129.6 | 0.0 |
Hou, Z., Ye, F., Liu, L., Liu, Q., & Zhang, H. (2013). Effects of solid content on the phase assemblages, mechanical and dielectric properties of porous ?-SiAlON ceramics fabricated by freeze casting. Ceramics International, 39(2), 1075-1079. | 2013 | 215 | 10.1016/j.ceramint.2012.07.029 | 1914 | ceramic | SiAlON | camphene | 100 | 0.0 | 0 | 30.0 | 71.0 | 100 | powder | 0.5 | 0 | 0 | 0 | 273.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 23.1 | 0.0 | 6.0 | 0.0 | 0.0 | 0.0 | 190.2 | 0.0 |
Hou, Z., Liu, J., Du, H., Xu, H., Guo, A., & Wang, M. (2013). Preparation of porous Y 2 SiO 5 ceramics with relatively high compressive strength and ultra-low thermal conductivity by a TBA-based gel-casting method. Ceramics International, 39(2), 969-976. | 2013 | 213 | 10.1016/j.ceramint.2012.07.014 | 1893 | ceramic | Y2SiO5 | TBA | 100 | 0.0 | 0 | 4.75 | 32.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 73.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hou, Z., Liu, J., Du, H., Xu, H., Guo, A., & Wang, M. (2013). Preparation of porous Y 2 SiO 5 ceramics with relatively high compressive strength and ultra-low thermal conductivity by a TBA-based gel-casting method. Ceramics International, 39(2), 969-976. | 2013 | 213 | 10.1016/j.ceramint.2012.07.014 | 1894 | ceramic | Y2SiO5 | TBA | 100 | 0.0 | 0 | 4.75 | 32.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 67.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hou, Z., Liu, J., Du, H., Xu, H., Guo, A., & Wang, M. (2013). Preparation of porous Y 2 SiO 5 ceramics with relatively high compressive strength and ultra-low thermal conductivity by a TBA-based gel-casting method. Ceramics International, 39(2), 969-976. | 2013 | 213 | 10.1016/j.ceramint.2012.07.014 | 1895 | ceramic | Y2SiO5 | TBA | 100 | 0.0 | 0 | 4.75 | 32.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 63.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13.0 | 0.0 | 0.0 |
Hou, Z., Liu, J., Du, H., Xu, H., Guo, A., & Wang, M. (2013). Preparation of porous Y 2 SiO 5 ceramics with relatively high compressive strength and ultra-low thermal conductivity by a TBA-based gel-casting method. Ceramics International, 39(2), 969-976. | 2013 | 213 | 10.1016/j.ceramint.2012.07.014 | 1896 | ceramic | Y2SiO5 | TBA | 100 | 0.0 | 0 | 4.75 | 32.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 57.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hou, Z., Liu, J., Du, H., Xu, H., Guo, A., & Wang, M. (2013). Preparation of porous Y 2 SiO 5 ceramics with relatively high compressive strength and ultra-low thermal conductivity by a TBA-based gel-casting method. Ceramics International, 39(2), 969-976. | 2013 | 213 | 10.1016/j.ceramint.2012.07.014 | 1897 | ceramic | Y2SiO5 | TBA | 100 | 0.0 | 0 | 7.88 | 32.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 9 | cellular | sintered | 72.0 | 0.0 | 2.17 | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 |
Hou, Z., Liu, J., Du, H., Xu, H., Guo, A., & Wang, M. (2013). Preparation of porous Y 2 SiO 5 ceramics with relatively high compressive strength and ultra-low thermal conductivity by a TBA-based gel-casting method. Ceramics International, 39(2), 969-976. | 2013 | 213 | 10.1016/j.ceramint.2012.07.014 | 1898 | ceramic | Y2SiO5 | TBA | 100 | 0.0 | 0 | 7.88 | 32.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 66.0 | 0.0 | 2.24 | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 |
Hou, Z., Liu, J., Du, H., Xu, H., Guo, A., & Wang, M. (2013). Preparation of porous Y 2 SiO 5 ceramics with relatively high compressive strength and ultra-low thermal conductivity by a TBA-based gel-casting method. Ceramics International, 39(2), 969-976. | 2013 | 213 | 10.1016/j.ceramint.2012.07.014 | 1899 | ceramic | Y2SiO5 | TBA | 100 | 0.0 | 0 | 7.88 | 32.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 60.0 | 0.0 | 2.78 | 0.0 | 0.0 | 13.0 | 0.0 | 0.0 |
Hou, Z., Liu, J., Du, H., Xu, H., Guo, A., & Wang, M. (2013). Preparation of porous Y 2 SiO 5 ceramics with relatively high compressive strength and ultra-low thermal conductivity by a TBA-based gel-casting method. Ceramics International, 39(2), 969-976. | 2013 | 213 | 10.1016/j.ceramint.2012.07.014 | 1900 | ceramic | Y2SiO5 | TBA | 100 | 0.0 | 0 | 7.88 | 32.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 18 | cellular | sintered | 55.0 | 0.0 | 2.9 | 0.0 | 0.0 | 16.0 | 0.0 | 0.0 |
Hou, Z., Liu, J., Du, H., Xu, H., Guo, A., & Wang, M. (2013). Preparation of porous Y 2 SiO 5 ceramics with relatively high compressive strength and ultra-low thermal conductivity by a TBA-based gel-casting method. Ceramics International, 39(2), 969-976. | 2013 | 213 | 10.1016/j.ceramint.2012.07.014 | 1901 | ceramic | Y2SiO5 | TBA | 100 | 0.0 | 0 | 11.74 | 32.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hou, Z., Liu, J., Du, H., Xu, H., Guo, A., & Wang, M. (2013). Preparation of porous Y 2 SiO 5 ceramics with relatively high compressive strength and ultra-low thermal conductivity by a TBA-based gel-casting method. Ceramics International, 39(2), 969-976. | 2013 | 213 | 10.1016/j.ceramint.2012.07.014 | 1902 | ceramic | Y2SiO5 | TBA | 100 | 0.0 | 0 | 11.74 | 32.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 64.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hou, Z., Liu, J., Du, H., Xu, H., Guo, A., & Wang, M. (2013). Preparation of porous Y 2 SiO 5 ceramics with relatively high compressive strength and ultra-low thermal conductivity by a TBA-based gel-casting method. Ceramics International, 39(2), 969-976. | 2013 | 213 | 10.1016/j.ceramint.2012.07.014 | 1903 | ceramic | Y2SiO5 | TBA | 100 | 0.0 | 0 | 11.74 | 32.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 58.0 | 0.0 | 0.0 | 0.0 | 0.0 | 23.0 | 0.0 | 0.0 |
Hou, Z., Liu, J., Du, H., Xu, H., Guo, A., & Wang, M. (2013). Preparation of porous Y 2 SiO 5 ceramics with relatively high compressive strength and ultra-low thermal conductivity by a TBA-based gel-casting method. Ceramics International, 39(2), 969-976. | 2013 | 213 | 10.1016/j.ceramint.2012.07.014 | 1904 | ceramic | Y2SiO5 | TBA | 100 | 0.0 | 0 | 11.74 | 32.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hou, Z., Liu, J., Du, H., Xu, H., Guo, A., & Wang, M. (2013). Preparation of porous Y 2 SiO 5 ceramics with relatively high compressive strength and ultra-low thermal conductivity by a TBA-based gel-casting method. Ceramics International, 39(2), 969-976. | 2013 | 213 | 10.1016/j.ceramint.2012.07.014 | 1905 | ceramic | Y2SiO5 | TBA | 100 | 0.0 | 0 | 16.64 | 32.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hou, Z., Liu, J., Du, H., Xu, H., Guo, A., & Wang, M. (2013). Preparation of porous Y 2 SiO 5 ceramics with relatively high compressive strength and ultra-low thermal conductivity by a TBA-based gel-casting method. Ceramics International, 39(2), 969-976. | 2013 | 213 | 10.1016/j.ceramint.2012.07.014 | 1906 | ceramic | Y2SiO5 | TBA | 100 | 0.0 | 0 | 16.64 | 32.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 63.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hou, Z., Liu, J., Du, H., Xu, H., Guo, A., & Wang, M. (2013). Preparation of porous Y 2 SiO 5 ceramics with relatively high compressive strength and ultra-low thermal conductivity by a TBA-based gel-casting method. Ceramics International, 39(2), 969-976. | 2013 | 213 | 10.1016/j.ceramint.2012.07.014 | 1907 | ceramic | Y2SiO5 | TBA | 100 | 0.0 | 0 | 16.64 | 32.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 28.0 | 0.0 | 0.0 |
Hou, Z., Liu, J., Du, H., Xu, H., Guo, A., & Wang, M. (2013). Preparation of porous Y 2 SiO 5 ceramics with relatively high compressive strength and ultra-low thermal conductivity by a TBA-based gel-casting method. Ceramics International, 39(2), 969-976. | 2013 | 213 | 10.1016/j.ceramint.2012.07.014 | 1908 | ceramic | Y2SiO5 | TBA | 100 | 0.0 | 0 | 16.64 | 32.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 48.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, D., & Li, M. (2012). Porous Y2SiO5 ceramic with low thermal conductivity. Journal of Materials Science & Technology, 28(9), 799-802. | 2012 | 308 | 10.1016/S1005-0302(12)60133-9 | 1471 | ceramic | Y2SiO5 | TBA | 100 | 0.0 | 0 | 10.0 | 32.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 270.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 73.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 0.0 | 0.0 |
Li, D., & Li, M. (2012). Porous Y2SiO5 ceramic with low thermal conductivity. Journal of Materials Science & Technology, 28(9), 799-802. | 2012 | 308 | 10.1016/S1005-0302(12)60133-9 | 1472 | ceramic | Y2SiO5 | TBA | 100 | 0.0 | 0 | 15.0 | 32.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 270.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 56.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18.0 | 0.0 | 0.0 |
Li, D., & Li, M. (2012). Porous Y2SiO5 ceramic with low thermal conductivity. Journal of Materials Science & Technology, 28(9), 799-802. | 2012 | 308 | 10.1016/S1005-0302(12)60133-9 | 1473 | ceramic | Y2SiO5 | TBA | 100 | 0.0 | 0 | 20.0 | 32.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 270.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 45.0 | 0.0 | 0.0 | 0.0 | 0.0 | 23.0 | 0.0 | 0.0 |
Wu, Z., Sun, L., & Wang, J. (2015). Effects of Sintering Method and Sintering Temperature on the Microstructure and Properties of Porous Y 2 SiO 5. Journal of Materials Science & Technology, 31(12), 1237-1243. | 2015 | 670 | 10.1016/j.jmst.2015.09.016 | 2463 | ceramic | Y2SiO5 | water | 100 | 0.0 | 0 | 40.0 | 32.0 | 100 | 0 | 1.5 | 0 | 0 | 2 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 4 | equiaxed | sintered | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.5 | 0.0 | 0.0 |
Wu, Z., Sun, L., & Wang, J. (2015). Effects of Sintering Method and Sintering Temperature on the Microstructure and Properties of Porous Y 2 SiO 5. Journal of Materials Science & Technology, 31(12), 1237-1243. | 2015 | 670 | 10.1016/j.jmst.2015.09.016 | 2464 | ceramic | Y2SiO5 | water | 100 | 0.0 | 0 | 40.0 | 32.0 | 100 | 0 | 1.5 | 0 | 0 | 2 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 10 | equiaxed | sintered | 76.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.0 | 0.0 |
Wu, Z., Sun, L., & Wang, J. (2015). Effects of Sintering Method and Sintering Temperature on the Microstructure and Properties of Porous Y 2 SiO 5. Journal of Materials Science & Technology, 31(12), 1237-1243. | 2015 | 670 | 10.1016/j.jmst.2015.09.016 | 2465 | ceramic | Y2SiO5 | water | 100 | 0.0 | 0 | 40.0 | 32.0 | 100 | 0 | 1.5 | 0 | 0 | 2 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 15 | equiaxed | sintered | 71.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 |
Wu, Z., Sun, L., & Wang, J. (2015). Effects of Sintering Method and Sintering Temperature on the Microstructure and Properties of Porous Y 2 SiO 5. Journal of Materials Science & Technology, 31(12), 1237-1243. | 2015 | 670 | 10.1016/j.jmst.2015.09.016 | 2466 | ceramic | Y2SiO5 | water | 100 | 0.0 | 0 | 40.0 | 32.0 | 100 | 0 | 1.5 | 0 | 0 | 2 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 18 | equiaxed | sintered | 64.0 | 0.0 | 0.0 | 0.0 | 0.0 | 12.4 | 0.0 | 0.0 |
Wu, Z., Sun, L., & Wang, J. (2016). Synthesis and characterization of porous Y 2 SiO 5 with low linear shrinkage, high porosity and high strength. Ceramics International, 42(13), 14894-14902. | 2016 | 671 | 10.1016/j.ceramint.2016.06.128 | 2467 | ceramic | Y2SiO5 | water | 100 | 0.0 | 0 | 0.0 | 54.0 | 0 | 0 | 1.47 | 0 | 1 | 1 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 3 | cellular | sintered | 80.8 | 0.0 | 0.0 | 0.0 | 0.0 | 5.9 | 0.0 | 0.0 |
Wu, Z., Sun, L., & Wang, J. (2016). Synthesis and characterization of porous Y 2 SiO 5 with low linear shrinkage, high porosity and high strength. Ceramics International, 42(13), 14894-14902. | 2016 | 671 | 10.1016/j.ceramint.2016.06.128 | 2468 | ceramic | Y2SiO5 | water | 100 | 0.0 | 0 | 0.0 | 54.0 | 0 | 0 | 1.47 | 0 | 1 | 1 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 4 | cellular | sintered | 79.7 | 0.0 | 0.0 | 0.0 | 0.0 | 6.9 | 0.0 | 0.0 |
Wu, Z., Sun, L., & Wang, J. (2016). Synthesis and characterization of porous Y 2 SiO 5 with low linear shrinkage, high porosity and high strength. Ceramics International, 42(13), 14894-14902. | 2016 | 671 | 10.1016/j.ceramint.2016.06.128 | 2469 | ceramic | Y2SiO5 | water | 100 | 0.0 | 0 | 0.0 | 54.0 | 0 | 0 | 1.47 | 0 | 1 | 1 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 5 | cellular | sintered | 79.3 | 0.0 | 0.0 | 0.0 | 0.0 | 8.9 | 0.0 | 0.0 |
Zhang, R., Han, B., Fang, D., & Wang, Y. (2015). Porous Y 2 SiO 5 ceramics with a centrosymmetric structure produced by freeze casting. Ceramics International, 41(9), 11517-11522. | 2015 | 765 | 10.1016/j.ceramint.2015.05.099 | 2240 | ceramic | Y2SiO5 | water | 100 | 0.0 | 0 | 15.0 | 32.0 | 100 | 0 | 1.25 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | radial-out | constant | 0.0 | 0.0 | 0 | 0 | 14 | lamellar | sintered | 72.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.87 | 0.0 | 358.8 |
Zhang, R., Han, B., Fang, D., & Wang, Y. (2015). Porous Y 2 SiO 5 ceramics with a centrosymmetric structure produced by freeze casting. Ceramics International, 41(9), 11517-11522. | 2015 | 765 | 10.1016/j.ceramint.2015.05.099 | 2241 | ceramic | Y2SiO5 | water | 100 | 0.0 | 0 | 20.0 | 32.0 | 100 | 0 | 1.25 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | radial-out | constant | 0.0 | 0.0 | 0 | 0 | 19 | lamellar | sintered | 62.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.48 | 0.0 | 400.8 |
Zhang, R., Han, B., Fang, D., & Wang, Y. (2015). Porous Y 2 SiO 5 ceramics with a centrosymmetric structure produced by freeze casting. Ceramics International, 41(9), 11517-11522. | 2015 | 765 | 10.1016/j.ceramint.2015.05.099 | 2242 | ceramic | Y2SiO5 | water | 100 | 0.0 | 0 | 25.0 | 32.0 | 100 | 0 | 1.25 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | radial-out | constant | 0.0 | 0.0 | 0 | 0 | 20 | lamellar | sintered | 58.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.5 | 0.0 | 1028.0 |
Zhang, R., Han, B., Fang, D., & Wang, Y. (2015). Porous Y 2 SiO 5 ceramics with a centrosymmetric structure produced by freeze casting. Ceramics International, 41(9), 11517-11522. | 2015 | 765 | 10.1016/j.ceramint.2015.05.099 | 2243 | ceramic | Y2SiO5 | water | 100 | 0.0 | 0 | 30.0 | 32.0 | 100 | 0 | 1.25 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | radial-out | constant | 0.0 | 0.0 | 0 | 0 | 22 | lamellar | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.42 | 0.0 | 115.2 |
Zhang, R., Qu, Q., Han, B., & Wang, B. (2016). A novel silica aerogel/porous Y 2 SiO 5 ceramics with low thermal conductivity and enhanced mechanical properties prepared by freeze casting and impregnation. Materials Letters, 175, 219-222. | 2016 | 766 | 10.1016/j.matlet.2016.04.051 | 2244 | ceramic | Y2SiO5 | water | 100 | 0.0 | 0 | 10.0 | 53.0 | 100 | 0 | 1.0 | 0 | 0 | 10 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 88.4 | 0.0 | 18.2 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 |
Zhang, R., Qu, Q., Han, B., & Wang, B. (2016). A novel silica aerogel/porous Y 2 SiO 5 ceramics with low thermal conductivity and enhanced mechanical properties prepared by freeze casting and impregnation. Materials Letters, 175, 219-222. | 2016 | 766 | 10.1016/j.matlet.2016.04.051 | 2245 | ceramic | Y2SiO5 | water | 100 | 0.0 | 0 | 15.0 | 53.0 | 100 | 0 | 1.0 | 0 | 0 | 10 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 83.9 | 0.0 | 0.0 | 0.0 | 0.0 | 1.6 | 0.0 | 0.0 |
Zhang, R., Qu, Q., Han, B., & Wang, B. (2016). A novel silica aerogel/porous Y 2 SiO 5 ceramics with low thermal conductivity and enhanced mechanical properties prepared by freeze casting and impregnation. Materials Letters, 175, 219-222. | 2016 | 766 | 10.1016/j.matlet.2016.04.051 | 2246 | ceramic | Y2SiO5 | water | 100 | 0.0 | 0 | 20.0 | 53.0 | 100 | 0 | 1.0 | 0 | 0 | 10 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 79.8 | 0.0 | 0.0 | 0.0 | 0.0 | 2.1 | 0.0 | 0.0 |
Zhang, R., Qu, Q., Han, B., & Wang, B. (2016). A novel silica aerogel/porous Y 2 SiO 5 ceramics with low thermal conductivity and enhanced mechanical properties prepared by freeze casting and impregnation. Materials Letters, 175, 219-222. | 2016 | 766 | 10.1016/j.matlet.2016.04.051 | 2247 | ceramic | Y2SiO5 | water | 100 | 0.0 | 0 | 25.0 | 53.0 | 100 | 0 | 1.0 | 0 | 0 | 10 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 73.3 | 0.0 | 12.1 | 0.0 | 0.0 | 5.1 | 0.0 | 0.0 |
Zhang, R., Fang, D., Chen, X., Pei, Y., Wang, Z., & Wang, Y. (2013). Microstructure and properties of highly porous Y 2 SiO 5 ceramics produced by a new water-based freeze casting. Materials & Design, 46, 746-750. | 2013 | 769 | 10.1016/j.matdes.2012.11.020 | 2259 | ceramic | Y2SiO5 | water | 100 | 0.0 | 0 | 20.0 | 32.0 | 100 | 0 | 1.25 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 13 | dendritic | sintered | 71.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.34 | 0.0 | 0.0 |
Zhang, R., Fang, D., Chen, X., Pei, Y., Wang, Z., & Wang, Y. (2013). Microstructure and properties of highly porous Y 2 SiO 5 ceramics produced by a new water-based freeze casting. Materials & Design, 46, 746-750. | 2013 | 769 | 10.1016/j.matdes.2012.11.020 | 2260 | ceramic | Y2SiO5 | water | 100 | 0.0 | 0 | 20.0 | 32.0 | 100 | 0 | 1.25 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 17 | dendritic | sintered | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.7 | 0.0 | 0.0 |
Zhang, R., Fang, D., Chen, X., Pei, Y., Wang, Z., & Wang, Y. (2013). Microstructure and properties of highly porous Y 2 SiO 5 ceramics produced by a new water-based freeze casting. Materials & Design, 46, 746-750. | 2013 | 769 | 10.1016/j.matdes.2012.11.020 | 2261 | ceramic | Y2SiO5 | water | 100 | 0.0 | 0 | 20.0 | 32.0 | 100 | 0 | 1.25 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 20 | dendritic | sintered | 62.0 | 0.0 | 0.0 | 0.0 | 0.0 | 16.51 | 0.0 | 0.0 |
Hu, L., Wang, C. A., & Huang, Y. (2011). Porous YSZ ceramics with unidirectionally aligned pore channel structure: Lowering thermal conductivity by silica aerogels impregnation. Journal of the European Ceramic Society, 31(15), 2915-2922. | 2011 | 222 | 10.1016/j.jeurceramsoc.2011.07.014 | 1935 | ceramic/polymer | YSZ-SiO2 aerogel (impregnation) | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 40.0 | 0.0 | 12.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 |
Hu, L., Wang, C. A., & Huang, Y. (2011). Porous YSZ ceramics with unidirectionally aligned pore channel structure: Lowering thermal conductivity by silica aerogels impregnation. Journal of the European Ceramic Society, 31(15), 2915-2922. | 2011 | 222 | 10.1016/j.jeurceramsoc.2011.07.014 | 1936 | ceramic/polymer | YSZ-SiO2 aerogel (impregnation) | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 40.0 | 0.0 | 7.5 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 |
Hu, L., Wang, C. A., & Huang, Y. (2011). Porous YSZ ceramics with unidirectionally aligned pore channel structure: Lowering thermal conductivity by silica aerogels impregnation. Journal of the European Ceramic Society, 31(15), 2915-2922. | 2011 | 222 | 10.1016/j.jeurceramsoc.2011.07.014 | 1937 | ceramic/polymer | YSZ-SiO2 aerogel (impregnation) | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 40.0 | 0.0 | 2.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 |
Li, S., Wang, C. A., & Hu, L. (2013). Improved heat insulation and mechanical properties of highly porous YSZ ceramics after silica aerogels impregnation. Journal of the American Ceramic Society, 96(10), 3223-3227. | 2013 | 315 | 10.1111/jace.12564 | 3407 | ceramic/polymer | YSZ-SiO2 aerogel (impregnation) | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 62.0 | 0.0 | 0.2 | 0.0 | 0.0 | 14.0 | 0.0 | 0.0 |
Li, S., Wang, C. A., & Hu, L. (2013). Improved heat insulation and mechanical properties of highly porous YSZ ceramics after silica aerogels impregnation. Journal of the American Ceramic Society, 96(10), 3223-3227. | 2013 | 315 | 10.1111/jace.12564 | 3408 | ceramic/polymer | YSZ-SiO2 aerogel (impregnation) | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 60.0 | 0.0 | 0.2 | 0.0 | 0.0 | 22.0 | 0.0 | 0.0 |
Li, S., Wang, C. A., & Hu, L. (2013). Improved heat insulation and mechanical properties of highly porous YSZ ceramics after silica aerogels impregnation. Journal of the American Ceramic Society, 96(10), 3223-3227. | 2013 | 315 | 10.1111/jace.12564 | 3409 | ceramic/polymer | YSZ-SiO2 aerogel (impregnation) | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 58.0 | 0.0 | 0.2 | 0.0 | 0.0 | 30.0 | 0.0 | 0.0 |
Li, S., Wang, C. A., & Hu, L. (2013). Improved heat insulation and mechanical properties of highly porous YSZ ceramics after silica aerogels impregnation. Journal of the American Ceramic Society, 96(10), 3223-3227. | 2013 | 315 | 10.1111/jace.12564 | 3410 | ceramic/polymer | YSZ-SiO2 aerogel (impregnation) | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 54.0 | 0.0 | 0.25 | 0.0 | 0.0 | 45.0 | 0.0 | 0.0 |
Li, S., Wang, C. A., & Hu, L. (2013). Improved heat insulation and mechanical properties of highly porous YSZ ceramics after silica aerogels impregnation. Journal of the American Ceramic Society, 96(10), 3223-3227. | 2013 | 315 | 10.1111/jace.12564 | 3411 | ceramic/polymer | YSZ-SiO2 aerogel (impregnation) | TBA | 100 | 0.0 | 0 | 15.0 | 19.0 | 100 | powder | 1.26 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 52.0 | 0.0 | 0.2 | 0.0 | 0.0 | 67.0 | 0.0 | 0.0 |
Hu, L., Zhang, Y., Dong, S., Zhang, S., & Li, B. (2013). In situ growth of hydroxyapatite on lamellar alumina scaffolds with aligned pore channels. Ceramics International, 39(6), 6287-6291. | 2013 | 226 | 10.1016/j.ceramint.2013.01.050 | 1950 | ceramic | Al2O3-HAP (deposition) | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 10 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 63.9 | 0.0 | 0.0 | 0.0 | 0.0 | 110.3 | 0.0 | 0.0 |
Hu, L., Zhang, Y., Dong, S., Zhang, S., & Li, B. (2013). In situ growth of hydroxyapatite on lamellar alumina scaffolds with aligned pore channels. Ceramics International, 39(6), 6287-6291. | 2013 | 226 | 10.1016/j.ceramint.2013.01.050 | 1951 | ceramic | Al2O3-HAP (deposition) | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.4 | 0 | 1 | 10 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 64.1 | 0.0 | 0.0 | 0.0 | 0.0 | 107.1 | 0.0 | 0.0 |
Huang, Y., Wu, D., Jiang, J., Mai, Y., Zhang, F., Pan, H., & Feng, X. (2015). Highly oriented macroporous graphene hybrid monoliths for lithium ion battery electrodes with ultrahigh capacity and rate capability. Nano Energy, 12, 287-295. | 2015 | 228 | 10.1016/j.nanoen.2014.12.034 | 4751 | carbon/ceramic | C-SnO2 (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Huang, Y., Wu, D., Jiang, J., Mai, Y., Zhang, F., Pan, H., & Feng, X. (2015). Highly oriented macroporous graphene hybrid monoliths for lithium ion battery electrodes with ultrahigh capacity and rate capability. Nano Energy, 12, 287-295. | 2015 | 228 | 10.1016/j.nanoen.2014.12.034 | 4752 | carbon/ceramic | C-SnO2-graphene (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Huang, Y., Wu, D., Jiang, J., Mai, Y., Zhang, F., Pan, H., & Feng, X. (2015). Highly oriented macroporous graphene hybrid monoliths for lithium ion battery electrodes with ultrahigh capacity and rate capability. Nano Energy, 12, 287-295. | 2015 | 228 | 10.1016/j.nanoen.2014.12.034 | 4753 | carbon/ceramic | C-FePO4-graphene (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Huang, Y., Wu, D., Jiang, J., Mai, Y., Zhang, F., Pan, H., & Feng, X. (2015). Highly oriented macroporous graphene hybrid monoliths for lithium ion battery electrodes with ultrahigh capacity and rate capability. Nano Energy, 12, 287-295. | 2015 | 228 | 10.1016/j.nanoen.2014.12.034 | 4754 | carbon/ceramic | SnO2-graphene (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Huang, Y., Wu, D., Jiang, J., Mai, Y., Zhang, F., Pan, H., & Feng, X. (2015). Highly oriented macroporous graphene hybrid monoliths for lithium ion battery electrodes with ultrahigh capacity and rate capability. Nano Energy, 12, 287-295. | 2015 | 228 | 10.1016/j.nanoen.2014.12.034 | 4755 | carbon/ceramic | FePO4-graphene (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Huang, Z., Zhou, K., Lei, D., Li, Z., Zhang, Y., & Zhang, D. (2013). Fabrication of CaSiO 3 bioceramics with open and unidirectional macro-channels using an ice/fiber-templated method. Ceramics International, 39(6), 6035-6040. | 2013 | 229 | 10.1016/j.ceramint.2013.01.019 | 1952 | ceramic | CaSiO3 | water | 100 | 0.0 | 0 | 15.0 | 37.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 76.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 |
Huang, Z., Zhou, K., Lei, D., Li, Z., Zhang, Y., & Zhang, D. (2013). Fabrication of CaSiO 3 bioceramics with open and unidirectional macro-channels using an ice/fiber-templated method. Ceramics International, 39(6), 6035-6040. | 2013 | 229 | 10.1016/j.ceramint.2013.01.019 | 1953 | ceramic | CaSiO3 | water | 100 | 0.0 | 0 | 15.0 | 37.0 | 0 | powder | 0.0 | 0 | 1 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.8 | 0.0 | 0.0 |
Huang, Z., Zhou, K., Lei, D., Li, Z., Zhang, Y., & Zhang, D. (2013). Fabrication of CaSiO 3 bioceramics with open and unidirectional macro-channels using an ice/fiber-templated method. Ceramics International, 39(6), 6035-6040. | 2013 | 229 | 10.1016/j.ceramint.2013.01.019 | 1954 | ceramic | CaSiO3 | water | 100 | 0.0 | 0 | 15.0 | 37.0 | 0 | powder | 0.0 | 0 | 1 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 79.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.5 | 0.0 | 0.0 |
Huang, Z., Zhou, K., Lei, D., Li, Z., Zhang, Y., & Zhang, D. (2013). Fabrication of CaSiO 3 bioceramics with open and unidirectional macro-channels using an ice/fiber-templated method. Ceramics International, 39(6), 6035-6040. | 2013 | 229 | 10.1016/j.ceramint.2013.01.019 | 1955 | ceramic | CaSiO3 | water | 100 | 0.0 | 0 | 15.0 | 37.0 | 0 | powder | 0.0 | 0 | 1 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 83.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
Huang, Z., Zhou, K., Lei, D., Li, Z., Zhang, Y., & Zhang, D. (2013). Fabrication of CaSiO 3 bioceramics with open and unidirectional macro-channels using an ice/fiber-templated method. Ceramics International, 39(6), 6035-6040. | 2013 | 229 | 10.1016/j.ceramint.2013.01.019 | 1956 | ceramic | CaSiO3 | water | 100 | 0.0 | 0 | 20.0 | 37.0 | 100 | powder | 0.0 | 0 | 1 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 71.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.5 | 0.0 | 0.0 |
Huang, Z., Zhou, K., Lei, D., Li, Z., Zhang, Y., & Zhang, D. (2013). Fabrication of CaSiO 3 bioceramics with open and unidirectional macro-channels using an ice/fiber-templated method. Ceramics International, 39(6), 6035-6040. | 2013 | 229 | 10.1016/j.ceramint.2013.01.019 | 1957 | ceramic | CaSiO3 | water | 100 | 0.0 | 0 | 20.0 | 37.0 | 0 | powder | 0.0 | 0 | 1 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 73.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.8 | 0.0 | 0.0 |
Huang, Z., Zhou, K., Lei, D., Li, Z., Zhang, Y., & Zhang, D. (2013). Fabrication of CaSiO 3 bioceramics with open and unidirectional macro-channels using an ice/fiber-templated method. Ceramics International, 39(6), 6035-6040. | 2013 | 229 | 10.1016/j.ceramint.2013.01.019 | 1958 | ceramic | CaSiO3 | water | 100 | 0.0 | 0 | 20.0 | 37.0 | 0 | powder | 0.0 | 0 | 1 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.5 | 0.0 | 0.0 |
Huang, Z., Zhou, K., Lei, D., Li, Z., Zhang, Y., & Zhang, D. (2013). Fabrication of CaSiO 3 bioceramics with open and unidirectional macro-channels using an ice/fiber-templated method. Ceramics International, 39(6), 6035-6040. | 2013 | 229 | 10.1016/j.ceramint.2013.01.019 | 1959 | ceramic | CaSiO3 | water | 100 | 0.0 | 0 | 20.0 | 37.0 | 0 | powder | 0.0 | 0 | 1 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.5 | 0.0 | 0.0 |
Ismail, H., Yau, S. X., Shamsudin, R., Hamid, M. A. A., & Awang, R. (2016). Morphology and Phase Identification of Bioactive Freeze-dried ß-CaSiO 3. Key Engineering Materials, 694. | 2016 | 859 | 10.4028/www.scientific.net/KEM.694.72 | 5734 | ceramic | CaSiO3 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Platelets self-assemble into porous nacre during freeze casting. Journal of the mechanical behavior of biomedical materials, 19, 87-93. | 2013 | 232 | 10.1016/j.jmbbm.2012.10.013 | 1962 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 100 | powder | 0.4 | 2 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 7.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 91.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 2.62 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Platelets self-assemble into porous nacre during freeze casting. Journal of the mechanical behavior of biomedical materials, 19, 87-93. | 2013 | 232 | 10.1016/j.jmbbm.2012.10.013 | 1963 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 30 | powder | 0.4 | 2 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 7.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 90.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.24 | 0.0 | 9.63 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Platelets self-assemble into porous nacre during freeze casting. Journal of the mechanical behavior of biomedical materials, 19, 87-93. | 2013 | 232 | 10.1016/j.jmbbm.2012.10.013 | 1964 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 100 | powder | 10.0 | 2 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 7.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 90.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.27 | 0.0 | 14.22 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Platelets self-assemble into porous nacre during freeze casting. Journal of the mechanical behavior of biomedical materials, 19, 87-93. | 2013 | 232 | 10.1016/j.jmbbm.2012.10.013 | 1965 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 100 | platelet | 7.5 | 2 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 7.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 91.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.34 | 0.0 | 27.44 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Platelets self-assemble into porous nacre during freeze casting. Journal of the mechanical behavior of biomedical materials, 19, 87-93. | 2013 | 232 | 10.1016/j.jmbbm.2012.10.013 | 1966 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 100 | powder | 0.4 | 2 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 28.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 91.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.16 | 0.0 | 7.08 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Platelets self-assemble into porous nacre during freeze casting. Journal of the mechanical behavior of biomedical materials, 19, 87-93. | 2013 | 232 | 10.1016/j.jmbbm.2012.10.013 | 1967 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 30 | powder | 0.4 | 2 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 28.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 90.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.35 | 0.0 | 20.05 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Platelets self-assemble into porous nacre during freeze casting. Journal of the mechanical behavior of biomedical materials, 19, 87-93. | 2013 | 232 | 10.1016/j.jmbbm.2012.10.013 | 1968 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 100 | powder | 10.0 | 2 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 28.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 90.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.24 | 0.0 | 12.11 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Platelets self-assemble into porous nacre during freeze casting. Journal of the mechanical behavior of biomedical materials, 19, 87-93. | 2013 | 232 | 10.1016/j.jmbbm.2012.10.013 | 1969 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 100 | platelet | 7.5 | 2 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 28.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 91.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.72 | 0.0 | 45.14 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Structure?property-processing correlations in freeze-cast composite scaffolds. Acta biomaterialia, 9(5), 6338-6348. | 2013 | 233 | 10.1016/j.actbio.2013.01.012 | 1970 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 75 | powder | 10.0 | 2 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 6.48 | 0.0 | 0 | 0 | 0 | lamellar | green | 91.0 | 42.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Structure?property-processing correlations in freeze-cast composite scaffolds. Acta biomaterialia, 9(5), 6338-6348. | 2013 | 233 | 10.1016/j.actbio.2013.01.012 | 1971 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 75 | powder | 0.4 | 2 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 6.48 | 0.0 | 0 | 0 | 0 | lamellar | green | 91.0 | 35.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Structure?property-processing correlations in freeze-cast composite scaffolds. Acta biomaterialia, 9(5), 6338-6348. | 2013 | 233 | 10.1016/j.actbio.2013.01.012 | 1972 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 75 | powder | 10.0 | 2 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 6.48 | 0.0 | 0 | 0 | 0 | lamellar | green | 91.0 | 38.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Structure?property-processing correlations in freeze-cast composite scaffolds. Acta biomaterialia, 9(5), 6338-6348. | 2013 | 233 | 10.1016/j.actbio.2013.01.012 | 1973 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 75 | powder | 10.0 | 2 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 6.67 | 0.0 | 0 | 0 | 0 | lamellar | green | 91.0 | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Structure?property-processing correlations in freeze-cast composite scaffolds. Acta biomaterialia, 9(5), 6338-6348. | 2013 | 233 | 10.1016/j.actbio.2013.01.012 | 1974 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 75 | powder | 0.4 | 2 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 6.67 | 0.0 | 0 | 0 | 0 | lamellar | green | 91.0 | 32.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Structure?property-processing correlations in freeze-cast composite scaffolds. Acta biomaterialia, 9(5), 6338-6348. | 2013 | 233 | 10.1016/j.actbio.2013.01.012 | 1975 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 75 | powder | 10.0 | 2 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 6.67 | 0.0 | 0 | 0 | 0 | lamellar | green | 91.0 | 35.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Structure?property-processing correlations in freeze-cast composite scaffolds. Acta biomaterialia, 9(5), 6338-6348. | 2013 | 233 | 10.1016/j.actbio.2013.01.012 | 1976 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 75 | powder | 10.0 | 2 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 11.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 91.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Structure?property-processing correlations in freeze-cast composite scaffolds. Acta biomaterialia, 9(5), 6338-6348. | 2013 | 233 | 10.1016/j.actbio.2013.01.012 | 1977 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 75 | powder | 0.4 | 2 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 11.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 91.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Structure?property-processing correlations in freeze-cast composite scaffolds. Acta biomaterialia, 9(5), 6338-6348. | 2013 | 233 | 10.1016/j.actbio.2013.01.012 | 1978 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 75 | powder | 10.0 | 2 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 11.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 91.0 | 28.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Structure?property-processing correlations in freeze-cast composite scaffolds. Acta biomaterialia, 9(5), 6338-6348. | 2013 | 233 | 10.1016/j.actbio.2013.01.012 | 1979 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 75 | powder | 10.0 | 2 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 11.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 91.0 | 38.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Structure?property-processing correlations in freeze-cast composite scaffolds. Acta biomaterialia, 9(5), 6338-6348. | 2013 | 233 | 10.1016/j.actbio.2013.01.012 | 1980 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 75 | powder | 0.4 | 2 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 11.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 91.0 | 39.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Structure?property-processing correlations in freeze-cast composite scaffolds. Acta biomaterialia, 9(5), 6338-6348. | 2013 | 233 | 10.1016/j.actbio.2013.01.012 | 1981 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 75 | powder | 10.0 | 2 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 11.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 91.0 | 37.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Structure?property-processing correlations in freeze-cast composite scaffolds. Acta biomaterialia, 9(5), 6338-6348. | 2013 | 233 | 10.1016/j.actbio.2013.01.012 | 1982 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 75 | powder | 10.0 | 2 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 15.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 91.0 | 22.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Structure?property-processing correlations in freeze-cast composite scaffolds. Acta biomaterialia, 9(5), 6338-6348. | 2013 | 233 | 10.1016/j.actbio.2013.01.012 | 1983 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 75 | powder | 0.4 | 2 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 15.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 91.0 | 22.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Structure?property-processing correlations in freeze-cast composite scaffolds. Acta biomaterialia, 9(5), 6338-6348. | 2013 | 233 | 10.1016/j.actbio.2013.01.012 | 1984 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 75 | powder | 10.0 | 2 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 15.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 91.0 | 28.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Structure?property-processing correlations in freeze-cast composite scaffolds. Acta biomaterialia, 9(5), 6338-6348. | 2013 | 233 | 10.1016/j.actbio.2013.01.012 | 1985 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 75 | powder | 10.0 | 2 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 23.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 91.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Structure?property-processing correlations in freeze-cast composite scaffolds. Acta biomaterialia, 9(5), 6338-6348. | 2013 | 233 | 10.1016/j.actbio.2013.01.012 | 1986 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 75 | powder | 0.4 | 2 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 23.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 91.0 | 18.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Structure?property-processing correlations in freeze-cast composite scaffolds. Acta biomaterialia, 9(5), 6338-6348. | 2013 | 233 | 10.1016/j.actbio.2013.01.012 | 1987 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 75 | powder | 10.0 | 2 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 23.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 91.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Structure?property-processing correlations in freeze-cast composite scaffolds. Acta biomaterialia, 9(5), 6338-6348. | 2013 | 233 | 10.1016/j.actbio.2013.01.012 | 1988 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 75 | powder | 10.0 | 2 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 91.4 | 35.0 | 31.0 | 5.79 | 0.0 | 0.1 | 0.0 | 2.62 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Structure?property-processing correlations in freeze-cast composite scaffolds. Acta biomaterialia, 9(5), 6338-6348. | 2013 | 233 | 10.1016/j.actbio.2013.01.012 | 1989 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 75 | powder | 0.4 | 2 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 90.8 | 36.0 | 32.88 | 3.12 | 0.0 | 0.24 | 0.0 | 9.63 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Structure?property-processing correlations in freeze-cast composite scaffolds. Acta biomaterialia, 9(5), 6338-6348. | 2013 | 233 | 10.1016/j.actbio.2013.01.012 | 1990 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 75 | powder | 10.0 | 2 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 90.5 | 35.2 | 33.84 | 0.55 | 0.0 | 0.27 | 0.0 | 14.22 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Structure?property-processing correlations in freeze-cast composite scaffolds. Acta biomaterialia, 9(5), 6338-6348. | 2013 | 233 | 10.1016/j.actbio.2013.01.012 | 1991 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 75 | powder | 10.0 | 2 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 91.8 | 27.4 | 24.61 | 2.79 | 0.0 | 0.16 | 0.0 | 7.08 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Structure?property-processing correlations in freeze-cast composite scaffolds. Acta biomaterialia, 9(5), 6338-6348. | 2013 | 233 | 10.1016/j.actbio.2013.01.012 | 1992 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 75 | powder | 0.4 | 2 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 90.9 | 30.85 | 28.76 | 2.09 | 0.0 | 0.35 | 0.0 | 20.05 |
Hunger, P. M., Donius, A. E., & Wegst, U. G. (2013). Structure?property-processing correlations in freeze-cast composite scaffolds. Acta biomaterialia, 9(5), 6338-6348. | 2013 | 233 | 10.1016/j.actbio.2013.01.012 | 1993 | ceramic/polymer | Al2O3-chitosan (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 75 | powder | 10.0 | 2 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 90.2 | 27.34 | 27.02 | 0.32 | 0.0 | 0.24 | 0.0 | 12.11 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., Moztarzadeh, Z., & Mozafari, M. (2012). Fabrication and characterization of PLLA/chitosan/nano calcium phosphate scaffolds by freeze-casting technique. Industrial & Engineering Chemistry Research, 51(27), 9241-9249. | 2012 | 235 | 10.1021/ie300173j | 1994 | polymer | Chitosan-80wt.% PLLA (impregnate) | acetic acid | 30 | chloroform | 69 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 98.0 | 0.0 | 387.0 | 0.0 | 0.0 | 0.54 | 0.0 | 4.0 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., & Mozafari, M. (2012). Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal, 21(10), 713-720. | 2012 | 236 | 10.1007/s13726-012-0079-1 | 2009 | polymer | Chitosan-80wt.% PLLA (impregnate) | acetic acid | 30 | chloroform | 69 | 2.0 | 39.0 | 20 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 98.0 | 0.0 | 387.0 | 0.0 | 0.0 | 0.05 | 0.0 | 4.0 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., & Mozafari, M. (2012). Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal, 21(10), 713-720. | 2012 | 236 | 10.1007/s13726-012-0079-1 | 2024 | polymer | Chitosan-80wt.% PLLA (impregnate) | acetic acid | 30 | chloroform | 69 | 2.0 | 39.0 | 20 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 98.0 | 0.0 | 387.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.73 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., Moztarzadeh, Z., & Mozafari, M. (2012). Fabrication and characterization of PLLA/chitosan/nano calcium phosphate scaffolds by freeze-casting technique. Industrial & Engineering Chemistry Research, 51(27), 9241-9249. | 2012 | 235 | 10.1021/ie300173j | 1995 | ceramic/polymer | Chitosan-80wt.% PLLA-10wt.% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 4.0 | 13.0 | 0 | powder | 0.1 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 97.8 | 0.0 | 337.0 | 0.0 | 0.0 | 0.61 | 0.0 | 5.7 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., & Mozafari, M. (2012). Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal, 21(10), 713-720. | 2012 | 236 | 10.1007/s13726-012-0079-1 | 2010 | ceramic/polymer | Chitosan-80wt.% PLLA-10wt.% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 4.0 | 13.0 | 10 | 0 | 0.1 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 97.8 | 0.0 | 337.0 | 0.0 | 0.0 | 0.09 | 0.0 | 5.7 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., & Mozafari, M. (2012). Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal, 21(10), 713-720. | 2012 | 236 | 10.1007/s13726-012-0079-1 | 2025 | ceramic/polymer | Chitosan-80wt.% PLLA-10wt.% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 4.0 | 13.0 | 10 | 0 | 0.1 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 97.8 | 0.0 | 337.0 | 0.0 | 0.0 | 0.07 | 0.0 | 3.12 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., Moztarzadeh, Z., & Mozafari, M. (2012). Fabrication and characterization of PLLA/chitosan/nano calcium phosphate scaffolds by freeze-casting technique. Industrial & Engineering Chemistry Research, 51(27), 9241-9249. | 2012 | 235 | 10.1021/ie300173j | 1996 | ceramic/polymer | Chitosan-80wt.% PLLA-20wt% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 6.0 | 13.0 | 0 | powder | 0.1 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 97.3 | 0.0 | 246.0 | 0.0 | 0.0 | 0.65 | 0.0 | 9.8 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., & Mozafari, M. (2012). Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal, 21(10), 713-720. | 2012 | 236 | 10.1007/s13726-012-0079-1 | 2011 | ceramic/polymer | Chitosan-80wt.% PLLA-20wt% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 6.0 | 13.0 | 20 | 0 | 0.1 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 97.3 | 0.0 | 246.0 | 0.0 | 0.0 | 0.14 | 0.0 | 9.8 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., & Mozafari, M. (2012). Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal, 21(10), 713-720. | 2012 | 236 | 10.1007/s13726-012-0079-1 | 2026 | ceramic/polymer | Chitosan-80wt.% PLLA-20wt% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 6.0 | 13.0 | 20 | 0 | 0.1 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 97.3 | 0.0 | 246.0 | 0.0 | 0.0 | 0.12 | 0.0 | 4.76 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., Moztarzadeh, Z., & Mozafari, M. (2012). Fabrication and characterization of PLLA/chitosan/nano calcium phosphate scaffolds by freeze-casting technique. Industrial & Engineering Chemistry Research, 51(27), 9241-9249. | 2012 | 235 | 10.1021/ie300173j | 1997 | ceramic/polymer | Chitosan-80wt.% PLLA-30wt% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 7.0 | 13.0 | 0 | powder | 0.1 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 96.1 | 0.0 | 210.0 | 0.0 | 0.0 | 0.83 | 0.0 | 11.3 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., & Mozafari, M. (2012). Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal, 21(10), 713-720. | 2012 | 236 | 10.1007/s13726-012-0079-1 | 2012 | ceramic/polymer | Chitosan-80wt.% PLLA-30wt% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 7.0 | 13.0 | 30 | 0 | 0.1 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 96.1 | 0.0 | 210.0 | 0.0 | 0.0 | 0.16 | 0.0 | 11.3 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., & Mozafari, M. (2012). Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal, 21(10), 713-720. | 2012 | 236 | 10.1007/s13726-012-0079-1 | 2027 | ceramic/polymer | Chitosan-80wt.% PLLA-30wt% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 7.0 | 13.0 | 30 | 0 | 0.1 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 96.1 | 0.0 | 210.0 | 0.0 | 0.0 | 0.14 | 0.0 | 6.53 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., Moztarzadeh, Z., & Mozafari, M. (2012). Fabrication and characterization of PLLA/chitosan/nano calcium phosphate scaffolds by freeze-casting technique. Industrial & Engineering Chemistry Research, 51(27), 9241-9249. | 2012 | 235 | 10.1021/ie300173j | 1998 | ceramic/polymer | Chitosan-80wt.% PLLA-40wt% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 8.0 | 13.0 | 0 | powder | 0.1 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 95.8 | 0.0 | 148.0 | 0.0 | 0.0 | 0.92 | 0.0 | 15.6 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., & Mozafari, M. (2012). Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal, 21(10), 713-720. | 2012 | 236 | 10.1007/s13726-012-0079-1 | 2013 | ceramic/polymer | Chitosan-80wt.% PLLA-40wt% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 8.0 | 13.0 | 40 | 0 | 0.1 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 95.8 | 0.0 | 148.0 | 0.0 | 0.0 | 0.22 | 0.0 | 15.6 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., & Mozafari, M. (2012). Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal, 21(10), 713-720. | 2012 | 236 | 10.1007/s13726-012-0079-1 | 2028 | ceramic/polymer | Chitosan-80wt.% PLLA-40wt% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 8.0 | 13.0 | 40 | 0 | 0.1 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 95.8 | 0.0 | 148.0 | 0.0 | 0.0 | 0.2 | 0.0 | 8.37 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., Moztarzadeh, Z., & Mozafari, M. (2012). Fabrication and characterization of PLLA/chitosan/nano calcium phosphate scaffolds by freeze-casting technique. Industrial & Engineering Chemistry Research, 51(27), 9241-9249. | 2012 | 235 | 10.1021/ie300173j | 1999 | polymer | Chitosan-50wt.% PLLA (impregnate) | acetic acid | 30 | chloroform | 69 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 97.0 | 0.0 | 27.5 | 0.0 | 0.0 | 0.65 | 0.0 | 12.2 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., & Mozafari, M. (2012). Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal, 21(10), 713-720. | 2012 | 236 | 10.1007/s13726-012-0079-1 | 2014 | polymer | Chitosan-50wt.% PLLA (impregnate) | acetic acid | 30 | chloroform | 69 | 2.0 | 39.0 | 20 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 97.0 | 0.0 | 261.0 | 0.0 | 0.0 | 0.26 | 0.0 | 12.2 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., & Mozafari, M. (2012). Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal, 21(10), 713-720. | 2012 | 236 | 10.1007/s13726-012-0079-1 | 2029 | polymer | Chitosan-50wt.% PLLA (impregnate) | acetic acid | 30 | chloroform | 69 | 2.0 | 39.0 | 20 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 97.0 | 0.0 | 261.0 | 0.0 | 0.0 | 0.19 | 0.0 | 6.59 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., Moztarzadeh, Z., & Mozafari, M. (2012). Fabrication and characterization of PLLA/chitosan/nano calcium phosphate scaffolds by freeze-casting technique. Industrial & Engineering Chemistry Research, 51(27), 9241-9249. | 2012 | 235 | 10.1021/ie300173j | 2000 | ceramic/polymer | Chitosan-80wt.% PLLA-10wt.% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 4.0 | 13.0 | 0 | powder | 0.1 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 96.7 | 0.0 | 216.0 | 0.0 | 0.0 | 0.77 | 0.0 | 14.7 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., & Mozafari, M. (2012). Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal, 21(10), 713-720. | 2012 | 236 | 10.1007/s13726-012-0079-1 | 2015 | ceramic/polymer | Chitosan-80wt.% PLLA-10wt.% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 4.0 | 13.0 | 10 | 0 | 0.1 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 96.7 | 0.0 | 216.0 | 0.0 | 0.0 | 0.31 | 0.0 | 14.7 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., & Mozafari, M. (2012). Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal, 21(10), 713-720. | 2012 | 236 | 10.1007/s13726-012-0079-1 | 2030 | ceramic/polymer | Chitosan-80wt.% PLLA-10wt.% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 4.0 | 13.0 | 10 | 0 | 0.1 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 96.7 | 0.0 | 216.0 | 0.0 | 0.0 | 0.29 | 0.0 | 9.74 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., Moztarzadeh, Z., & Mozafari, M. (2012). Fabrication and characterization of PLLA/chitosan/nano calcium phosphate scaffolds by freeze-casting technique. Industrial & Engineering Chemistry Research, 51(27), 9241-9249. | 2012 | 235 | 10.1021/ie300173j | 2001 | ceramic/polymer | Chitosan-80wt.% PLLA-20wt.% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 6.0 | 13.0 | 0 | powder | 0.1 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 96.0 | 0.0 | 168.0 | 0.0 | 0.0 | 0.94 | 0.0 | 23.0 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., & Mozafari, M. (2012). Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal, 21(10), 713-720. | 2012 | 236 | 10.1007/s13726-012-0079-1 | 2016 | ceramic/polymer | Chitosan-80wt.% PLLA-20wt.% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 6.0 | 13.0 | 20 | 0 | 0.1 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 96.0 | 0.0 | 168.0 | 0.0 | 0.0 | 0.5 | 0.0 | 23.5 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., & Mozafari, M. (2012). Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal, 21(10), 713-720. | 2012 | 236 | 10.1007/s13726-012-0079-1 | 2031 | ceramic/polymer | Chitosan-80wt.% PLLA-20wt.% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 6.0 | 13.0 | 20 | 0 | 0.1 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 96.0 | 0.0 | 168.0 | 0.0 | 0.0 | 0.43 | 0.0 | 13.25 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., Moztarzadeh, Z., & Mozafari, M. (2012). Fabrication and characterization of PLLA/chitosan/nano calcium phosphate scaffolds by freeze-casting technique. Industrial & Engineering Chemistry Research, 51(27), 9241-9249. | 2012 | 235 | 10.1021/ie300173j | 2002 | ceramic/polymer | Chitosan-80wt.% PLLA-30wt.% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 7.0 | 13.0 | 0 | powder | 0.1 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 95.8 | 0.0 | 122.0 | 0.0 | 0.0 | 1.14 | 0.0 | 33.2 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., & Mozafari, M. (2012). Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal, 21(10), 713-720. | 2012 | 236 | 10.1007/s13726-012-0079-1 | 2017 | ceramic/polymer | Chitosan-80wt.% PLLA-30wt.% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 7.0 | 13.0 | 30 | 0 | 0.1 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 95.8 | 0.0 | 122.0 | 0.0 | 0.0 | 0.71 | 0.0 | 33.2 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., & Mozafari, M. (2012). Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal, 21(10), 713-720. | 2012 | 236 | 10.1007/s13726-012-0079-1 | 2032 | ceramic/polymer | Chitosan-80wt.% PLLA-30wt.% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 7.0 | 13.0 | 30 | 0 | 0.1 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 95.8 | 0.0 | 122.0 | 0.0 | 0.0 | 0.51 | 0.0 | 17.48 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., Moztarzadeh, Z., & Mozafari, M. (2012). Fabrication and characterization of PLLA/chitosan/nano calcium phosphate scaffolds by freeze-casting technique. Industrial & Engineering Chemistry Research, 51(27), 9241-9249. | 2012 | 235 | 10.1021/ie300173j | 2003 | ceramic/polymer | Chitosan-80wt.% PLLA-40wt.% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 8.0 | 13.0 | 0 | powder | 0.1 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 95.0 | 0.0 | 45.0 | 0.0 | 0.0 | 1.76 | 0.0 | 53.1 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., & Mozafari, M. (2012). Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal, 21(10), 713-720. | 2012 | 236 | 10.1007/s13726-012-0079-1 | 2018 | ceramic/polymer | Chitosan-80wt.% PLLA-40wt.% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 8.0 | 13.0 | 40 | 0 | 0.1 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 95.0 | 0.0 | 45.0 | 0.0 | 0.0 | 1.16 | 0.0 | 53.1 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., & Mozafari, M. (2012). Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal, 21(10), 713-720. | 2012 | 236 | 10.1007/s13726-012-0079-1 | 2033 | ceramic/polymer | Chitosan-80wt.% PLLA-40wt.% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 8.0 | 13.0 | 40 | 0 | 0.1 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 95.0 | 0.0 | 45.0 | 0.0 | 0.0 | 0.64 | 0.0 | 21.29 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., Moztarzadeh, Z., & Mozafari, M. (2012). Fabrication and characterization of PLLA/chitosan/nano calcium phosphate scaffolds by freeze-casting technique. Industrial & Engineering Chemistry Research, 51(27), 9241-9249. | 2012 | 235 | 10.1021/ie300173j | 2004 | polymer | Chitosan-20wt.% PLLA (impregnate) | acetic acid | 30 | chloroform | 69 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 95.0 | 0.0 | 221.0 | 0.0 | 0.0 | 0.68 | 0.0 | 0.68 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., & Mozafari, M. (2012). Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal, 21(10), 713-720. | 2012 | 236 | 10.1007/s13726-012-0079-1 | 2019 | polymer | Chitosan-20wt.% PLLA (impregnate) | acetic acid | 30 | chloroform | 69 | 2.0 | 39.0 | 20 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 95.0 | 0.0 | 221.0 | 0.0 | 0.0 | 0.45 | 0.0 | 15.5 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., & Mozafari, M. (2012). Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal, 21(10), 713-720. | 2012 | 236 | 10.1007/s13726-012-0079-1 | 2034 | polymer | Chitosan-20wt.% PLLA (impregnate) | acetic acid | 30 | chloroform | 69 | 2.0 | 39.0 | 20 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 95.0 | 0.0 | 221.0 | 0.0 | 0.0 | 0.1 | 0.0 | 1.9 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., Moztarzadeh, Z., & Mozafari, M. (2012). Fabrication and characterization of PLLA/chitosan/nano calcium phosphate scaffolds by freeze-casting technique. Industrial & Engineering Chemistry Research, 51(27), 9241-9249. | 2012 | 235 | 10.1021/ie300173j | 2005 | ceramic/polymer | Chitosan-50wt.% PLLA-10wt.% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 4.0 | 13.0 | 0 | powder | 0.1 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 94.4 | 0.0 | 181.0 | 0.0 | 0.0 | 0.87 | 0.0 | 0.87 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., & Mozafari, M. (2012). Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal, 21(10), 713-720. | 2012 | 236 | 10.1007/s13726-012-0079-1 | 2020 | ceramic/polymer | Chitosan-50wt.% PLLA-10wt.% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 4.0 | 13.0 | 10 | 0 | 0.1 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 94.4 | 0.0 | 181.0 | 0.0 | 0.0 | 0.72 | 0.0 | 24.3 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., & Mozafari, M. (2012). Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal, 21(10), 713-720. | 2012 | 236 | 10.1007/s13726-012-0079-1 | 2035 | ceramic/polymer | Chitosan-50wt.% PLLA-10wt.% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 4.0 | 13.0 | 10 | 0 | 0.1 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 94.4 | 0.0 | 181.0 | 0.0 | 0.0 | 0.48 | 0.0 | 9.6 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., Moztarzadeh, Z., & Mozafari, M. (2012). Fabrication and characterization of PLLA/chitosan/nano calcium phosphate scaffolds by freeze-casting technique. Industrial & Engineering Chemistry Research, 51(27), 9241-9249. | 2012 | 235 | 10.1021/ie300173j | 2006 | ceramic/polymer | Chitosan-50wt.% PLLA-20wt.% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 6.0 | 13.0 | 0 | powder | 0.1 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 93.9 | 0.0 | 121.0 | 0.0 | 0.0 | 0.91 | 0.0 | 0.91 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., & Mozafari, M. (2012). Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal, 21(10), 713-720. | 2012 | 236 | 10.1007/s13726-012-0079-1 | 2021 | ceramic/polymer | Chitosan-50wt.% PLLA-20wt.% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 6.0 | 13.0 | 20 | 0 | 0.1 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 93.9 | 0.0 | 121.0 | 0.0 | 0.0 | 1.69 | 0.0 | 57.0 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., & Mozafari, M. (2012). Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal, 21(10), 713-720. | 2012 | 236 | 10.1007/s13726-012-0079-1 | 2036 | ceramic/polymer | Chitosan-50wt.% PLLA-20wt.% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 6.0 | 13.0 | 20 | 0 | 0.1 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 93.9 | 0.0 | 121.0 | 0.0 | 0.0 | 0.64 | 0.0 | 13.7 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., Moztarzadeh, Z., & Mozafari, M. (2012). Fabrication and characterization of PLLA/chitosan/nano calcium phosphate scaffolds by freeze-casting technique. Industrial & Engineering Chemistry Research, 51(27), 9241-9249. | 2012 | 235 | 10.1021/ie300173j | 2007 | ceramic/polymer | Chitosan-50wt.% PLLA-30wt.% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 7.0 | 13.0 | 0 | powder | 0.1 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 93.1 | 0.0 | 80.0 | 0.0 | 0.0 | 0.12 | 0.0 | 0.12 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., & Mozafari, M. (2012). Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal, 21(10), 713-720. | 2012 | 236 | 10.1007/s13726-012-0079-1 | 2022 | ceramic/polymer | Chitosan-50wt.% PLLA-30wt.% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 7.0 | 13.0 | 30 | 0 | 0.1 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 93.1 | 0.0 | 80.0 | 0.0 | 0.0 | 2.03 | 0.0 | 68.2 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., & Mozafari, M. (2012). Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal, 21(10), 713-720. | 2012 | 236 | 10.1007/s13726-012-0079-1 | 2037 | ceramic/polymer | Chitosan-50wt.% PLLA-30wt.% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 7.0 | 13.0 | 30 | 0 | 0.1 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 93.1 | 0.0 | 80.0 | 0.0 | 0.0 | 0.87 | 0.0 | 18.8 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., Moztarzadeh, Z., & Mozafari, M. (2012). Fabrication and characterization of PLLA/chitosan/nano calcium phosphate scaffolds by freeze-casting technique. Industrial & Engineering Chemistry Research, 51(27), 9241-9249. | 2012 | 235 | 10.1021/ie300173j | 2008 | ceramic/polymer | Chitosan-50wt.% PLLA-40wt.% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 8.0 | 13.0 | 0 | powder | 0.1 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 92.8 | 0.0 | 38.0 | 0.0 | 0.0 | 0.15 | 0.0 | 0.15 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., & Mozafari, M. (2012). Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal, 21(10), 713-720. | 2012 | 236 | 10.1007/s13726-012-0079-1 | 2023 | ceramic/polymer | Chitosan-50wt.% PLLA-40wt.% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 8.0 | 13.0 | 40 | 0 | 0.1 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 92.8 | 0.0 | 38.0 | 0.0 | 0.0 | 2.48 | 0.0 | 82.6 |
Jafarkhani, M., Fazlali, A., Moztarzadeh, F., & Mozafari, M. (2012). Mechanical and structural properties of polylactide/chitosan scaffolds reinforced with nano-calcium phosphate. Iranian Polymer Journal, 21(10), 713-720. | 2012 | 236 | 10.1007/s13726-012-0079-1 | 2038 | ceramic/polymer | Chitosan-50wt.% PLLA-40wt.% CP (PLLA impregnate) | acetic acid | 30 | chloroform | 69 | 8.0 | 13.0 | 40 | 0 | 0.1 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 92.8 | 0.0 | 38.0 | 0.0 | 0.0 | 1.12 | 0.0 | 23.1 |
Jeon, K. C., Kim, B. S., Do Kim, Y., Suk, M. J., & Oh, S. T. (2015). Porous Mo?30wt.% W alloys synthesized from camphene/MoO 3?WO 3 slurry by freeze drying and sintering process. International Journal of Refractory Metals and Hard Materials, 53, 32-35. | 2015 | 237 | 10.1016/j.ijrmhm.2015.04.021 | 2039 | metal | Mo-30wt.% W (mixed) | camphene | 100 | 0.0 | 0 | 50.0 | 62.0 | 69 | 0 | 10.0 | 0 | 0 | 0 | 248.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 200.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jiang, F., Han, S., & Hsieh, Y. L. (2013). Controlled defibrillation of rice straw cellulose and self-assembly of cellulose nanofibrils into highly crystalline fibrous materials. Rsc Advances, 3(30), 12366-12375. | 2013 | 241 | 10.1039/c3ra41646a | 4757 | polymer | TEMPO-oxidized cellulose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4697 | polymer | TEMPO-oxidized cellulose | water | 100 | 0.0 | 0 | 0.07 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4698 | polymer | TEMPO-oxidized cellulose | water | 100 | 0.0 | 0 | 0.8 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4699 | polymer | TEMPO-oxidized cellulose | water | 100 | 0.0 | 0 | 0.85 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 99.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4700 | polymer | TEMPO-oxidized cellulose | water | 100 | 0.0 | 0 | 0.9 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 99.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4701 | polymer | TEMPO-oxidized cellulose | water | 100 | 0.0 | 0 | 1.1 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 99.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4713 | polymer | TEMPO-oxidized cellulose | water | 100 | 0.0 | 0 | 0.07 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 205.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 21 | 0 | honeycomb | green | 98.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4714 | polymer | TEMPO-oxidized cellulose | water | 100 | 0.0 | 0 | 0.09 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 205.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 5 | 0 | honeycomb | green | 97.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4715 | polymer | TEMPO-oxidized cellulose | water | 100 | 0.0 | 0 | 0.09 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 205.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 3 | 0 | honeycomb | green | 96.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.01 | 0.0 | 0.08 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4716 | polymer | TEMPO-oxidized cellulose | water | 100 | 0.0 | 0 | 0.1 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 205.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 3 | 0 | honeycomb | green | 95.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.01 | 0.0 | 0.1 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4717 | polymer | TEMPO-oxidized cellulose | water | 100 | 0.0 | 0 | 0.56 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 205.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 2 | 0 | honeycomb | green | 94.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.01 | 0.0 | 0.12 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4718 | polymer | TEMPO-oxidized cellulose | water | 100 | 0.0 | 0 | 0.82 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 205.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 93.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.01 | 0.0 | 0.15 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4719 | polymer | TEMPO-oxidized cellulose | water | 100 | 0.0 | 0 | 1.1 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 205.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 92.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.02 | 0.0 | 0.2 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4727 | polymer | TEMPO-oxidized cellulose | water | 100 | 0.0 | 0 | 1.1 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 153.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 99.25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.12 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4728 | polymer | TEMPO-oxidized cellulose | water | 100 | 0.0 | 0 | 1.1 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 173.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 99.25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.01 | 0.0 | 0.12 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4729 | polymer | TEMPO-oxidized cellulose | water | 100 | 0.0 | 0 | 1.1 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 99.25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.01 | 0.0 | 0.1 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4730 | polymer | TEMPO-oxidized cellulose | water | 100 | 0.0 | 0 | 1.1 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 99.25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.01 | 0.0 | 0.16 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4731 | polymer | TEMPO-oxidized cellulose | water | 100 | 0.0 | 0 | 1.1 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 99.25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.01 | 0.0 | 0.17 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4732 | polymer | TEMPO-oxidized cellulose | water | 100 | 0.0 | 0 | 1.1 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 99.25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.03 | 0.0 | 0.3 |
Jung, H. D., Yook, S. W., Kim, H. E., & Koh, Y. H. (2009). Fabrication of titanium scaffolds with porosity and pore size gradients by sequential freeze casting. Materials letters, 63(17), 1545-1547. | 2009 | 249 | 10.1016/j.matlet.2009.04.012 | 1282 | metal | Ti, grade 4 | camphene | 100 | 0.0 | 0 | 10.0 | 28.0 | 100 | powder | 44.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 75.0 | 0.0 | 140.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yook, S. W., Kim, H. E., & Koh, Y. H. (2009). Fabrication of porous titanium scaffolds with high compressive strength using camphene-based freeze casting. Materials Letters, 63(17), 1502-1504. | 2009 | 722 | 10.1016/j.matlet.2009.03.056 | 1239 | metal | Ti, grade 4 | camphene | 100 | 0.0 | 0 | 10.0 | 28.0 | 100 | 0 | 65.0 | 0 | 0 | 0 | 315.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 64.0 | 0.0 | 143.0 | 0.0 | 0.0 | 48.0 | 0.0 | 0.0 |
Yook, S. W., Kim, H. E., & Koh, Y. H. (2009). Fabrication of porous titanium scaffolds with high compressive strength using camphene-based freeze casting. Materials Letters, 63(17), 1502-1504. | 2009 | 722 | 10.1016/j.matlet.2009.03.056 | 1240 | metal | Ti, grade 4 | camphene | 100 | 0.0 | 0 | 10.0 | 28.0 | 100 | 0 | 65.0 | 0 | 0 | 0 | 315.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 230.0 | 0.0 | 0.0 | 70.0 | 0.0 | 0.0 |
Yook, S. W., Kim, H. E., & Koh, Y. H. (2009). Fabrication of porous titanium scaffolds with high compressive strength using camphene-based freeze casting. Materials Letters, 63(17), 1502-1504. | 2009 | 722 | 10.1016/j.matlet.2009.03.056 | 1241 | metal | Ti, grade 4 | camphene | 100 | 0.0 | 0 | 10.0 | 28.0 | 100 | 0 | 65.0 | 0 | 0 | 0 | 315.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 271.0 | 0.0 | 0.0 | 110.0 | 0.0 | 0.0 |
Jenei, P., Choi, H., Toth, A., Choe, H., & Gubicza, J. (2016). Mechanical behavior and microstructure of compressed Ti foams synthesized via freeze casting. journal of the mechanical behavior of biomedical materials, 63, 407-416. | 2016 | 809 | 10.1016/j.hmbbm.2016.07.012 | 1827 | metal | Ti, grade 4 | water | 100 | 0.0 | 0 | 0.0 | 29.0 | 100 | powder | 44.0 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 33.0 | 0.0 | 0.0 | 16.0 | 0.0 | 196.0 | 0.0 | 22000.0 |
Park, H., Choi, H., Nam, K., Lee, S., Um, J. H., Kim, K., ... & Choe, H. (2017). Anode Design Based on Microscale Porous Scaffolds for Advanced Lithium Ion Batteries. Journal of Electronic Materials, 46(6), 3789-3795. | 2017 | 925 | 10.1007/s11664-017-5289-z | 4513 | metal | Ti, grade 4 | water | 100 | 0.0 | 0 | 0.0 | 29.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 63.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, D. S., Baek, C., Ma, H. J., & Kim, D. K. (2016). Enhanced dielectric permittivity of BaTiO 3/epoxy resin composites by particle alignment. Ceramics international, 42(6), 7141-7147. | 2016 | 258 | 10.1016/j.ceramint.2016.01.103 | 4571 | ceramic/polymer | BaTiO3-epoxy (impregnation) | water | 100 | 0.0 | 0 | 10.0 | 7.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, D. S., Baek, C., Ma, H. J., & Kim, D. K. (2016). Enhanced dielectric permittivity of BaTiO 3/epoxy resin composites by particle alignment. Ceramics international, 42(6), 7141-7147. | 2016 | 258 | 10.1016/j.ceramint.2016.01.103 | 4572 | ceramic/polymer | BaTiO3-epoxy (impregnation) | water | 100 | 0.0 | 0 | 20.0 | 7.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kim, D. S., Baek, C., Ma, H. J., & Kim, D. K. (2016). Enhanced dielectric permittivity of BaTiO 3/epoxy resin composites by particle alignment. Ceramics international, 42(6), 7141-7147. | 2016 | 258 | 10.1016/j.ceramint.2016.01.103 | 4573 | ceramic/polymer | BaTiO3-epoxy (impregnation) | water | 100 | 0.0 | 0 | 30.0 | 7.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Koh, Y. H., Sun, J. J., & Kim, H. E. (2007). Freeze casting of porous Ni?YSZ cermets. Materials Letters, 61(6), 1283-1287. | 2007 | 276 | 10.1016/j.matlet.2006.07.009 | 3206 | ceramic | ZrB2 | camphene | 100 | 0.0 | 0 | 20.0 | 63.0 | 50 | 0 | 0.1 | 0 | 2 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 17 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Koh, Y. H., Sun, J. J., & Kim, H. E. (2007). Freeze casting of porous Ni?YSZ cermets. Materials Letters, 61(6), 1283-1287. | 2007 | 276 | 10.1016/j.matlet.2006.07.009 | 3207 | ceramic | ZrB2 | camphene | 100 | 0.0 | 0 | 20.0 | 63.0 | 50 | 0 | 0.1 | 0 | 2 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Koh, Y. H., Sun, J. J., & Kim, H. E. (2007). Freeze casting of porous Ni?YSZ cermets. Materials Letters, 61(6), 1283-1287. | 2007 | 276 | 10.1016/j.matlet.2006.07.009 | 3208 | ceramic | ZrB2 | camphene | 100 | 0.0 | 0 | 20.0 | 63.0 | 50 | 0 | 0.1 | 0 | 2 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Koh, Y. H., Sun, J. J., & Kim, H. E. (2007). Freeze casting of porous Ni?YSZ cermets. Materials Letters, 61(6), 1283-1287. | 2007 | 276 | 10.1016/j.matlet.2006.07.009 | 3209 | ceramic | ZrB2 | camphene | 100 | 0.0 | 0 | 20.0 | 63.0 | 50 | 0 | 0.1 | 0 | 2 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Landi, E., Sciti, D., Melandri, C., & Medri, V. (2013). Ice templating of ZrB 2 porous architectures. Journal of the European Ceramic Society, 33(10), 1599-1607. | 2013 | 282 | 10.1016/j.jeurceramsoc.2013.01.037 | 3218 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 0.0 | 33.0 | 100 | 0 | 4.58 | 0 | 2 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 11 | 12 | lamellar | sintered | 57.0 | 290.0 | 120.0 | 170.0 | 0.0 | 18.4 | 0.0 | 0.0 |
Landi, E., Sciti, D., Melandri, C., & Medri, V. (2013). Ice templating of ZrB 2 porous architectures. Journal of the European Ceramic Society, 33(10), 1599-1607. | 2013 | 282 | 10.1016/j.jeurceramsoc.2013.01.037 | 3219 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 0.0 | 33.0 | 100 | 0 | 4.58 | 0 | 3 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 9 | 7 | lamellar | sintered | 48.0 | 110.0 | 45.0 | 65.0 | 0.0 | 23.5 | 0.0 | 0.0 |
Landi, E., Sciti, D., Melandri, C., & Medri, V. (2013). Ice templating of ZrB 2 porous architectures. Journal of the European Ceramic Society, 33(10), 1599-1607. | 2013 | 282 | 10.1016/j.jeurceramsoc.2013.01.037 | 3220 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 0.0 | 33.0 | 100 | 0 | 4.58 | 0 | 2 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 12 | 10 | lamellar | sintered | 57.0 | 95.0 | 35.0 | 60.0 | 0.0 | 59.7 | 0.0 | 0.0 |
Landi, E., Sciti, D., Melandri, C., & Medri, V. (2013). Ice templating of ZrB 2 porous architectures. Journal of the European Ceramic Society, 33(10), 1599-1607. | 2013 | 282 | 10.1016/j.jeurceramsoc.2013.01.037 | 3221 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 0.0 | 33.0 | 100 | 0 | 4.58 | 0 | 3 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 10 | 9 | lamellar | sintered | 48.0 | 47.5 | 25.0 | 22.5 | 0.0 | 67.8 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1317 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 0.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1318 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 0.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1319 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 0.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1320 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 0.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1321 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 0.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1322 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 0.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1323 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 0.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1324 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 0.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1325 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 0.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1326 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 0.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1327 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 0.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1328 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 0.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1329 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 0.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1330 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 0.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1331 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 0.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1332 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 0.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1333 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 0.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1334 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 0.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1335 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 0.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1336 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 0.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1337 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 0.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1338 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 0.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1339 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 0.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1340 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 0.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1341 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 40.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1342 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 40.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1343 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 40.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1344 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 40.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1345 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 40.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1346 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 40.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1347 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 40.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1348 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 40.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1349 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 40.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1350 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 40.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1351 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 40.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1352 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 40.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1353 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 40.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1354 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 40.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1355 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 40.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1356 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 40.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1357 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 40.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1358 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 40.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1359 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 40.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1360 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 40.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1361 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1362 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1363 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1364 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1365 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1366 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1367 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1368 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1369 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1370 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1371 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1372 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1373 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1374 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1375 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1376 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1377 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1378 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1379 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1380 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1381 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1382 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1383 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1384 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1385 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1386 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1387 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1388 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1389 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1390 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1411 | ceramic | ZrB2 | cyclohexane | 100 | 0.0 | 0 | 40.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1412 | ceramic | ZrB2 | cyclohexane | 100 | 0.0 | 0 | 40.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1413 | ceramic | ZrB2 | cyclohexane | 100 | 0.0 | 0 | 40.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1414 | ceramic | ZrB2 | cyclohexane | 100 | 0.0 | 0 | 40.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1415 | ceramic | ZrB2 | cyclohexane | 100 | 0.0 | 0 | 40.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1416 | ceramic | ZrB2 | cyclohexane | 100 | 0.0 | 0 | 40.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1417 | ceramic | ZrB2 | cyclohexane | 100 | 0.0 | 0 | 40.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1418 | ceramic | ZrB2 | cyclohexane | 100 | 0.0 | 0 | 40.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1419 | ceramic | ZrB2 | cyclohexane | 100 | 0.0 | 0 | 40.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1420 | ceramic | ZrB2 | cyclohexane | 100 | 0.0 | 0 | 40.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1421 | ceramic | ZrB2 | cyclohexane | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1422 | ceramic | ZrB2 | cyclohexane | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1423 | ceramic | ZrB2 | cyclohexane | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1424 | ceramic | ZrB2 | cyclohexane | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1425 | ceramic | ZrB2 | cyclohexane | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1426 | ceramic | ZrB2 | cyclohexane | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1427 | ceramic | ZrB2 | cyclohexane | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1428 | ceramic | ZrB2 | cyclohexane | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1429 | ceramic | ZrB2 | cyclohexane | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1430 | ceramic | ZrB2 | cyclohexane | 100 | 0.0 | 0 | 45.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1431 | ceramic | ZrB2 | cyclohexane | 100 | 0.0 | 0 | 50.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1432 | ceramic | ZrB2 | cyclohexane | 100 | 0.0 | 0 | 50.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1433 | ceramic | ZrB2 | cyclohexane | 100 | 0.0 | 0 | 50.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1434 | ceramic | ZrB2 | cyclohexane | 100 | 0.0 | 0 | 50.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1435 | ceramic | ZrB2 | cyclohexane | 100 | 0.0 | 0 | 50.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1436 | ceramic | ZrB2 | cyclohexane | 100 | 0.0 | 0 | 50.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1437 | ceramic | ZrB2 | cyclohexane | 100 | 0.0 | 0 | 50.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1438 | ceramic | ZrB2 | cyclohexane | 100 | 0.0 | 0 | 50.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1439 | ceramic | ZrB2 | cyclohexane | 100 | 0.0 | 0 | 50.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1440 | ceramic | ZrB2 | cyclohexane | 100 | 0.0 | 0 | 50.0 | 33.0 | 100 | powder | 2.3 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sani, E., Landi, E., Sciti, D., & Medri, V. (2016). Optical properties of ZrB 2 porous architectures. Solar Energy Materials and Solar Cells, 144, 608-615. | 2016 | 543 | 10.1016/j.solmat.2015.09.068 | 3039 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 8.0 | 33.0 | 0 | 0 | 0.0 | 0 | 2 | 0 | 233.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 57.0 | 19.0 | 13.0 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sani, E., Landi, E., Sciti, D., & Medri, V. (2016). Optical properties of ZrB 2 porous architectures. Solar Energy Materials and Solar Cells, 144, 608-615. | 2016 | 543 | 10.1016/j.solmat.2015.09.068 | 3040 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 11.0 | 33.0 | 100 | 0 | 0.0 | 0 | 3 | 0 | 233.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 49.2 | 45.0 | 25.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sani, E., Landi, E., Sciti, D., & Medri, V. (2016). Optical properties of ZrB 2 porous architectures. Solar Energy Materials and Solar Cells, 144, 608-615. | 2016 | 543 | 10.1016/j.solmat.2015.09.068 | 3041 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 11.0 | 33.0 | 100 | 0 | 0.0 | 0 | 3 | 0 | 233.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 48.9 | 95.0 | 45.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sani, E., Landi, E., Sciti, D., & Medri, V. (2016). Optical properties of ZrB 2 porous architectures. Solar Energy Materials and Solar Cells, 144, 608-615. | 2016 | 543 | 10.1016/j.solmat.2015.09.068 | 3042 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 9.0 | 33.0 | 0 | 0 | 0.0 | 0 | 5 | 0 | 233.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 48.2 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sani, E., Landi, E., Sciti, D., & Medri, V. (2016). Optical properties of ZrB 2 porous architectures. Solar Energy Materials and Solar Cells, 144, 608-615. | 2016 | 543 | 10.1016/j.solmat.2015.09.068 | 3043 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 13.0 | 33.0 | 0 | 0 | 0.0 | 0 | 5 | 0 | 233.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 38.7 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sani, E., Landi, E., Sciti, D., & Medri, V. (2016). Optical properties of ZrB 2 porous architectures. Solar Energy Materials and Solar Cells, 144, 608-615. | 2016 | 543 | 10.1016/j.solmat.2015.09.068 | 3044 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 13.0 | 33.0 | 0 | 0 | 0.0 | 0 | 5 | 0 | 233.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 38.3 | 0.0 | 35.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sani, E., Landi, E., Sciti, D., & Medri, V. (2016). Optical properties of ZrB 2 porous architectures. Solar Energy Materials and Solar Cells, 144, 608-615. | 2016 | 543 | 10.1016/j.solmat.2015.09.068 | 3045 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 13.0 | 33.0 | 0 | 0 | 0.0 | 0 | 3 | 0 | 233.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 38.5 | 290.0 | 40.0 | 250.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sani, E., Landi, E., Sciti, D., & Medri, V. (2016). Optical properties of ZrB 2 porous architectures. Solar Energy Materials and Solar Cells, 144, 608-615. | 2016 | 543 | 10.1016/j.solmat.2015.09.068 | 3046 | ceramic | ZrB2 | water | 100 | 0.0 | 0 | 13.0 | 33.0 | 0 | 0 | 0.0 | 0 | 5 | 0 | 233.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 40.7 | 215.0 | 40.0 | 175.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Koh, Y. H., Sun, J. J., & Kim, H. E. (2007). Freeze casting of porous Ni?YSZ cermets. Materials Letters, 61(6), 1283-1287. | 2007 | 276 | 10.1016/j.matlet.2006.07.009 | 3210 | metal/ceramic | Ni-YSZ (mixed) | camphene | 100 | 0.0 | 0 | 20.0 | 63.0 | 50 | 0 | 0.1 | 0 | 2 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Kuang, J., Dai, Z., Liu, L., Yang, Z., Jin, M., & Zhang, Z. (2015). Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors. Nanoscale, 7(20), 9252-9260. | 2015 | 279 | 10.1039/c5nr00841g | 4759 | carbon | CNT-graphene (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Larrea, A., & Orera, V. M. (2007). Porous crystal structures obtained from directionally solidified eutectic precursors. Journal of crystal growth, 300(2), 387-393. | 2007 | 284 | 10.1016/j.jcrysgro.2006.12.060 | 5298 | ceramic | BaF2 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Larrea, A., & Orera, V. M. (2007). Porous crystal structures obtained from directionally solidified eutectic precursors. Journal of crystal growth, 300(2), 387-393. | 2007 | 284 | 10.1016/j.jcrysgro.2006.12.060 | 5299 | ceramic | BaF2 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Larrea, A., & Orera, V. M. (2007). Porous crystal structures obtained from directionally solidified eutectic precursors. Journal of crystal growth, 300(2), 387-393. | 2007 | 284 | 10.1016/j.jcrysgro.2006.12.060 | 5300 | ceramic | BaF2 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.75 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Larrea, A., & Orera, V. M. (2007). Porous crystal structures obtained from directionally solidified eutectic precursors. Journal of crystal growth, 300(2), 387-393. | 2007 | 284 | 10.1016/j.jcrysgro.2006.12.060 | 5301 | ceramic | BaF2 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 1.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Larrea, A., & Orera, V. M. (2007). Porous crystal structures obtained from directionally solidified eutectic precursors. Journal of crystal growth, 300(2), 387-393. | 2007 | 284 | 10.1016/j.jcrysgro.2006.12.060 | 5302 | ceramic | BaF2 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Larrea, A., & Orera, V. M. (2007). Porous crystal structures obtained from directionally solidified eutectic precursors. Journal of crystal growth, 300(2), 387-393. | 2007 | 284 | 10.1016/j.jcrysgro.2006.12.060 | 5303 | ceramic | BaF2 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Larrea, A., & Orera, V. M. (2007). Porous crystal structures obtained from directionally solidified eutectic precursors. Journal of crystal growth, 300(2), 387-393. | 2007 | 284 | 10.1016/j.jcrysgro.2006.12.060 | 5304 | ceramic | CaF2 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Larrea, A., & Orera, V. M. (2007). Porous crystal structures obtained from directionally solidified eutectic precursors. Journal of crystal growth, 300(2), 387-393. | 2007 | 284 | 10.1016/j.jcrysgro.2006.12.060 | 5305 | ceramic | CaF2 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Larrea, A., & Orera, V. M. (2007). Porous crystal structures obtained from directionally solidified eutectic precursors. Journal of crystal growth, 300(2), 387-393. | 2007 | 284 | 10.1016/j.jcrysgro.2006.12.060 | 5306 | ceramic | CaF2 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Larrea, A., & Orera, V. M. (2007). Porous crystal structures obtained from directionally solidified eutectic precursors. Journal of crystal growth, 300(2), 387-393. | 2007 | 284 | 10.1016/j.jcrysgro.2006.12.060 | 5307 | ceramic | CaF2 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Larrea, A., & Orera, V. M. (2007). Porous crystal structures obtained from directionally solidified eutectic precursors. Journal of crystal growth, 300(2), 387-393. | 2007 | 284 | 10.1016/j.jcrysgro.2006.12.060 | 5308 | ceramic | CaF2 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Larrea, A., & Orera, V. M. (2007). Porous crystal structures obtained from directionally solidified eutectic precursors. Journal of crystal growth, 300(2), 387-393. | 2007 | 284 | 10.1016/j.jcrysgro.2006.12.060 | 5309 | ceramic | CaF2 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Larrea, A., & Orera, V. M. (2007). Porous crystal structures obtained from directionally solidified eutectic precursors. Journal of crystal growth, 300(2), 387-393. | 2007 | 284 | 10.1016/j.jcrysgro.2006.12.060 | 5310 | ceramic | MgF2 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Larrea, A., & Orera, V. M. (2007). Porous crystal structures obtained from directionally solidified eutectic precursors. Journal of crystal growth, 300(2), 387-393. | 2007 | 284 | 10.1016/j.jcrysgro.2006.12.060 | 5311 | ceramic | MgF2 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Larrea, A., & Orera, V. M. (2007). Porous crystal structures obtained from directionally solidified eutectic precursors. Journal of crystal growth, 300(2), 387-393. | 2007 | 284 | 10.1016/j.jcrysgro.2006.12.060 | 5312 | ceramic | MgF2 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Larrea, A., & Orera, V. M. (2007). Porous crystal structures obtained from directionally solidified eutectic precursors. Journal of crystal growth, 300(2), 387-393. | 2007 | 284 | 10.1016/j.jcrysgro.2006.12.060 | 5313 | ceramic | MgF2 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Larrea, A., & Orera, V. M. (2007). Porous crystal structures obtained from directionally solidified eutectic precursors. Journal of crystal growth, 300(2), 387-393. | 2007 | 284 | 10.1016/j.jcrysgro.2006.12.060 | 5314 | ceramic | MgF2 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Larrea, A., & Orera, V. M. (2007). Porous crystal structures obtained from directionally solidified eutectic precursors. Journal of crystal growth, 300(2), 387-393. | 2007 | 284 | 10.1016/j.jcrysgro.2006.12.060 | 5315 | ceramic | MgF2 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Launey, M. E., Munch, E., Alsem, D. H., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2010). A novel biomimetic approach to the design of high-performance ceramic?metal composites. Journal of the Royal Society Interface, 7(46), 741-753. | 2010 | 288 | 10.1098/rsif.2009.0331 | 4468 | metal/ceramic | Al2O3-Al-12.6wt.%Si (infiltrated) | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 352.0 | 0.0 |
Launey, M. E., Munch, E., Alsem, D. H., Saiz, E., Tomsia, A. P., & Ritchie, R. O. (2010). A novel biomimetic approach to the design of high-performance ceramic?metal composites. Journal of the Royal Society Interface, 7(46), 741-753. | 2010 | 288 | 10.1098/rsif.2009.0331 | 4469 | metal/ceramic | Al2O3-Al-12.6wt.%Si (infiltrated) | water | 100 | 0.0 | 0 | 20.0 | 1.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 328.0 | 0.0 |
Lecomte-Nana, G., Mokrani, A., Tessier-Doyen, N., Boussois, K., & Goure-Doubi, H. (2013). Texturation of model clay materials using tape casting and freezing. Ceramics International, 39(8), 9047-9053. | 2013 | 292 | 10.1016/j.ceramint.2013.04.108 | 4760 | ceramic | kaolin | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, P., Pu, Y., Dong, Z., & Gao, P. (2014). Kaolinite as a Suspending Agent for Preparation of Porous BaTiO3 Ceramics via Freeze Casting. Journal of electronic materials, 43(2), 459. | 2014 | 314 | 10.1007/s11664-013-2827-1 | 3394 | ceramic | kaolin | water | 100 | 0.0 | 0 | 11.0 | 12.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, P., Pu, Y., Dong, Z., & Gao, P. (2014). Kaolinite as a Suspending Agent for Preparation of Porous BaTiO3 Ceramics via Freeze Casting. Journal of electronic materials, 43(2), 459. | 2014 | 314 | 10.1007/s11664-013-2827-1 | 3395 | ceramic | kaolin | water | 100 | 0.0 | 0 | 11.0 | 12.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, P., Pu, Y., Dong, Z., & Gao, P. (2014). Kaolinite as a Suspending Agent for Preparation of Porous BaTiO3 Ceramics via Freeze Casting. Journal of electronic materials, 43(2), 459. | 2014 | 314 | 10.1007/s11664-013-2827-1 | 3396 | ceramic | kaolin | water | 100 | 0.0 | 0 | 11.0 | 12.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, P., Pu, Y., Dong, Z., & Gao, P. (2014). Kaolinite as a Suspending Agent for Preparation of Porous BaTiO3 Ceramics via Freeze Casting. Journal of electronic materials, 43(2), 459. | 2014 | 314 | 10.1007/s11664-013-2827-1 | 3397 | ceramic | kaolin | water | 100 | 0.0 | 0 | 11.0 | 12.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 68.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, P., Pu, Y., Dong, Z., & Gao, P. (2014). Kaolinite as a Suspending Agent for Preparation of Porous BaTiO3 Ceramics via Freeze Casting. Journal of electronic materials, 43(2), 459. | 2014 | 314 | 10.1007/s11664-013-2827-1 | 3398 | ceramic | kaolin | water | 100 | 0.0 | 0 | 11.0 | 12.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 74.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, P., Pu, Y., Dong, Z., & Gao, P. (2014). Kaolinite as a Suspending Agent for Preparation of Porous BaTiO3 Ceramics via Freeze Casting. Journal of electronic materials, 43(2), 459. | 2014 | 314 | 10.1007/s11664-013-2827-1 | 3399 | ceramic | kaolin | water | 100 | 0.0 | 0 | 11.0 | 12.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 67.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, P., Pu, Y., Dong, Z., & Gao, P. (2014). Kaolinite as a Suspending Agent for Preparation of Porous BaTiO3 Ceramics via Freeze Casting. Journal of electronic materials, 43(2), 459. | 2014 | 314 | 10.1007/s11664-013-2827-1 | 3400 | ceramic | kaolin | water | 100 | 0.0 | 0 | 11.0 | 12.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 64.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, P., Pu, Y., Dong, Z., & Gao, P. (2014). Kaolinite as a Suspending Agent for Preparation of Porous BaTiO3 Ceramics via Freeze Casting. Journal of electronic materials, 43(2), 459. | 2014 | 314 | 10.1007/s11664-013-2827-1 | 3401 | ceramic | kaolin | water | 100 | 0.0 | 0 | 11.0 | 12.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 63.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Fabrication of porous nanocomposites with controllable specific surface area and strength via suspension infiltration. Langmuir, 28(47), 16423-16429. | 2012 | 316 | 0 | 3412 | ceramic | kaolin | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Fabrication of porous nanocomposites with controllable specific surface area and strength via suspension infiltration. Langmuir, 28(47), 16423-16429. | 2012 | 316 | 0 | 3413 | ceramic | kaolin | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Fabrication of porous nanocomposites with controllable specific surface area and strength via suspension infiltration. Langmuir, 28(47), 16423-16429. | 2012 | 316 | 0 | 3414 | ceramic | kaolin | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Fabrication of porous nanocomposites with controllable specific surface area and strength via suspension infiltration. Langmuir, 28(47), 16423-16429. | 2012 | 316 | 0 | 3415 | ceramic | kaolin | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 6.8 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Fabrication of porous nanocomposites with controllable specific surface area and strength via suspension infiltration. Langmuir, 28(47), 16423-16429. | 2012 | 316 | 0 | 3416 | ceramic | kaolin | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 7.1 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Fabrication of porous nanocomposites with controllable specific surface area and strength via suspension infiltration. Langmuir, 28(47), 16423-16429. | 2012 | 316 | 0 | 3417 | ceramic | kaolin | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Fabrication of porous nanocomposites with controllable specific surface area and strength via suspension infiltration. Langmuir, 28(47), 16423-16429. | 2012 | 316 | 0 | 5911 | ceramic | kaolin | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 100 | powder | 0.02 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Fabrication of porous nanocomposites with controllable specific surface area and strength via suspension infiltration. Langmuir, 28(47), 16423-16429. | 2012 | 316 | 0 | 5912 | ceramic | kaolin | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 100 | powder | 0.02 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 5.5 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Fabrication of porous nanocomposites with controllable specific surface area and strength via suspension infiltration. Langmuir, 28(47), 16423-16429. | 2012 | 316 | 0 | 5913 | ceramic | kaolin | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 100 | powder | 0.02 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 6.6 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Fabrication of porous nanocomposites with controllable specific surface area and strength via suspension infiltration. Langmuir, 28(47), 16423-16429. | 2012 | 316 | 0 | 5914 | ceramic | kaolin | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 100 | powder | 0.02 | 0 | 0 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 6.8 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2011). Formation, Structure and Properties of Freeze?Cast Kaolinite?Silica Nanocomposites. Journal of the American Ceramic Society, 94(4), 1256-1264. | 2011 | 317 | 10.1111/j.1551-2916.2010.04212.x | 3418 | ceramic | kaolin | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 100 | 0 | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.04 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2011). Formation, Structure and Properties of Freeze?Cast Kaolinite?Silica Nanocomposites. Journal of the American Ceramic Society, 94(4), 1256-1264. | 2011 | 317 | 10.1111/j.1551-2916.2010.04212.x | 3419 | ceramic | kaolin | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 66 | 0 | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.12 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2011). Formation, Structure and Properties of Freeze?Cast Kaolinite?Silica Nanocomposites. Journal of the American Ceramic Society, 94(4), 1256-1264. | 2011 | 317 | 10.1111/j.1551-2916.2010.04212.x | 3420 | ceramic | kaolin | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 44 | 0 | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2011). Formation, Structure and Properties of Freeze?Cast Kaolinite?Silica Nanocomposites. Journal of the American Ceramic Society, 94(4), 1256-1264. | 2011 | 317 | 10.1111/j.1551-2916.2010.04212.x | 3421 | ceramic | kaolin | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 22 | 0 | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.35 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2011). Formation, Structure and Properties of Freeze?Cast Kaolinite?Silica Nanocomposites. Journal of the American Ceramic Society, 94(4), 1256-1264. | 2011 | 317 | 10.1111/j.1551-2916.2010.04212.x | 3422 | ceramic | kaolin | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 100 | 0 | 0.02 | 0 | 0 | 0 | 238.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2011). Formation, Structure and Properties of Freeze?Cast Kaolinite?Silica Nanocomposites. Journal of the American Ceramic Society, 94(4), 1256-1264. | 2011 | 317 | 10.1111/j.1551-2916.2010.04212.x | 3423 | ceramic | kaolin | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 66 | 0 | 0.02 | 0 | 0 | 0 | 238.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2011). Formation, Structure and Properties of Freeze?Cast Kaolinite?Silica Nanocomposites. Journal of the American Ceramic Society, 94(4), 1256-1264. | 2011 | 317 | 10.1111/j.1551-2916.2010.04212.x | 3424 | ceramic | kaolin | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 44 | 0 | 0.02 | 0 | 0 | 0 | 238.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2011). Formation, Structure and Properties of Freeze?Cast Kaolinite?Silica Nanocomposites. Journal of the American Ceramic Society, 94(4), 1256-1264. | 2011 | 317 | 10.1111/j.1551-2916.2010.04212.x | 3425 | ceramic | kaolin | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 22 | 0 | 0.02 | 0 | 0 | 0 | 238.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2011). Formation, Structure and Properties of Freeze?Cast Kaolinite?Silica Nanocomposites. Journal of the American Ceramic Society, 94(4), 1256-1264. | 2011 | 317 | 10.1111/j.1551-2916.2010.04212.x | 3426 | ceramic | kaolin | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 100 | 0 | 0.02 | 0 | 0 | 0 | 238.0 | 0.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2011). Formation, Structure and Properties of Freeze?Cast Kaolinite?Silica Nanocomposites. Journal of the American Ceramic Society, 94(4), 1256-1264. | 2011 | 317 | 10.1111/j.1551-2916.2010.04212.x | 3427 | ceramic | kaolin | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 66 | 0 | 0.02 | 0 | 0 | 0 | 238.0 | 0.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.22 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2011). Formation, Structure and Properties of Freeze?Cast Kaolinite?Silica Nanocomposites. Journal of the American Ceramic Society, 94(4), 1256-1264. | 2011 | 317 | 10.1111/j.1551-2916.2010.04212.x | 3428 | ceramic | kaolin | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 44 | 0 | 0.02 | 0 | 0 | 0 | 238.0 | 0.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.23 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2011). Formation, Structure and Properties of Freeze?Cast Kaolinite?Silica Nanocomposites. Journal of the American Ceramic Society, 94(4), 1256-1264. | 2011 | 317 | 10.1111/j.1551-2916.2010.04212.x | 3429 | ceramic | kaolin | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 22 | 0 | 0.02 | 0 | 0 | 0 | 238.0 | 0.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.37 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2011). Formation, Structure and Properties of Freeze?Cast Kaolinite?Silica Nanocomposites. Journal of the American Ceramic Society, 94(4), 1256-1264. | 2011 | 317 | 10.1111/j.1551-2916.2010.04212.x | 3430 | ceramic | kaolin | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 11 | 0 | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.15 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2011). Formation, Structure and Properties of Freeze?Cast Kaolinite?Silica Nanocomposites. Journal of the American Ceramic Society, 94(4), 1256-1264. | 2011 | 317 | 10.1111/j.1551-2916.2010.04212.x | 3431 | ceramic | kaolin | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 0 | 0 | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.05 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Effects of added kaolinite on the strength and porosity of freeze-cast kaolinite?silica nanocomposites. Journal of Materials Science, 47(19), 6882-6890. | 2012 | 319 | 10.1007/s10853-012-6631-8 | 3432 | ceramic | kaolin | water | 100 | 0.0 | 0 | 16.28 | 25.0 | 100 | powder | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Effects of added kaolinite on the strength and porosity of freeze-cast kaolinite?silica nanocomposites. Journal of Materials Science, 47(19), 6882-6890. | 2012 | 319 | 10.1007/s10853-012-6631-8 | 3433 | ceramic | kaolin | water | 100 | 0.0 | 0 | 16.28 | 25.0 | 93 | powder | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Effects of added kaolinite on the strength and porosity of freeze-cast kaolinite?silica nanocomposites. Journal of Materials Science, 47(19), 6882-6890. | 2012 | 319 | 10.1007/s10853-012-6631-8 | 3434 | ceramic | kaolin | water | 100 | 0.0 | 0 | 16.28 | 25.0 | 89 | powder | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Effects of added kaolinite on the strength and porosity of freeze-cast kaolinite?silica nanocomposites. Journal of Materials Science, 47(19), 6882-6890. | 2012 | 319 | 10.1007/s10853-012-6631-8 | 3435 | ceramic | kaolin | water | 100 | 0.0 | 0 | 16.28 | 25.0 | 86 | powder | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Effects of added kaolinite on the strength and porosity of freeze-cast kaolinite?silica nanocomposites. Journal of Materials Science, 47(19), 6882-6890. | 2012 | 319 | 10.1007/s10853-012-6631-8 | 3436 | ceramic | kaolin | water | 100 | 0.0 | 0 | 16.28 | 25.0 | 81 | powder | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Effects of added kaolinite on the strength and porosity of freeze-cast kaolinite?silica nanocomposites. Journal of Materials Science, 47(19), 6882-6890. | 2012 | 319 | 10.1007/s10853-012-6631-8 | 3437 | ceramic | kaolin | water | 100 | 0.0 | 0 | 16.28 | 25.0 | 100 | powder | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 79.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Effects of added kaolinite on the strength and porosity of freeze-cast kaolinite?silica nanocomposites. Journal of Materials Science, 47(19), 6882-6890. | 2012 | 319 | 10.1007/s10853-012-6631-8 | 3438 | ceramic | kaolin | water | 100 | 0.0 | 0 | 16.28 | 25.0 | 93 | powder | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Effects of added kaolinite on the strength and porosity of freeze-cast kaolinite?silica nanocomposites. Journal of Materials Science, 47(19), 6882-6890. | 2012 | 319 | 10.1007/s10853-012-6631-8 | 3439 | ceramic | kaolin | water | 100 | 0.0 | 0 | 16.28 | 25.0 | 89 | powder | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 78.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Effects of added kaolinite on the strength and porosity of freeze-cast kaolinite?silica nanocomposites. Journal of Materials Science, 47(19), 6882-6890. | 2012 | 319 | 10.1007/s10853-012-6631-8 | 3440 | ceramic | kaolin | water | 100 | 0.0 | 0 | 16.28 | 25.0 | 86 | powder | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 79.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Effects of added kaolinite on the strength and porosity of freeze-cast kaolinite?silica nanocomposites. Journal of Materials Science, 47(19), 6882-6890. | 2012 | 319 | 10.1007/s10853-012-6631-8 | 3441 | ceramic | kaolin | water | 100 | 0.0 | 0 | 16.28 | 25.0 | 81 | powder | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Effects of added kaolinite on the strength and porosity of freeze-cast kaolinite?silica nanocomposites. Journal of Materials Science, 47(19), 6882-6890. | 2012 | 319 | 10.1007/s10853-012-6631-8 | 3442 | ceramic | kaolin | water | 100 | 0.0 | 0 | 16.28 | 25.0 | 100 | powder | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 79.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Effects of added kaolinite on the strength and porosity of freeze-cast kaolinite?silica nanocomposites. Journal of Materials Science, 47(19), 6882-6890. | 2012 | 319 | 10.1007/s10853-012-6631-8 | 3443 | ceramic | kaolin | water | 100 | 0.0 | 0 | 16.28 | 25.0 | 93 | powder | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 64.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Effects of added kaolinite on the strength and porosity of freeze-cast kaolinite?silica nanocomposites. Journal of Materials Science, 47(19), 6882-6890. | 2012 | 319 | 10.1007/s10853-012-6631-8 | 3444 | ceramic | kaolin | water | 100 | 0.0 | 0 | 16.28 | 25.0 | 89 | powder | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Effects of added kaolinite on the strength and porosity of freeze-cast kaolinite?silica nanocomposites. Journal of Materials Science, 47(19), 6882-6890. | 2012 | 319 | 10.1007/s10853-012-6631-8 | 3445 | ceramic | kaolin | water | 100 | 0.0 | 0 | 16.28 | 25.0 | 86 | powder | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 71.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Effects of added kaolinite on the strength and porosity of freeze-cast kaolinite?silica nanocomposites. Journal of Materials Science, 47(19), 6882-6890. | 2012 | 319 | 10.1007/s10853-012-6631-8 | 3446 | ceramic | kaolin | water | 100 | 0.0 | 0 | 16.28 | 25.0 | 81 | powder | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 74.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Kim, W. Y., Yoon, S. Y., & Park, H. C. (2010). Macroporous silicate ceramics prepared by freeze casting combined with polymer sponge method. Journal of Physics and Chemistry of Solids, 71(4), 436-439. | 2010 | 713 | 10.1016/j.jpcs.2009.10.017 | 2641 | ceramic | kaolin | water | 100 | 0.0 | 0 | 20.0 | 50.0 | 100 | 0 | 0.0 | 0 | 1 | 20 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Kim, W. Y., Yoon, S. Y., & Park, H. C. (2010). Macroporous silicate ceramics prepared by freeze casting combined with polymer sponge method. Journal of Physics and Chemistry of Solids, 71(4), 436-439. | 2010 | 713 | 10.1016/j.jpcs.2009.10.017 | 2642 | ceramic | kaolin | water | 100 | 0.0 | 0 | 25.0 | 50.0 | 100 | 0 | 0.0 | 0 | 1 | 20 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Kim, W. Y., Yoon, S. Y., & Park, H. C. (2010). Macroporous silicate ceramics prepared by freeze casting combined with polymer sponge method. Journal of Physics and Chemistry of Solids, 71(4), 436-439. | 2010 | 713 | 10.1016/j.jpcs.2009.10.017 | 2643 | ceramic | kaolin | water | 100 | 0.0 | 0 | 30.0 | 50.0 | 100 | 0 | 0.0 | 0 | 1 | 20 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 13.0 | 8.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Kim, W. Y., Yoon, S. Y., & Park, H. C. (2010). Macroporous silicate ceramics prepared by freeze casting combined with polymer sponge method. Journal of Physics and Chemistry of Solids, 71(4), 436-439. | 2010 | 713 | 10.1016/j.jpcs.2009.10.017 | 2644 | ceramic | kaolin | water | 100 | 0.0 | 0 | 20.0 | 50.0 | 100 | 0 | 0.0 | 0 | 1 | 20 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Kim, W. Y., Yoon, S. Y., & Park, H. C. (2010). Macroporous silicate ceramics prepared by freeze casting combined with polymer sponge method. Journal of Physics and Chemistry of Solids, 71(4), 436-439. | 2010 | 713 | 10.1016/j.jpcs.2009.10.017 | 2645 | ceramic | kaolin | water | 100 | 0.0 | 0 | 25.0 | 50.0 | 100 | 0 | 0.0 | 0 | 1 | 20 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Kim, W. Y., Yoon, S. Y., & Park, H. C. (2010). Macroporous silicate ceramics prepared by freeze casting combined with polymer sponge method. Journal of Physics and Chemistry of Solids, 71(4), 436-439. | 2010 | 713 | 10.1016/j.jpcs.2009.10.017 | 2646 | ceramic | kaolin | water | 100 | 0.0 | 0 | 30.0 | 50.0 | 100 | 0 | 0.0 | 0 | 1 | 20 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Kim, W. Y., Yoon, S. Y., & Park, H. C. (2010). Macroporous silicate ceramics prepared by freeze casting combined with polymer sponge method. Journal of Physics and Chemistry of Solids, 71(4), 436-439. | 2010 | 713 | 10.1016/j.jpcs.2009.10.017 | 2647 | ceramic | kaolin | water | 100 | 0.0 | 0 | 20.0 | 50.0 | 100 | 0 | 0.0 | 0 | 1 | 20 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Kim, W. Y., Yoon, S. Y., & Park, H. C. (2010). Macroporous silicate ceramics prepared by freeze casting combined with polymer sponge method. Journal of Physics and Chemistry of Solids, 71(4), 436-439. | 2010 | 713 | 10.1016/j.jpcs.2009.10.017 | 2648 | ceramic | kaolin | water | 100 | 0.0 | 0 | 25.0 | 50.0 | 100 | 0 | 0.0 | 0 | 1 | 20 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 300.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Kim, W. Y., Yoon, S. Y., & Park, H. C. (2010). Macroporous silicate ceramics prepared by freeze casting combined with polymer sponge method. Journal of Physics and Chemistry of Solids, 71(4), 436-439. | 2010 | 713 | 10.1016/j.jpcs.2009.10.017 | 2649 | ceramic | kaolin | water | 100 | 0.0 | 0 | 30.0 | 50.0 | 100 | 0 | 0.0 | 0 | 1 | 20 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Kim, W. Y., Yoon, S. Y., & Park, H. C. (2010). Macroporous silicate ceramics prepared by freeze casting combined with polymer sponge method. Journal of Physics and Chemistry of Solids, 71(4), 436-439. | 2010 | 713 | 10.1016/j.jpcs.2009.10.017 | 2650 | ceramic | kaolin | water | 100 | 0.0 | 0 | 20.0 | 50.0 | 100 | 0 | 0.0 | 0 | 1 | 20 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 650.0 | 500.0 | 150.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lecomte-Nana, G., Mokrani, A., Tessier-Doyen, N., Boussois, K., & Goure-Doubi, H. (2013). Texturation of model clay materials using tape casting and freezing. Ceramics International, 39(8), 9047-9053. | 2013 | 292 | 10.1016/j.ceramint.2013.04.108 | 4761 | ceramic | Kaolin-5wt.% Montmorillonite (mixed) | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lecomte-Nana, G., Mokrani, A., Tessier-Doyen, N., Boussois, K., & Goure-Doubi, H. (2013). Texturation of model clay materials using tape casting and freezing. Ceramics International, 39(8), 9047-9053. | 2013 | 292 | 10.1016/j.ceramint.2013.04.108 | 4762 | ceramic | Kaolin-10wt.% Montmorillonite (mixed) | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lecomte-Nana, G., Mokrani, A., Tessier-Doyen, N., Boussois, K., & Goure-Doubi, H. (2013). Texturation of model clay materials using tape casting and freezing. Ceramics International, 39(8), 9047-9053. | 2013 | 292 | 10.1016/j.ceramint.2013.04.108 | 4763 | ceramic | Kaolin-20wt.% Montmorillonite (mixed) | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lecomte-Nana, G., Mokrani, A., Tessier-Doyen, N., Boussois, K., & Goure-Doubi, H. (2013). Texturation of model clay materials using tape casting and freezing. Ceramics International, 39(8), 9047-9053. | 2013 | 292 | 10.1016/j.ceramint.2013.04.108 | 4764 | ceramic | Kaolin-50wt.% Montmorillonite (mixed) | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Swain, S. K. (2009). Processing of porous hydroxyapatite scaffold (Doctoral dissertation). | 2013 | 297 | 10.11113/jt.v77.6751 | 3332 | ceramic | CaP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | 0 | 0.9 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 84.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.5 | 0.0 | 0.0 |
Swain, S. K. (2009). Processing of porous hydroxyapatite scaffold (Doctoral dissertation). | 2013 | 297 | 10.11113/jt.v77.6751 | 3333 | ceramic | CaP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 94 | 0 | 0.9 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 79.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.1 | 0.0 | 0.0 |
Swain, S. K. (2009). Processing of porous hydroxyapatite scaffold (Doctoral dissertation). | 2013 | 297 | 10.11113/jt.v77.6751 | 3334 | ceramic | CaP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 89 | 0 | 0.9 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 75.0 | 370.0 | 290.0 | 80.0 | 0.0 | 2.4 | 0.0 | 0.0 |
Swain, S. K. (2009). Processing of porous hydroxyapatite scaffold (Doctoral dissertation). | 2013 | 297 | 10.11113/jt.v77.6751 | 3335 | ceramic | CaP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | 0 | 0.9 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.5 | 0.0 | 0.0 |
Swain, S. K. (2009). Processing of porous hydroxyapatite scaffold (Doctoral dissertation). | 2013 | 297 | 10.11113/jt.v77.6751 | 3336 | ceramic | CaP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 94 | 0 | 0.9 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 72.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.1 | 0.0 | 0.0 |
Swain, S. K. (2009). Processing of porous hydroxyapatite scaffold (Doctoral dissertation). | 2013 | 297 | 10.11113/jt.v77.6751 | 3337 | ceramic | CaP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 89 | 0 | 0.9 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 69.0 | 355.0 | 260.0 | 95.0 | 0.0 | 3.5 | 0.0 | 0.0 |
Swain, S. K. (2009). Processing of porous hydroxyapatite scaffold (Doctoral dissertation). | 2013 | 297 | 10.11113/jt.v77.6751 | 3338 | ceramic | CaP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 100 | 0 | 0.9 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 68.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.4 | 0.0 | 0.0 |
Swain, S. K. (2009). Processing of porous hydroxyapatite scaffold (Doctoral dissertation). | 2013 | 297 | 10.11113/jt.v77.6751 | 3339 | ceramic | CaP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 94 | 0 | 0.9 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.8 | 0.0 | 0.0 |
Swain, S. K. (2009). Processing of porous hydroxyapatite scaffold (Doctoral dissertation). | 2013 | 297 | 10.11113/jt.v77.6751 | 3340 | ceramic | CaP | TBA | 100 | 0.0 | 0 | 10.0 | 18.0 | 89 | 0 | 0.9 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 60.0 | 320.0 | 220.0 | 100.0 | 0.0 | 4.2 | 0.0 | 0.0 |
Qi, X., He, F., & Ye, J. (2012). Microstructure and mechanical properties of calcium phosphate cement/gelatine composite scaffold with oriented pore structure for bone tissue engineering. Journal of Wuhan University of Technology--Materials Science Edition, 27(1), 92-95. | 2012 | 503 | 10.1007/s11595-012-0414-6 | 4693 | ceramic | CaP | water | 100 | 0.0 | 0 | 0.0 | 13.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 198.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 87.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.1 |
Qi, X., Ye, J., & Wang, Y. (2009). Alginate/poly (lactic?co?glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering. Journal of Biomedical Materials Research Part A, 89(4), 980-987. | 2009 | 504 | 10.1002/jbm.a.32054 | 4657 | ceramic | CaP | water | 100 | 0.0 | 0 | 15.0 | 0.0 | 0 | 0 | 0.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 89.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.42 | 0.0 | 0.0 |
Qi, X., Ye, J., & Wang, Y. (2009). Alginate/poly (lactic?co?glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering. Journal of Biomedical Materials Research Part A, 89(4), 980-987. | 2009 | 504 | 10.1002/jbm.a.32054 | 4658 | ceramic | CaP | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 85.0 | 0.0 | 150.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
Qi, X., Ye, J., & Wang, Y. (2009). Alginate/poly (lactic?co?glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering. Journal of Biomedical Materials Research Part A, 89(4), 980-987. | 2009 | 504 | 10.1002/jbm.a.32054 | 4659 | ceramic | CaP | water | 100 | 0.0 | 0 | 25.0 | 0.0 | 0 | 0 | 0.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 79.0 | 0.0 | 100.0 | 0.0 | 0.0 | 1.47 | 0.0 | 0.0 |
Qi, X., Ye, J., & Wang, Y. (2009). Alginate/poly (lactic?co?glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering. Journal of Biomedical Materials Research Part A, 89(4), 980-987. | 2009 | 504 | 10.1002/jbm.a.32054 | 4660 | ceramic | CaP | water | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 72.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.75 | 0.0 | 0.0 |
Soon, Y. M., Shin, K. H., Koh, Y. H., Lee, J. H., & Kim, H. E. (2009). Compressive strength and processing of camphene-based freeze cast calcium phosphate scaffolds with aligned pores. Materials Letters, 63(17), 1548-1550. | 2009 | 587 | 10.1016/j.matlet.2009.04.013 | 2864 | ceramic | CaP | camphene | 100 | 0.0 | 0 | 20.0 | 13.0 | 0 | 0 | 0.0 | 0 | 2 | 0 | 305.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 62.0 | 0.0 | 125.0 | 0.0 | 0.0 | 9.0 | 0.0 | 0.0 |
Yoon, H. J., Kim, U. C., Kim, J. H., Koh, Y. H., Choi, W. Y., & Kim, H. E. (2011). Fabrication and characterization of highly porous calcium phosphate (CaP) ceramics by freezing foamed aqueous CaP suspensions. Journal of the Ceramic Society of Japan, 119(1391), 573-576. | 2011 | 730 | 0 | 2086 | ceramic | CaP | water | 100 | 0.0 | 0 | 15.0 | 13.0 | 100 | powder | 0.5 | 15 | 0 | 0 | 208.0 | 0.0 | 0.0 | immersion | constant | 500.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 83.0 | 0.0 | 237.0 | 0.0 | 0.0 | 1.2 | 0.0 | 20.0 |
Yoon, H. J., Kim, U. C., Kim, J. H., Koh, Y. H., Choi, W. Y., & Kim, H. E. (2011). Fabrication and characterization of highly porous calcium phosphate (CaP) ceramics by freezing foamed aqueous CaP suspensions. Journal of the Ceramic Society of Japan, 119(1391), 573-576. | 2011 | 730 | 0 | 2087 | ceramic | CaP | water | 100 | 0.0 | 0 | 20.0 | 13.0 | 100 | powder | 0.5 | 15 | 0 | 0 | 208.0 | 0.0 | 0.0 | immersion | constant | 500.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 77.0 | 0.0 | 163.0 | 0.0 | 0.0 | 3.5 | 0.0 | 75.0 |
Yoon, H. J., Kim, U. C., Kim, J. H., Koh, Y. H., Choi, W. Y., & Kim, H. E. (2011). Fabrication and characterization of highly porous calcium phosphate (CaP) ceramics by freezing foamed aqueous CaP suspensions. Journal of the Ceramic Society of Japan, 119(1391), 573-576. | 2011 | 730 | 0 | 2088 | ceramic | CaP | water | 100 | 0.0 | 0 | 25.0 | 13.0 | 100 | powder | 0.5 | 15 | 0 | 0 | 208.0 | 0.0 | 0.0 | immersion | constant | 500.0 | 0.0 | 0 | 0 | 0 | equiaxed | sintered | 73.0 | 0.0 | 140.0 | 0.0 | 0.0 | 4.7 | 0.0 | 163.0 |
Lee, J. M., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Fracture strength and damage resistance of freeze cast mullite matrix layered composites. Journal of Ceramic Processing Research, 11(5), 539-542. | 2010 | 300 | 0 | 4481 | ceramic | Mullite-28wt% YSZ (mixed) | water | 100 | 0.0 | 0 | 50.0 | 21.0 | 85 | powder | 0.99 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 6.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 130.0 | 0.0 |
Lee, J. M., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Fracture strength and damage resistance of freeze cast mullite matrix layered composites. Journal of Ceramic Processing Research, 11(5), 539-542. | 2010 | 300 | 0 | 4482 | ceramic | Mullite-28wt% YSZ (mixed) | water | 100 | 0.0 | 0 | 50.0 | 21.0 | 85 | powder | 0.99 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 145.0 | 0.0 |
Lee, J. M., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Fracture strength and damage resistance of freeze cast mullite matrix layered composites. Journal of Ceramic Processing Research, 11(5), 539-542. | 2010 | 300 | 0 | 4484 | ceramic | Mullite-28wt% YSZ (mixed) | water | 100 | 0.0 | 0 | 50.0 | 21.0 | 85 | powder | 0.99 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 6.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 130.0 | 0.0 |
Lee, J. M., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Fracture strength and damage resistance of freeze cast mullite matrix layered composites. Journal of Ceramic Processing Research, 11(5), 539-542. | 2010 | 300 | 0 | 4485 | ceramic | Mullite-28wt% YSZ (mixed) | water | 100 | 0.0 | 0 | 50.0 | 21.0 | 85 | powder | 0.99 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 145.0 | 0.0 |
Naglieri, V., Gludovatz, B., Tomsia, A. P., & Ritchie, R. O. (2015). Developing strength and toughness in bio-inspired silicon carbide hybrid materials containing a compliant phase. Acta Materialia, 98, 141-151. | 2015 | 416 | 10.1016/j.actamat.2015.07.022 | 4496 | ceramic | Mullite-28wt% YSZ (mixed) | water | 100 | 0.0 | 0 | 17.0 | 24.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 7.5 | 0.0 | 0.0 | 0.0 | 91.3 | 0.0 |
Lee, J. M., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Fracture strength and damage resistance of freeze cast mullite matrix layered composites. Journal of Ceramic Processing Research, 11(5), 539-542. | 2010 | 300 | 0 | 4483 | ceramic | Mullite-YSZ (layered) | water | 100 | 0.0 | 0 | 50.0 | 21.0 | 85 | powder | 0.99 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 175.0 | 0.0 |
Lee, J. M., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Fracture strength and damage resistance of freeze cast mullite matrix layered composites. Journal of Ceramic Processing Research, 11(5), 539-542. | 2010 | 300 | 0 | 4486 | ceramic | Mullite-YSZ (layered) | water | 100 | 0.0 | 0 | 50.0 | 21.0 | 85 | powder | 0.99 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 190.0 | 0.0 |
Lee, J. M., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Fracture strength and damage resistance of freeze cast mullite matrix layered composites. Journal of Ceramic Processing Research, 11(5), 539-542. | 2010 | 300 | 0 | 4489 | ceramic | Mullite-YSZ (layered) | water | 100 | 0.0 | 0 | 50.0 | 21.0 | 85 | powder | 0.99 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 205.0 | 0.0 |
Lee, J. M., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Fracture strength and damage resistance of freeze cast mullite matrix layered composites. Journal of Ceramic Processing Research, 11(5), 539-542. | 2010 | 300 | 0 | 4487 | ceramic | YSZ-Mullite (layered) | water | 100 | 0.0 | 0 | 50.0 | 21.0 | 85 | powder | 0.99 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 6.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 120.0 | 0.0 |
Lee, J. M., Yang, T. Y., Yoon, S. Y., & Park, H. C. (2010). Fracture strength and damage resistance of freeze cast mullite matrix layered composites. Journal of Ceramic Processing Research, 11(5), 539-542. | 2010 | 300 | 0 | 4488 | ceramic | YSZ-Mullite (layered) | water | 100 | 0.0 | 0 | 50.0 | 21.0 | 85 | powder | 0.99 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 145.0 | 0.0 |
Lee, K. H., Lee, Y. W., Lee, S. W., Ha, J. S., Lee, S. S., & Son, J. G. (2015). Ice-templated Self-assembly of VOPO4?Graphene Nanocomposites for Vertically Porous 3D Supercapacitor Electrodes. Scientific reports, 5. | 2015 | 301 | 10.1038/srep13696 | 4553 | ceramic/carbon | VOPO4-graphene (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lee, S., Porter, M., Wasko, S., Lau, G., Chen, P. Y., Novitskaya, E. E., ... & McKittrick, J. (2012). Potential bone replacement materials prepared by two methods. MRS Online Proceedings Library Archive, 1418. | 2012 | 303 | http://dx.doi.org/10.1557/opl.2012.671 | 3369 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 100 | 0 | 2.4 | 0 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 11.0 | 0.0 | 2000.0 |
Lee, S., Porter, M., Wasko, S., Lau, G., Chen, P. Y., Novitskaya, E. E., ... & McKittrick, J. (2012). Potential bone replacement materials prepared by two methods. MRS Online Proceedings Library Archive, 1418. | 2012 | 303 | http://dx.doi.org/10.1557/opl.2012.671 | 3370 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 30.0 | 18.0 | 100 | 0 | 2.4 | 0 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 62.0 | 0.0 | 9000.0 |
Lee, S., Porter, M., Wasko, S., Lau, G., Chen, P. Y., Novitskaya, E. E., ... & McKittrick, J. (2012). Potential bone replacement materials prepared by two methods. MRS Online Proceedings Library Archive, 1418. | 2012 | 303 | http://dx.doi.org/10.1557/opl.2012.671 | 3371 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 35.0 | 18.0 | 100 | 0 | 2.4 | 0 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 92.0 | 0.0 | 15000.0 |
Lee, S., Porter, M., Wasko, S., Lau, G., Chen, P. Y., Novitskaya, E. E., ... & McKittrick, J. (2012). Potential bone replacement materials prepared by two methods. MRS Online Proceedings Library Archive, 1418. | 2012 | 303 | http://dx.doi.org/10.1557/opl.2012.671 | 3373 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 30.0 | 18.0 | 100 | 0 | 2.4 | 0 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 68.0 | 0.0 | 9000.0 |
Lee, S., Porter, M., Wasko, S., Lau, G., Chen, P. Y., Novitskaya, E. E., ... & McKittrick, J. (2012). Potential bone replacement materials prepared by two methods. MRS Online Proceedings Library Archive, 1418. | 2012 | 303 | http://dx.doi.org/10.1557/opl.2012.671 | 3374 | ceramic/polymer | HAP-MMA (impregnation) | water | 100 | 0.0 | 0 | 30.0 | 18.0 | 100 | 0 | 2.4 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 78.0 | 0.0 | 12000.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1295 | ceramic | B4C | water | 100 | 0.0 | 0 | 0.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1296 | ceramic | B4C | water | 100 | 0.0 | 0 | 0.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1297 | ceramic | B4C | water | 100 | 0.0 | 0 | 0.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1298 | ceramic | B4C | water | 100 | 0.0 | 0 | 0.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1299 | ceramic | B4C | water | 100 | 0.0 | 0 | 0.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1300 | ceramic | B4C | water | 100 | 0.0 | 0 | 0.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1301 | ceramic | B4C | water | 100 | 0.0 | 0 | 0.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1302 | ceramic | B4C | water | 100 | 0.0 | 0 | 0.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1303 | ceramic | B4C | water | 100 | 0.0 | 0 | 0.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1304 | ceramic | B4C | water | 100 | 0.0 | 0 | 0.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1305 | ceramic | B4C | water | 100 | 0.0 | 0 | 0.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1306 | ceramic | B4C | water | 100 | 0.0 | 0 | 0.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1307 | ceramic | B4C | water | 100 | 0.0 | 0 | 0.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1308 | ceramic | B4C | water | 100 | 0.0 | 0 | 0.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1309 | ceramic | B4C | water | 100 | 0.0 | 0 | 0.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1310 | ceramic | B4C | water | 100 | 0.0 | 0 | 0.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1311 | ceramic | B4C | water | 100 | 0.0 | 0 | 0.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1312 | ceramic | B4C | water | 100 | 0.0 | 0 | 0.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1313 | ceramic | B4C | water | 100 | 0.0 | 0 | 0.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1314 | ceramic | B4C | water | 100 | 0.0 | 0 | 0.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1315 | ceramic | B4C | water | 100 | 0.0 | 0 | 0.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1316 | ceramic | B4C | water | 100 | 0.0 | 0 | 0.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1391 | ceramic | B4C | water | 100 | 0.0 | 0 | 30.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1392 | ceramic | B4C | water | 100 | 0.0 | 0 | 30.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1393 | ceramic | B4C | water | 100 | 0.0 | 0 | 30.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1394 | ceramic | B4C | water | 100 | 0.0 | 0 | 30.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1395 | ceramic | B4C | water | 100 | 0.0 | 0 | 30.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1396 | ceramic | B4C | water | 100 | 0.0 | 0 | 30.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1397 | ceramic | B4C | water | 100 | 0.0 | 0 | 30.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1398 | ceramic | B4C | water | 100 | 0.0 | 0 | 30.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1399 | ceramic | B4C | water | 100 | 0.0 | 0 | 30.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1400 | ceramic | B4C | water | 100 | 0.0 | 0 | 30.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1401 | ceramic | B4C | water | 100 | 0.0 | 0 | 35.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1402 | ceramic | B4C | water | 100 | 0.0 | 0 | 35.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1403 | ceramic | B4C | water | 100 | 0.0 | 0 | 35.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1404 | ceramic | B4C | water | 100 | 0.0 | 0 | 35.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1405 | ceramic | B4C | water | 100 | 0.0 | 0 | 35.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1406 | ceramic | B4C | water | 100 | 0.0 | 0 | 35.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1407 | ceramic | B4C | water | 100 | 0.0 | 0 | 35.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1408 | ceramic | B4C | water | 100 | 0.0 | 0 | 35.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1409 | ceramic | B4C | water | 100 | 0.0 | 0 | 35.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1410 | ceramic | B4C | water | 100 | 0.0 | 0 | 35.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1441 | ceramic | B4C | dodecane | 100 | 0.0 | 0 | 40.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1442 | ceramic | B4C | dodecane | 100 | 0.0 | 0 | 40.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1443 | ceramic | B4C | dodecane | 100 | 0.0 | 0 | 40.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1444 | ceramic | B4C | dodecane | 100 | 0.0 | 0 | 40.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1445 | ceramic | B4C | dodecane | 100 | 0.0 | 0 | 40.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1446 | ceramic | B4C | dodecane | 100 | 0.0 | 0 | 40.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1447 | ceramic | B4C | dodecane | 100 | 0.0 | 0 | 40.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1448 | ceramic | B4C | dodecane | 100 | 0.0 | 0 | 40.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1449 | ceramic | B4C | dodecane | 100 | 0.0 | 0 | 40.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1450 | ceramic | B4C | dodecane | 100 | 0.0 | 0 | 40.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1451 | ceramic | B4C | dodecane | 100 | 0.0 | 0 | 45.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1452 | ceramic | B4C | dodecane | 100 | 0.0 | 0 | 45.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1453 | ceramic | B4C | dodecane | 100 | 0.0 | 0 | 45.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1454 | ceramic | B4C | dodecane | 100 | 0.0 | 0 | 45.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1455 | ceramic | B4C | dodecane | 100 | 0.0 | 0 | 45.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1456 | ceramic | B4C | dodecane | 100 | 0.0 | 0 | 45.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1457 | ceramic | B4C | dodecane | 100 | 0.0 | 0 | 45.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1458 | ceramic | B4C | dodecane | 100 | 0.0 | 0 | 45.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1459 | ceramic | B4C | dodecane | 100 | 0.0 | 0 | 45.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1460 | ceramic | B4C | dodecane | 100 | 0.0 | 0 | 45.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1461 | ceramic | B4C | dodecane | 100 | 0.0 | 0 | 50.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1462 | ceramic | B4C | dodecane | 100 | 0.0 | 0 | 50.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1463 | ceramic | B4C | dodecane | 100 | 0.0 | 0 | 50.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1464 | ceramic | B4C | dodecane | 100 | 0.0 | 0 | 50.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1465 | ceramic | B4C | dodecane | 100 | 0.0 | 0 | 50.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1466 | ceramic | B4C | dodecane | 100 | 0.0 | 0 | 50.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1467 | ceramic | B4C | dodecane | 100 | 0.0 | 0 | 50.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1468 | ceramic | B4C | dodecane | 100 | 0.0 | 0 | 50.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1469 | ceramic | B4C | dodecane | 100 | 0.0 | 0 | 50.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Leo, S., Tallon, C., & Franks, G. V. (2014). Aqueous and Nonaqueous Colloidal Processing of Difficult?to?Densify Ceramics: Suspension Rheology and Particle Packing. Journal of the American Ceramic Society, 97(12), 3807-3817. | 2014 | 307 | 10.1111/jace.13220 | 1470 | ceramic | B4C | dodecane | 100 | 0.0 | 0 | 50.0 | 6.0 | 100 | powder | 2.6 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Effects of Added Kaolinite on Sintering of Freeze?Cast Kaolinite?Silica Nanocomposite I. Microstructure and Phase Transformation. Journal of the American Ceramic Society, 95(3), 883-891. | 2012 | 318 | 10.1111/j.1551-2916.2011.04908.x | 4293 | ceramic | SiO2-6wt% Kaolinite (mixed) | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 93 | powder | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.03 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Effects of Added Kaolinite on Sintering of Freeze?Cast Kaolinite?Silica Nanocomposite I. Microstructure and Phase Transformation. Journal of the American Ceramic Society, 95(3), 883-891. | 2012 | 318 | 10.1111/j.1551-2916.2011.04908.x | 4298 | ceramic | SiO2-6wt% Kaolinite (mixed) | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 93 | powder | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Effects of Added Kaolinite on Sintering of Freeze?Cast Kaolinite?Silica Nanocomposite I. Microstructure and Phase Transformation. Journal of the American Ceramic Society, 95(3), 883-891. | 2012 | 318 | 10.1111/j.1551-2916.2011.04908.x | 4303 | ceramic | SiO2-6wt% Kaolinite (mixed) | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 93 | powder | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 64.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.5 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Effects of Added Kaolinite on Sintering of Freeze?Cast Kaolinite?Silica Nanocomposite I. Microstructure and Phase Transformation. Journal of the American Ceramic Society, 95(3), 883-891. | 2012 | 318 | 10.1111/j.1551-2916.2011.04908.x | 4294 | ceramic | SiO2-10wt% Kaolinite (mixed) | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 89 | powder | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.03 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Effects of Added Kaolinite on Sintering of Freeze?Cast Kaolinite?Silica Nanocomposite I. Microstructure and Phase Transformation. Journal of the American Ceramic Society, 95(3), 883-891. | 2012 | 318 | 10.1111/j.1551-2916.2011.04908.x | 4299 | ceramic | SiO2-10wt% Kaolinite (mixed) | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 89 | powder | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 78.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.1 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Effects of Added Kaolinite on Sintering of Freeze?Cast Kaolinite?Silica Nanocomposite I. Microstructure and Phase Transformation. Journal of the American Ceramic Society, 95(3), 883-891. | 2012 | 318 | 10.1111/j.1551-2916.2011.04908.x | 4304 | ceramic | SiO2-10wt% Kaolinite (mixed) | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 89 | powder | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 69.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.5 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Effects of Added Kaolinite on Sintering of Freeze?Cast Kaolinite?Silica Nanocomposite I. Microstructure and Phase Transformation. Journal of the American Ceramic Society, 95(3), 883-891. | 2012 | 318 | 10.1111/j.1551-2916.2011.04908.x | 4295 | ceramic | SiO2-14wt% Kaolinite (mixed) | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 86 | powder | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.03 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Effects of Added Kaolinite on Sintering of Freeze?Cast Kaolinite?Silica Nanocomposite I. Microstructure and Phase Transformation. Journal of the American Ceramic Society, 95(3), 883-891. | 2012 | 318 | 10.1111/j.1551-2916.2011.04908.x | 4300 | ceramic | SiO2-14wt% Kaolinite (mixed) | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 86 | powder | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 79.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.5 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Effects of Added Kaolinite on Sintering of Freeze?Cast Kaolinite?Silica Nanocomposite I. Microstructure and Phase Transformation. Journal of the American Ceramic Society, 95(3), 883-891. | 2012 | 318 | 10.1111/j.1551-2916.2011.04908.x | 4305 | ceramic | SiO2-14wt% Kaolinite (mixed) | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 86 | powder | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 71.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.6 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Effects of Added Kaolinite on Sintering of Freeze?Cast Kaolinite?Silica Nanocomposite I. Microstructure and Phase Transformation. Journal of the American Ceramic Society, 95(3), 883-891. | 2012 | 318 | 10.1111/j.1551-2916.2011.04908.x | 4296 | ceramic | SiO2-18wt$ Kaolinite (mixed) | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 81 | powder | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.03 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Effects of Added Kaolinite on Sintering of Freeze?Cast Kaolinite?Silica Nanocomposite I. Microstructure and Phase Transformation. Journal of the American Ceramic Society, 95(3), 883-891. | 2012 | 318 | 10.1111/j.1551-2916.2011.04908.x | 4301 | ceramic | SiO2-18wt$ Kaolinite (mixed) | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 81 | powder | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.1 | 0.0 |
Li, W., Lu, K., & Walz, J. Y. (2012). Effects of Added Kaolinite on Sintering of Freeze?Cast Kaolinite?Silica Nanocomposite I. Microstructure and Phase Transformation. Journal of the American Ceramic Society, 95(3), 883-891. | 2012 | 318 | 10.1111/j.1551-2916.2011.04908.x | 4306 | ceramic | SiO2-18wt$ Kaolinite (mixed) | water | 100 | 0.0 | 0 | 18.0 | 25.0 | 81 | powder | 0.02 | 0 | 0 | 0 | 238.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 73.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 |
Lichtner, A., Roussel, D., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2016). Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. Journal of the American Ceramic Society, 99(3), 979-987. | 2015 | 325 | 10.1111/jace.14004 | 3470 | ceramic | YSZ-40wt.% LSM (mixed) | water | 100 | 0.0 | 0 | 17.0 | 57.0 | 40 | 0 | 0.8 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 61.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lichtner, A., Roussel, D., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2016). Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. Journal of the American Ceramic Society, 99(3), 979-987. | 2015 | 325 | 10.1111/jace.14004 | 3471 | ceramic | YSZ-40wt.% LSM (mixed) | water | 100 | 0.0 | 0 | 17.0 | 57.0 | 40 | 0 | 0.8 | 0 | 1 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lichtner, A., Roussel, D., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2016). Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. Journal of the American Ceramic Society, 99(3), 979-987. | 2015 | 325 | 10.1111/jace.14004 | 3472 | ceramic | YSZ-40wt.% LSM (mixed) | water | 100 | 0.0 | 0 | 17.0 | 57.0 | 40 | 0 | 0.8 | 0 | 1 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lichtner, A., Roussel, D., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2016). Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. Journal of the American Ceramic Society, 99(3), 979-987. | 2015 | 325 | 10.1111/jace.14004 | 3473 | ceramic | YSZ-40wt.% LSM (mixed) | water | 100 | 0.0 | 0 | 17.0 | 57.0 | 40 | 0 | 0.8 | 0 | 1 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lichtner, A., Roussel, D., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2016). Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. Journal of the American Ceramic Society, 99(3), 979-987. | 2015 | 325 | 10.1111/jace.14004 | 3474 | ceramic | YSZ-40wt.% LSM (mixed) | water | 100 | 0.0 | 0 | 17.0 | 57.0 | 40 | 0 | 0.8 | 0 | 1 | 0 | 0.0 | 22.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lichtner, A., Roussel, D., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2016). Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. Journal of the American Ceramic Society, 99(3), 979-987. | 2015 | 325 | 10.1111/jace.14004 | 3475 | ceramic | YSZ-40wt.% LSM (mixed) | water | 100 | 0.0 | 0 | 17.0 | 57.0 | 40 | 0 | 0.8 | 0 | 1 | 0 | 0.0 | 38.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lichtner, A., Roussel, D., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2016). Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. Journal of the American Ceramic Society, 99(3), 979-987. | 2015 | 325 | 10.1111/jace.14004 | 3476 | ceramic | YSZ-40wt.% LSM (mixed) | water | 100 | 0.0 | 0 | 17.0 | 57.0 | 40 | 0 | 0.8 | 0 | 1 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 |
Lichtner, A., Roussel, D., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2016). Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. Journal of the American Ceramic Society, 99(3), 979-987. | 2015 | 325 | 10.1111/jace.14004 | 3477 | ceramic | YSZ-40wt.% LSM (mixed) | water | 100 | 0.0 | 0 | 17.0 | 57.0 | 40 | 0 | 0.8 | 0 | 1 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.0 | 0.0 | 0.0 |
Lichtner, A., Roussel, D., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2016). Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. Journal of the American Ceramic Society, 99(3), 979-987. | 2015 | 325 | 10.1111/jace.14004 | 3478 | ceramic | YSZ-40wt.% LSM (mixed) | water | 100 | 0.0 | 0 | 17.0 | 57.0 | 40 | 0 | 0.8 | 0 | 1 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 19.0 | 0.0 | 0.0 |
Lichtner, A., Roussel, D., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2016). Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. Journal of the American Ceramic Society, 99(3), 979-987. | 2015 | 325 | 10.1111/jace.14004 | 3479 | ceramic | YSZ-40wt.% LSM (mixed) | water | 100 | 0.0 | 0 | 17.0 | 57.0 | 40 | 0 | 0.8 | 0 | 1 | 0 | 0.0 | 21.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 17.5 | 0.0 | 0.0 |
Lichtner, A., Roussel, D., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2016). Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. Journal of the American Ceramic Society, 99(3), 979-987. | 2015 | 325 | 10.1111/jace.14004 | 3480 | ceramic | YSZ-40wt.% LSM (mixed) | water | 100 | 0.0 | 0 | 17.0 | 57.0 | 40 | 0 | 0.8 | 0 | 1 | 0 | 0.0 | 38.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 12.5 | 0.0 | 0.0 |
Lichtner, A., Roussel, D., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2016). Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. Journal of the American Ceramic Society, 99(3), 979-987. | 2015 | 325 | 10.1111/jace.14004 | 3481 | ceramic | YSZ-40wt.% LSM (mixed) | water | 100 | 0.0 | 0 | 17.0 | 57.0 | 40 | 0 | 0.8 | 0 | 1 | 0 | 0.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 48.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 0.0 | 0.0 |
Lichtner, A., Roussel, D., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2016). Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. Journal of the American Ceramic Society, 99(3), 979-987. | 2015 | 325 | 10.1111/jace.14004 | 3482 | ceramic | YSZ-40wt.% LSM (mixed) | water | 100 | 0.0 | 0 | 17.0 | 57.0 | 40 | 0 | 0.8 | 0 | 1 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 48.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 |
Lichtner, A., Roussel, D., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2016). Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. Journal of the American Ceramic Society, 99(3), 979-987. | 2015 | 325 | 10.1111/jace.14004 | 3483 | ceramic | YSZ-40wt.% LSM (mixed) | water | 100 | 0.0 | 0 | 17.0 | 57.0 | 40 | 0 | 0.8 | 0 | 1 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 48.0 | 0.0 | 0.0 | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 |
Lichtner, A., Roussel, D., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2016). Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. Journal of the American Ceramic Society, 99(3), 979-987. | 2015 | 325 | 10.1111/jace.14004 | 3484 | ceramic | YSZ-40wt.% LSM (mixed) | water | 100 | 0.0 | 0 | 17.0 | 57.0 | 40 | 0 | 0.8 | 0 | 1 | 0 | 0.0 | 21.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 48.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 |
Lichtner, A., Roussel, D., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2016). Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. Journal of the American Ceramic Society, 99(3), 979-987. | 2015 | 325 | 10.1111/jace.14004 | 3485 | ceramic | YSZ-40wt.% LSM (mixed) | water | 100 | 0.0 | 0 | 17.0 | 57.0 | 40 | 0 | 0.8 | 0 | 1 | 0 | 0.0 | 38.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 48.0 | 0.0 | 0.0 | 0.0 | 0.0 | 24.0 | 0.0 | 0.0 |
Lichtner, A., Roussel, D., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2016). Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. Journal of the American Ceramic Society, 99(3), 979-987. | 2015 | 325 | 10.1111/jace.14004 | 5977 | ceramic | YSZ-40wt.% LSM (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 51.0 | 123.0 | 48.0 | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lichtner, A., Roussel, D., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2016). Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. Journal of the American Ceramic Society, 99(3), 979-987. | 2015 | 325 | 10.1111/jace.14004 | 5978 | ceramic | YSZ-40wt.% LSM (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 51.0 | 48.0 | 18.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lichtner, A., Roussel, D., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2016). Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. Journal of the American Ceramic Society, 99(3), 979-987. | 2015 | 325 | 10.1111/jace.14004 | 5979 | ceramic | YSZ-40wt.% LSM (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 51.0 | 42.0 | 17.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lichtner, A., Roussel, D., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2016). Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. Journal of the American Ceramic Society, 99(3), 979-987. | 2015 | 325 | 10.1111/jace.14004 | 5980 | ceramic | YSZ-40wt.% LSM (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 20.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 51.0 | 25.0 | 15.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lichtner, A., Roussel, D., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2016). Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. Journal of the American Ceramic Society, 99(3), 979-987. | 2015 | 325 | 10.1111/jace.14004 | 5981 | ceramic | YSZ-40wt.% LSM (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 40.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 51.0 | 25.0 | 15.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lichtner, A., Roussel, D., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2016). Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. Journal of the American Ceramic Society, 99(3), 979-987. | 2015 | 325 | 10.1111/jace.14004 | 5982 | ceramic | YSZ-40wt.% LSM (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 107.0 | 52.0 | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lichtner, A., Roussel, D., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2016). Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. Journal of the American Ceramic Society, 99(3), 979-987. | 2015 | 325 | 10.1111/jace.14004 | 5983 | ceramic | YSZ-40wt.% LSM (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 47.0 | 25.0 | 22.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lichtner, A., Roussel, D., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2016). Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. Journal of the American Ceramic Society, 99(3), 979-987. | 2015 | 325 | 10.1111/jace.14004 | 5984 | ceramic | YSZ-40wt.% LSM (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 27.0 | 17.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lichtner, A., Roussel, D., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2016). Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. Journal of the American Ceramic Society, 99(3), 979-987. | 2015 | 325 | 10.1111/jace.14004 | 5985 | ceramic | YSZ-40wt.% LSM (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 20.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 25.0 | 15.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lichtner, A., Roussel, D., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2016). Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. Journal of the American Ceramic Society, 99(3), 979-987. | 2015 | 325 | 10.1111/jace.14004 | 5986 | ceramic | YSZ-40wt.% LSM (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 40.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 25.0 | 15.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lichtner, A. Z., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2013). Processing of Hierarchical and Anisotropic Porosity LSM?YSZ Composites. Journal of the American Ceramic Society, 96(9), 2745-2753. | 2013 | 326 | 10.1111/jace.12478 | 3486 | ceramic | LSM-YSZ (mixed) | water | 100 | 0.0 | 0 | 23.0 | 57.0 | 40 | 0 | 0.8 | 0 | 1 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 22.5 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 59.6 | 42.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lichtner, A. Z., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2013). Processing of Hierarchical and Anisotropic Porosity LSM?YSZ Composites. Journal of the American Ceramic Society, 96(9), 2745-2753. | 2013 | 326 | 10.1111/jace.12478 | 3487 | ceramic | LSM-YSZ (mixed) | water | 100 | 0.0 | 0 | 23.0 | 57.0 | 40 | 0 | 0.8 | 0 | 1 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 22.5 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 59.6 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lichtner, A. Z., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2013). Processing of Hierarchical and Anisotropic Porosity LSM?YSZ Composites. Journal of the American Ceramic Society, 96(9), 2745-2753. | 2013 | 326 | 10.1111/jace.12478 | 3488 | ceramic | LSM-YSZ (mixed) | water | 100 | 0.0 | 0 | 23.0 | 57.0 | 40 | 0 | 0.8 | 0 | 2 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 22.5 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 59.6 | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lichtner, A. Z., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2013). Processing of Hierarchical and Anisotropic Porosity LSM?YSZ Composites. Journal of the American Ceramic Society, 96(9), 2745-2753. | 2013 | 326 | 10.1111/jace.12478 | 3489 | ceramic | LSM-YSZ (mixed) | water | 100 | 0.0 | 0 | 23.0 | 57.0 | 40 | 0 | 0.8 | 0 | 1 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 12.5 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 59.6 | 81.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lichtner, A. Z., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2013). Processing of Hierarchical and Anisotropic Porosity LSM?YSZ Composites. Journal of the American Ceramic Society, 96(9), 2745-2753. | 2013 | 326 | 10.1111/jace.12478 | 3490 | ceramic | LSM-YSZ (mixed) | water | 100 | 0.0 | 0 | 23.0 | 57.0 | 40 | 0 | 0.8 | 0 | 1 | 0 | 0.0 | 3.0 | 0.0 | one-sided | linear | 17.5 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 59.6 | 42.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lichtner, A. Z., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2013). Processing of Hierarchical and Anisotropic Porosity LSM?YSZ Composites. Journal of the American Ceramic Society, 96(9), 2745-2753. | 2013 | 326 | 10.1111/jace.12478 | 3491 | ceramic | LSM-YSZ (mixed) | water | 100 | 0.0 | 0 | 23.0 | 57.0 | 40 | 0 | 0.8 | 0 | 1 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 23.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 59.6 | 35.0 | 14.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lichtner, A. Z., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2013). Processing of Hierarchical and Anisotropic Porosity LSM?YSZ Composites. Journal of the American Ceramic Society, 96(9), 2745-2753. | 2013 | 326 | 10.1111/jace.12478 | 3492 | ceramic | LSM-YSZ (mixed) | water | 100 | 0.0 | 0 | 17.0 | 57.0 | 40 | 0 | 0.8 | 0 | 1 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 22.5 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 66.0 | 28.0 | 17.5 | 12.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Lichtner, A. Z., Jauffrès, D., Martin, C. L., & Bordia, R. K. (2013). Processing of Hierarchical and Anisotropic Porosity LSM?YSZ Composites. Journal of the American Ceramic Society, 96(9), 2745-2753. | 2013 | 326 | 10.1111/jace.12478 | 3493 | ceramic | LSM-YSZ (mixed) | water | 100 | 0.0 | 0 | 27.0 | 57.0 | 40 | 0 | 0.8 | 0 | 1 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 24.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 51.9 | 35.0 | 12.5 | 21.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lichtner, A. Z., Jauffrès, D., Roussel, D., Charlot, F., Martin, C. L., & Bordia, R. K. (2015). Dispersion, connectivity and tortuosity of hierarchical porosity composite SOFC cathodes prepared by freeze-casting. Journal of the European Ceramic Society, 35(2), 585-595. | 2015 | 327 | 10.1016/j.jeurceramsoc.2014.09.030 | 4935 | ceramic | LSM-YSZ (mixed) | water | 100 | 0.0 | 0 | 23.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 5.0 | 0.0 | 0 | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 200.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lichtner, A. Z., Jauffrès, D., Roussel, D., Charlot, F., Martin, C. L., & Bordia, R. K. (2015). Dispersion, connectivity and tortuosity of hierarchical porosity composite SOFC cathodes prepared by freeze-casting. Journal of the European Ceramic Society, 35(2), 585-595. | 2015 | 327 | 10.1016/j.jeurceramsoc.2014.09.030 | 4936 | ceramic | LSM-YSZ (mixed) | water | 100 | 0.0 | 0 | 23.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 5.0 | 0.0 | 0 | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 300.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, D., Ma, Z., Wang, Z., Tian, H., & Gu, M. (2014). Biodegradable poly (vinyl alcohol) foams supported by cellulose nanofibrils: processing, structure, and properties. Langmuir, 30(31), 9544-9550. | 2014 | 330 | 10.1021/la502723d | 5282 | polymer | PVA-20wt.% cellulose | water | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 89.71 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, D., Ma, Z., Wang, Z., Tian, H., & Gu, M. (2014). Biodegradable poly (vinyl alcohol) foams supported by cellulose nanofibrils: processing, structure, and properties. Langmuir, 30(31), 9544-9550. | 2014 | 330 | 10.1021/la502723d | 5283 | polymer | PVA-30wt.% cellulose | water | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 91.78 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, D., Ma, Z., Wang, Z., Tian, H., & Gu, M. (2014). Biodegradable poly (vinyl alcohol) foams supported by cellulose nanofibrils: processing, structure, and properties. Langmuir, 30(31), 9544-9550. | 2014 | 330 | 10.1021/la502723d | 5284 | polymer | PVA-40wt.% cellulose | water | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 91.85 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, D., Ma, Z., Wang, Z., Tian, H., & Gu, M. (2014). Biodegradable poly (vinyl alcohol) foams supported by cellulose nanofibrils: processing, structure, and properties. Langmuir, 30(31), 9544-9550. | 2014 | 330 | 10.1021/la502723d | 5285 | polymer | PVA-60wt.% cellulose | water | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 91.88 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, G., & Button, T. W. (2013). The effect of particle size in freeze casting of porous alumina?zirconia composite. Ceramics International, 39(7), 8507-8512. | 2013 | 332 | 10.1016/j.ceramint.2013.02.101 | 3497 | ceramic | Al2O3-0.44.%ZrO2 (mixed) | water | 100 | 0.0 | 0 | 11.0 | 19.0 | 99 | 0 | 0.1 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 110.0 | 0.0 | 0 | 21 | 26 | lamellar | sintered | 74.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.8 | 0.0 | 0.0 |
Liu, G., & Button, T. W. (2013). The effect of particle size in freeze casting of porous alumina?zirconia composite. Ceramics International, 39(7), 8507-8512. | 2013 | 332 | 10.1016/j.ceramint.2013.02.101 | 3498 | ceramic | Al2O3-0.44.%ZrO2 (mixed) | water | 100 | 0.0 | 0 | 16.0 | 19.0 | 99 | 0 | 0.1 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 110.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 68.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, G., & Button, T. W. (2013). The effect of particle size in freeze casting of porous alumina?zirconia composite. Ceramics International, 39(7), 8507-8512. | 2013 | 332 | 10.1016/j.ceramint.2013.02.101 | 3499 | ceramic | Al2O3-0.44.%ZrO2 (mixed) | water | 100 | 0.0 | 0 | 22.0 | 19.0 | 99 | 0 | 0.1 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 110.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 51.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, G., & Button, T. W. (2013). The effect of particle size in freeze casting of porous alumina?zirconia composite. Ceramics International, 39(7), 8507-8512. | 2013 | 332 | 10.1016/j.ceramint.2013.02.101 | 3500 | ceramic | Al2O3-0.44.%ZrO2 (mixed) | water | 100 | 0.0 | 0 | 30.0 | 19.0 | 99 | 0 | 0.1 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 110.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 35.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, G., & Button, T. W. (2013). The effect of particle size in freeze casting of porous alumina?zirconia composite. Ceramics International, 39(7), 8507-8512. | 2013 | 332 | 10.1016/j.ceramint.2013.02.101 | 3501 | ceramic | Al2O3-0.44.%ZrO2 (mixed) | water | 100 | 0.0 | 0 | 11.0 | 19.0 | 99 | 0 | 0.7 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 110.0 | 0.0 | 0 | 10 | 19 | lamellar | sintered | 79.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.9 | 0.0 | 0.0 |
Liu, G., Zhang, D., Meggs, C., & Button, T. W. (2010). Porous Al 2 O 3?ZrO 2 composites fabricated by an ice template method. Scripta Materialia, 62(7), 466-468. | 2010 | 335 | 10.1016/j.scriptamat.2009.12.018 | 3512 | ceramic | Al2O3-ZrO2 (mixed) | water | 100 | 0.0 | 0 | 14.6 | 1.0 | 20 | 0 | 0.7 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 110.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 74.0 | 0.0 | 0.0 | 4.0 | 0.0 | 75.0 | 0.0 | 0.0 |
Liu, G., Zhang, D., Meggs, C., & Button, T. W. (2010). Porous Al 2 O 3?ZrO 2 composites fabricated by an ice template method. Scripta Materialia, 62(7), 466-468. | 2010 | 335 | 10.1016/j.scriptamat.2009.12.018 | 3513 | ceramic | Al2O3-ZrO2 (mixed) | water | 100 | 0.0 | 0 | 20.41 | 1.0 | 20 | 0 | 0.7 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 110.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 67.0 | 0.0 | 0.0 | 7.0 | 0.0 | 26.0 | 0.0 | 0.0 |
Liu, G., Zhang, D., Meggs, C., & Button, T. W. (2010). Porous Al 2 O 3?ZrO 2 composites fabricated by an ice template method. Scripta Materialia, 62(7), 466-468. | 2010 | 335 | 10.1016/j.scriptamat.2009.12.018 | 3514 | ceramic | Al2O3-ZrO2 (mixed) | water | 100 | 0.0 | 0 | 27.8 | 1.0 | 20 | 0 | 0.7 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 110.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 50.0 | 0.0 | 0.0 | 12.0 | 0.0 | 50.0 | 0.0 | 0.0 |
Liu, G., Zhang, D., Meggs, C., & Button, T. W. (2010). Porous Al 2 O 3?ZrO 2 composites fabricated by an ice template method. Scripta Materialia, 62(7), 466-468. | 2010 | 335 | 10.1016/j.scriptamat.2009.12.018 | 3515 | ceramic | Al2O3-ZrO2 (mixed) | water | 100 | 0.0 | 0 | 37.0 | 1.0 | 20 | 0 | 0.7 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 110.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 35.0 | 0.0 | 0.0 | 17.0 | 0.0 | 81.0 | 0.0 | 0.0 |
Liu, G., Zhang, D., Meggs, C., & Button, T. W. (2010). Porous Al 2 O 3?ZrO 2 composites fabricated by an ice template method. Scripta Materialia, 62(7), 466-468. | 2010 | 335 | 10.1016/j.scriptamat.2009.12.018 | 3516 | ceramic | Al2O3-ZrO2 (mixed) | water | 100 | 0.0 | 0 | 50.0 | 1.0 | 20 | 0 | 0.7 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 110.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 19.0 | 0.0 | 0.0 | 0.0 | 0.0 | 163.0 | 0.0 | 0.0 |
Lyu, S. W., Han, D. S., Park, Y. M., Yang, T. Y., Lee, J. M., & Park, H. C. (2006). Fracture Strength and Damage Resistance of Freeze Cast Alumina/Zirconia Layered Composites. In Key Engineering Materials (Vol. 324, pp. 351-354). Trans Tech Publications. | 2006 | 364 | 10.4028/www.scientific.net/KEM.324-325.351 | 3695 | ceramic | Al2O3-ZrO2 (mixed) | water | 100 | 0.0 | 0 | 52.5 | 1.0 | 89 | 0 | 0.57 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 | 225.0 | 0.0 |
Lyu, S. W., Han, D. S., Park, Y. M., Yang, T. Y., Lee, J. M., & Park, H. C. (2006). Fracture Strength and Damage Resistance of Freeze Cast Alumina/Zirconia Layered Composites. In Key Engineering Materials (Vol. 324, pp. 351-354). Trans Tech Publications. | 2006 | 364 | 10.4028/www.scientific.net/KEM.324-325.351 | 3696 | ceramic | Al2O3-ZrO2 (mixed) | water | 100 | 0.0 | 0 | 52.5 | 1.0 | 85 | 0 | 0.57 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 260.0 | 0.0 |
Lyu, S. W., Han, D. S., Park, Y. M., Yang, T. Y., Lee, J. M., & Park, H. C. (2006). Fracture Strength and Damage Resistance of Freeze Cast Alumina/Zirconia Layered Composites. In Key Engineering Materials (Vol. 324, pp. 351-354). Trans Tech Publications. | 2006 | 364 | 10.4028/www.scientific.net/KEM.324-325.351 | 3697 | ceramic | Al2O3-ZrO2 (mixed) | water | 100 | 0.0 | 0 | 52.5 | 1.0 | 80 | 0 | 0.57 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 300.0 | 0.0 |
Lyu, S. W., Han, D. S., Park, Y. M., Yang, T. Y., Lee, J. M., & Park, H. C. (2006). Fracture Strength and Damage Resistance of Freeze Cast Alumina/Zirconia Layered Composites. In Key Engineering Materials (Vol. 324, pp. 351-354). Trans Tech Publications. | 2006 | 364 | 10.4028/www.scientific.net/KEM.324-325.351 | 3698 | ceramic | Al2O3-ZrO2 (mixed) | water | 100 | 0.0 | 0 | 52.5 | 1.0 | 89 | 0 | 0.57 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 310.0 | 0.0 |
Lyu, S. W., Han, D. S., Park, Y. M., Yang, T. Y., Lee, J. M., & Park, H. C. (2006). Fracture Strength and Damage Resistance of Freeze Cast Alumina/Zirconia Layered Composites. In Key Engineering Materials (Vol. 324, pp. 351-354). Trans Tech Publications. | 2006 | 364 | 10.4028/www.scientific.net/KEM.324-325.351 | 3699 | ceramic | Al2O3-ZrO2 (mixed) | water | 100 | 0.0 | 0 | 52.5 | 1.0 | 85 | 0 | 0.57 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 315.0 | 0.0 |
Lyu, S. W., Han, D. S., Park, Y. M., Yang, T. Y., Lee, J. M., & Park, H. C. (2006). Fracture Strength and Damage Resistance of Freeze Cast Alumina/Zirconia Layered Composites. In Key Engineering Materials (Vol. 324, pp. 351-354). Trans Tech Publications. | 2006 | 364 | 10.4028/www.scientific.net/KEM.324-325.351 | 3700 | ceramic | Al2O3-ZrO2 (mixed) | water | 100 | 0.0 | 0 | 52.5 | 1.0 | 80 | 0 | 0.57 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 360.0 | 0.0 |
Lyu, S. W., Han, D. S., Park, Y. M., Yang, T. Y., Lee, J. M., & Park, H. C. (2006). Fracture Strength and Damage Resistance of Freeze Cast Alumina/Zirconia Layered Composites. In Key Engineering Materials (Vol. 324, pp. 351-354). Trans Tech Publications. | 2006 | 364 | 10.4028/www.scientific.net/KEM.324-325.351 | 3701 | ceramic | Al2O3-ZrO2 (mixed) | water | 100 | 0.0 | 0 | 52.5 | 1.0 | 89 | 0 | 0.57 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 140.0 | 0.0 |
Lyu, S. W., Han, D. S., Park, Y. M., Yang, T. Y., Lee, J. M., & Park, H. C. (2006). Fracture Strength and Damage Resistance of Freeze Cast Alumina/Zirconia Layered Composites. In Key Engineering Materials (Vol. 324, pp. 351-354). Trans Tech Publications. | 2006 | 364 | 10.4028/www.scientific.net/KEM.324-325.351 | 3702 | ceramic | Al2O3-ZrO2 (mixed) | water | 100 | 0.0 | 0 | 52.5 | 1.0 | 85 | 0 | 0.57 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 160.0 | 0.0 |
Lyu, S. W., Han, D. S., Park, Y. M., Yang, T. Y., Lee, J. M., & Park, H. C. (2006). Fracture Strength and Damage Resistance of Freeze Cast Alumina/Zirconia Layered Composites. In Key Engineering Materials (Vol. 324, pp. 351-354). Trans Tech Publications. | 2006 | 364 | 10.4028/www.scientific.net/KEM.324-325.351 | 3703 | ceramic | Al2O3-ZrO2 (mixed) | water | 100 | 0.0 | 0 | 52.5 | 1.0 | 80 | 0 | 0.57 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 225.0 | 0.0 |
Lyu, S. W., Han, D. S., Park, Y. M., Yang, T. Y., Lee, J. M., & Park, H. C. (2006). Fracture Strength and Damage Resistance of Freeze Cast Alumina/Zirconia Layered Composites. In Key Engineering Materials (Vol. 324, pp. 351-354). Trans Tech Publications. | 2006 | 364 | 10.4028/www.scientific.net/KEM.324-325.351 | 3704 | ceramic | Al2O3-ZrO2 (mixed) | water | 100 | 0.0 | 0 | 52.5 | 1.0 | 89 | 0 | 0.57 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 210.0 | 0.0 |
Lyu, S. W., Han, D. S., Park, Y. M., Yang, T. Y., Lee, J. M., & Park, H. C. (2006). Fracture Strength and Damage Resistance of Freeze Cast Alumina/Zirconia Layered Composites. In Key Engineering Materials (Vol. 324, pp. 351-354). Trans Tech Publications. | 2006 | 364 | 10.4028/www.scientific.net/KEM.324-325.351 | 3705 | ceramic | Al2O3-ZrO2 (mixed) | water | 100 | 0.0 | 0 | 52.5 | 1.0 | 85 | 0 | 0.57 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 210.0 | 0.0 |
Lyu, S. W., Han, D. S., Park, Y. M., Yang, T. Y., Lee, J. M., & Park, H. C. (2006). Fracture Strength and Damage Resistance of Freeze Cast Alumina/Zirconia Layered Composites. In Key Engineering Materials (Vol. 324, pp. 351-354). Trans Tech Publications. | 2006 | 364 | 10.4028/www.scientific.net/KEM.324-325.351 | 3706 | ceramic | Al2O3-ZrO2 (mixed) | water | 100 | 0.0 | 0 | 52.5 | 1.0 | 80 | 0 | 0.57 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 225.0 | 0.0 |
Lyu, S. W., Han, D. S., Park, Y. M., Yang, T. Y., Lee, J. M., & Park, H. C. (2006). Fracture Strength and Damage Resistance of Freeze Cast Alumina/Zirconia Layered Composites. In Key Engineering Materials (Vol. 324, pp. 351-354). Trans Tech Publications. | 2006 | 364 | 10.4028/www.scientific.net/KEM.324-325.351 | 3707 | ceramic | Al2O3-ZrO2 (mixed) | water | 100 | 0.0 | 0 | 52.5 | 1.0 | 89 | 0 | 0.57 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 220.0 | 0.0 |
Lyu, S. W., Han, D. S., Park, Y. M., Yang, T. Y., Lee, J. M., & Park, H. C. (2006). Fracture Strength and Damage Resistance of Freeze Cast Alumina/Zirconia Layered Composites. In Key Engineering Materials (Vol. 324, pp. 351-354). Trans Tech Publications. | 2006 | 364 | 10.4028/www.scientific.net/KEM.324-325.351 | 3708 | ceramic | Al2O3-ZrO2 (mixed) | water | 100 | 0.0 | 0 | 52.5 | 1.0 | 85 | 0 | 0.57 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 225.0 | 0.0 |
Lyu, S. W., Han, D. S., Park, Y. M., Yang, T. Y., Lee, J. M., & Park, H. C. (2006). Fracture Strength and Damage Resistance of Freeze Cast Alumina/Zirconia Layered Composites. In Key Engineering Materials (Vol. 324, pp. 351-354). Trans Tech Publications. | 2006 | 364 | 10.4028/www.scientific.net/KEM.324-325.351 | 3709 | ceramic | Al2O3-ZrO2 (mixed) | water | 100 | 0.0 | 0 | 52.5 | 1.0 | 80 | 0 | 0.57 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 290.0 | 0.0 |
Yang, T. Y., Yoon, S. Y., Lee, G. D., Wang, C. A., Stevens, R., Huang, Y., & Park, H. C. (2005). Freeze casting of aqueous Al2O3/Y-TZP slurries. In Key Engineering Materials (Vol. 280, pp. 1065-1068). Trans Tech Publications. | 2004 | 710 | 10.4028/www.scientific.net/KEM.280-283.1065 | 2629 | ceramic | Al2O3-ZrO2 (mixed) | water | 100 | 0.0 | 0 | 50.0 | 1.0 | 100 | 0 | 0.72 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Yoon, S. Y., Lee, G. D., Wang, C. A., Stevens, R., Huang, Y., & Park, H. C. (2005). Freeze casting of aqueous Al2O3/Y-TZP slurries. In Key Engineering Materials (Vol. 280, pp. 1065-1068). Trans Tech Publications. | 2004 | 710 | 10.4028/www.scientific.net/KEM.280-283.1065 | 2630 | ceramic | Al2O3-ZrO2 (mixed) | water | 100 | 0.0 | 0 | 60.0 | 1.0 | 100 | 0 | 0.72 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Yoon, S. Y., Lee, G. D., Wang, C. A., Stevens, R., Huang, Y., & Park, H. C. (2005). Freeze casting of aqueous Al2O3/Y-TZP slurries. In Key Engineering Materials (Vol. 280, pp. 1065-1068). Trans Tech Publications. | 2004 | 710 | 10.4028/www.scientific.net/KEM.280-283.1065 | 2631 | ceramic | Al2O3-ZrO2 (mixed) | water | 100 | 0.0 | 0 | 50.0 | 1.0 | 100 | 0 | 0.72 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Yoon, S. Y., Lee, G. D., Wang, C. A., Stevens, R., Huang, Y., & Park, H. C. (2005). Freeze casting of aqueous Al2O3/Y-TZP slurries. In Key Engineering Materials (Vol. 280, pp. 1065-1068). Trans Tech Publications. | 2004 | 710 | 10.4028/www.scientific.net/KEM.280-283.1065 | 2632 | ceramic | Al2O3-ZrO2 (mixed) | water | 100 | 0.0 | 0 | 60.0 | 1.0 | 100 | 0 | 0.72 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Yoon, S. Y., Lee, G. D., Wang, C. A., Stevens, R., Huang, Y., & Park, H. C. (2005). Freeze casting of aqueous Al2O3/Y-TZP slurries. In Key Engineering Materials (Vol. 280, pp. 1065-1068). Trans Tech Publications. | 2004 | 710 | 10.4028/www.scientific.net/KEM.280-283.1065 | 2633 | ceramic | Al2O3-ZrO2 (mixed) | water | 100 | 0.0 | 0 | 50.0 | 1.0 | 100 | 0 | 0.72 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Yoon, S. Y., Lee, G. D., Wang, C. A., Stevens, R., Huang, Y., & Park, H. C. (2005). Freeze casting of aqueous Al2O3/Y-TZP slurries. In Key Engineering Materials (Vol. 280, pp. 1065-1068). Trans Tech Publications. | 2004 | 710 | 10.4028/www.scientific.net/KEM.280-283.1065 | 2634 | ceramic | Al2O3-ZrO2 (mixed) | water | 100 | 0.0 | 0 | 60.0 | 1.0 | 100 | 0 | 0.72 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, H., Nakagawa, K., Chaudhary, D., Asakuma, Y., & Tadé, M. O. (2011). Freeze-dried macroporous foam prepared from chitosan/xanthan gum/montmorillonite nanocomposites. Chemical Engineering Research and Design, 89(11), 2356-2364. | 2011 | 336 | 10.1016/j.cherd.2011.02.023 | 4995 | ceramic | Mullite-15wt.% SiO2 | water | 100 | 0.0 | 0 | 0.13 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.25 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 86.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, H., Nakagawa, K., Chaudhary, D., Asakuma, Y., & Tadé, M. O. (2011). Freeze-dried macroporous foam prepared from chitosan/xanthan gum/montmorillonite nanocomposites. Chemical Engineering Research and Design, 89(11), 2356-2364. | 2011 | 336 | 10.1016/j.cherd.2011.02.023 | 4996 | ceramic | Mullite-15wt.% SiO2 | water | 100 | 0.0 | 0 | 0.13 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.25 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 89.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, H., Nakagawa, K., Chaudhary, D., Asakuma, Y., & Tadé, M. O. (2011). Freeze-dried macroporous foam prepared from chitosan/xanthan gum/montmorillonite nanocomposites. Chemical Engineering Research and Design, 89(11), 2356-2364. | 2011 | 336 | 10.1016/j.cherd.2011.02.023 | 4998 | ceramic | Mullite-15wt.% SiO2 | water | 100 | 0.0 | 0 | 0.13 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | immersion | constant | 76.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 12.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xiaohui, M., Xiaoxia, H., Haiyan, D., & Hanyu, L. (2016). An unoriented three dimension framework (network) of fibrous porous ceramics prepared by freeze casting. Journal of the European Ceramic Society, 36(3), 797-803. | 2016 | 677 | 10.1016/j.jeurceramsoc.2015.10.048 | 2501 | ceramic | Mullite-15wt.% SiO2 | water | 100 | 0.0 | 0 | 7.0 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 3 | 3 | cellular | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 |
Xiaohui, M., Xiaoxia, H., Haiyan, D., & Hanyu, L. (2016). An unoriented three dimension framework (network) of fibrous porous ceramics prepared by freeze casting. Journal of the European Ceramic Society, 36(3), 797-803. | 2016 | 677 | 10.1016/j.jeurceramsoc.2015.10.048 | 2505 | ceramic | Mullite-15wt.% SiO2 | water | 100 | 0.0 | 0 | 17.0 | 25.0 | 11 | 0 | 0.0 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 3 | 3 | cellular | sintered | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.8 | 0.0 | 0.0 |
Liu, Q., Ye, F., Hou, Z., Liu, S., Gao, Y., & Zhang, H. (2013). A new approach for the net-shape fabrication of porous Si 3 N 4 bonded SiC ceramics with high strength. Journal of the European Ceramic Society, 33(13), 2421-2427. | 2013 | 339 | 10.1016/j.jeurceramsoc.2013.04.034 | 3517 | ceramic | Si3N4-SiC (deposition) | water | 100 | 0.0 | 0 | 30.0 | 24.0 | 100 | 0 | 3.2 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 1 | lamellar | sintered | 63.41 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, Q., Ye, F., Hou, Z., Liu, S., Gao, Y., & Zhang, H. (2013). A new approach for the net-shape fabrication of porous Si 3 N 4 bonded SiC ceramics with high strength. Journal of the European Ceramic Society, 33(13), 2421-2427. | 2013 | 339 | 10.1016/j.jeurceramsoc.2013.04.034 | 3518 | ceramic | Si3N4-SiC (deposition) | water | 100 | 0.0 | 0 | 50.0 | 24.0 | 100 | 0 | 3.2 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 1 | lamellar | sintered | 49.27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.8 | 0.0 |
Liu, Q., Ye, F., Hou, Z., Liu, S., Gao, Y., & Zhang, H. (2013). A new approach for the net-shape fabrication of porous Si 3 N 4 bonded SiC ceramics with high strength. Journal of the European Ceramic Society, 33(13), 2421-2427. | 2013 | 339 | 10.1016/j.jeurceramsoc.2013.04.034 | 3519 | ceramic | Si3N4-SiC (deposition) | water | 100 | 0.0 | 0 | 30.0 | 24.0 | 100 | 0 | 3.2 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 46.06 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 80.5 | 0.0 |
Liu, Q., Ye, F., Hou, Z., Liu, S., Gao, Y., & Zhang, H. (2013). A new approach for the net-shape fabrication of porous Si 3 N 4 bonded SiC ceramics with high strength. Journal of the European Ceramic Society, 33(13), 2421-2427. | 2013 | 339 | 10.1016/j.jeurceramsoc.2013.04.034 | 3520 | ceramic | Si3N4-SiC (deposition) | water | 100 | 0.0 | 0 | 50.0 | 24.0 | 100 | 0 | 3.2 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 32.61 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 164.3 | 0.0 |
Liu, Q., Ye, F., Gao, Y., Liu, S., Yang, H., & Zhou, Z. (2014). Fabrication of a new SiC/2024Al co-continuous composite with lamellar microstructure and high mechanical properties. Journal of Alloys and Compounds, 585, 146-153. | 2014 | 340 | 10.1016/j.jallcom.2013.09.140 | 4505 | metal/ceramic | SiC-83wt.% 2041Al (infiltrated) | water | 100 | 0.0 | 0 | 0.0 | 24.0 | 100 | powder | 3.2 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 15.5 | 0.0 | 0.0 | 0.0 | 931.0 | 90800.0 |
Liu, Q., Ye, F., Gao, Y., Liu, S., Yang, H., & Zhou, Z. (2014). Fabrication of a new SiC/2024Al co-continuous composite with lamellar microstructure and high mechanical properties. Journal of Alloys and Compounds, 585, 146-153. | 2014 | 340 | 10.1016/j.jallcom.2013.09.140 | 4506 | metal/ceramic | SiC-70wt.% 2041Al (infiltrated) | water | 100 | 0.0 | 0 | 0.0 | 24.0 | 100 | powder | 3.2 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 15.5 | 0.0 | 0.0 | 0.0 | 784.0 | 113200.0 |
Liu, Q., Ye, F., Gao, Y., Liu, S., Yang, H., & Zhou, Z. (2014). Fabrication of a new SiC/2024Al co-continuous composite with lamellar microstructure and high mechanical properties. Journal of Alloys and Compounds, 585, 146-153. | 2014 | 340 | 10.1016/j.jallcom.2013.09.140 | 4507 | metal/ceramic | SiC-60wt.% 2041Al (infiltrated) | water | 100 | 0.0 | 0 | 0.0 | 24.0 | 100 | powder | 3.2 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 15.5 | 0.0 | 0.0 | 0.0 | 881.0 | 145300.0 |
Liu, R., Zhang, F., Su, W., Zhao, H., & Wang, C. A. (2015). Impregnation of porous mullite with Na 2 SO 4 phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 134, 268-274. | 2015 | 343 | 10.1016/j.solmat.2014.12.012 | 3526 | ceramic | Mullite-Na2SO4 (impregnation) | TBA | 100 | 0.0 | 0 | 15.0 | 21.0 | 100 | 0 | 14.7 | 5 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, R., Zhang, F., Su, W., Zhao, H., & Wang, C. A. (2015). Impregnation of porous mullite with Na 2 SO 4 phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 134, 268-274. | 2015 | 343 | 10.1016/j.solmat.2014.12.012 | 3527 | ceramic | Mullite-Na2SO4 (impregnation) | TBA | 100 | 0.0 | 0 | 20.0 | 21.0 | 100 | 0 | 14.7 | 5 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 63.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, R., Zhang, F., Su, W., Zhao, H., & Wang, C. A. (2015). Impregnation of porous mullite with Na 2 SO 4 phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 134, 268-274. | 2015 | 343 | 10.1016/j.solmat.2014.12.012 | 3528 | ceramic | Mullite-Na2SO4 (impregnation) | TBA | 100 | 0.0 | 0 | 25.0 | 21.0 | 100 | 0 | 14.7 | 5 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 59.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, R., Zhang, F., Su, W., Zhao, H., & Wang, C. A. (2015). Impregnation of porous mullite with Na 2 SO 4 phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 134, 268-274. | 2015 | 343 | 10.1016/j.solmat.2014.12.012 | 3529 | ceramic | Mullite-Na2SO4 (impregnation) | TBA | 100 | 0.0 | 0 | 30.0 | 21.0 | 100 | 0 | 14.7 | 5 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 56.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, R., Zhang, F., Su, W., Zhao, H., & Wang, C. A. (2015). Impregnation of porous mullite with Na 2 SO 4 phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 134, 268-274. | 2015 | 343 | 10.1016/j.solmat.2014.12.012 | 3530 | ceramic | Mullite-Na2SO4 (impregnation) | TBA | 100 | 0.0 | 0 | 35.0 | 21.0 | 100 | 0 | 14.7 | 5 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, R., Zhang, F., Su, W., Zhao, H., & Wang, C. A. (2015). Impregnation of porous mullite with Na 2 SO 4 phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 134, 268-274. | 2015 | 343 | 10.1016/j.solmat.2014.12.012 | 3531 | ceramic | Mullite-Na2SO4 (impregnation) | TBA | 100 | 0.0 | 0 | 40.0 | 21.0 | 100 | 0 | 14.7 | 5 | 5 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 54.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Xue, W., Shi, C., & Sun, J. (2015). Fully interconnected porous Al 2 O 3 scaffolds prepared by a fast cooling freeze casting method. Ceramics International, 41(9), 11922-11926. | 2015 | 349 | 10.1016/j.ceramint.2015.05.160 | 3550 | ceramic | ZTA | water | 100 | 0.0 | 0 | 17.5 | 51.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 248.0 | 1.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 55.5 | 0.0 | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Xue, W., Shi, C., & Sun, J. (2015). Fully interconnected porous Al 2 O 3 scaffolds prepared by a fast cooling freeze casting method. Ceramics International, 41(9), 11922-11926. | 2015 | 349 | 10.1016/j.ceramint.2015.05.160 | 3551 | ceramic | ZTA | water | 100 | 0.0 | 0 | 17.5 | 51.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 253.0 | 1.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Xue, W., Shi, C., & Sun, J. (2015). Fully interconnected porous Al 2 O 3 scaffolds prepared by a fast cooling freeze casting method. Ceramics International, 41(9), 11922-11926. | 2015 | 349 | 10.1016/j.ceramint.2015.05.160 | 3552 | ceramic | ZTA | water | 100 | 0.0 | 0 | 17.5 | 51.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 257.0 | 1.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Xue, W., Shi, C., & Sun, J. (2015). Fully interconnected porous Al 2 O 3 scaffolds prepared by a fast cooling freeze casting method. Ceramics International, 41(9), 11922-11926. | 2015 | 349 | 10.1016/j.ceramint.2015.05.160 | 3553 | ceramic | ZTA | water | 100 | 0.0 | 0 | 17.5 | 51.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 261.0 | 1.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 0.0 | 90.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Xue, W., Shi, C., & Sun, J. (2015). Fully interconnected porous Al 2 O 3 scaffolds prepared by a fast cooling freeze casting method. Ceramics International, 41(9), 11922-11926. | 2015 | 349 | 10.1016/j.ceramint.2015.05.160 | 3554 | ceramic | ZTA | water | 100 | 0.0 | 0 | 17.5 | 51.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 266.0 | 1.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 125.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Xue, W., Shi, C., & Sun, J. (2015). Fully interconnected porous Al 2 O 3 scaffolds prepared by a fast cooling freeze casting method. Ceramics International, 41(9), 11922-11926. | 2015 | 349 | 10.1016/j.ceramint.2015.05.160 | 3555 | ceramic | ZTA | water | 100 | 0.0 | 0 | 17.5 | 51.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 268.0 | 1.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 155.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Xue, W., Shi, C., & Sun, J. (2015). Fully interconnected porous Al 2 O 3 scaffolds prepared by a fast cooling freeze casting method. Ceramics International, 41(9), 11922-11926. | 2015 | 349 | 10.1016/j.ceramint.2015.05.160 | 3556 | ceramic | ZTA | water | 100 | 0.0 | 0 | 17.5 | 51.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 271.0 | 1.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 76.5 | 0.0 | 220.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Xue, W., Shi, C., & Sun, J. (2015). Fully interconnected porous Al 2 O 3 scaffolds prepared by a fast cooling freeze casting method. Ceramics International, 41(9), 11922-11926. | 2015 | 349 | 10.1016/j.ceramint.2015.05.160 | 3557 | ceramic | ZTA | water | 100 | 0.0 | 0 | 17.5 | 51.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Xue, W., Shi, C., & Sun, J. (2015). Fully interconnected porous Al 2 O 3 scaffolds prepared by a fast cooling freeze casting method. Ceramics International, 41(9), 11922-11926. | 2015 | 349 | 10.1016/j.ceramint.2015.05.160 | 3558 | ceramic | ZTA | water | 100 | 0.0 | 0 | 17.5 | 51.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Xue, W., Shi, C., & Sun, J. (2015). Fully interconnected porous Al 2 O 3 scaffolds prepared by a fast cooling freeze casting method. Ceramics International, 41(9), 11922-11926. | 2015 | 349 | 10.1016/j.ceramint.2015.05.160 | 3559 | ceramic | ZTA | water | 100 | 0.0 | 0 | 17.5 | 51.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Xue, W., Shi, C., & Sun, J. (2015). Fully interconnected porous Al 2 O 3 scaffolds prepared by a fast cooling freeze casting method. Ceramics International, 41(9), 11922-11926. | 2015 | 349 | 10.1016/j.ceramint.2015.05.160 | 3560 | ceramic | ZTA | water | 100 | 0.0 | 0 | 17.5 | 51.0 | 100 | 0 | 0.4 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Preiss, A., Su, B., Collins, S., & Ellison, P. (2010). Fabrication of Functionally Graded ZTA Ceramics Using a Novel Combination of Freeze Casting and Electrophoretic Deposition. In Advances in Science and Technology (Vol. 63, pp. 340-347). Trans Tech Publications. | 2011 | 499 | 10.4028/www.scientific.net/AST.63.340 | 4247 | ceramic | ZTA | water | 100 | 0.0 | 0 | 17.5 | 51.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 248.0 | 1.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 45.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Preiss, A., Su, B., Collins, S., & Ellison, P. (2010). Fabrication of Functionally Graded ZTA Ceramics Using a Novel Combination of Freeze Casting and Electrophoretic Deposition. In Advances in Science and Technology (Vol. 63, pp. 340-347). Trans Tech Publications. | 2011 | 499 | 10.4028/www.scientific.net/AST.63.340 | 4248 | ceramic | ZTA | water | 100 | 0.0 | 0 | 17.5 | 51.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 253.0 | 1.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Preiss, A., Su, B., Collins, S., & Ellison, P. (2010). Fabrication of Functionally Graded ZTA Ceramics Using a Novel Combination of Freeze Casting and Electrophoretic Deposition. In Advances in Science and Technology (Vol. 63, pp. 340-347). Trans Tech Publications. | 2011 | 499 | 10.4028/www.scientific.net/AST.63.340 | 4249 | ceramic | ZTA | water | 100 | 0.0 | 0 | 17.5 | 51.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 255.0 | 1.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Preiss, A., Su, B., Collins, S., & Ellison, P. (2010). Fabrication of Functionally Graded ZTA Ceramics Using a Novel Combination of Freeze Casting and Electrophoretic Deposition. In Advances in Science and Technology (Vol. 63, pp. 340-347). Trans Tech Publications. | 2011 | 499 | 10.4028/www.scientific.net/AST.63.340 | 4250 | ceramic | ZTA | water | 100 | 0.0 | 0 | 17.5 | 51.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 261.0 | 1.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Preiss, A., Su, B., Collins, S., & Ellison, P. (2010). Fabrication of Functionally Graded ZTA Ceramics Using a Novel Combination of Freeze Casting and Electrophoretic Deposition. In Advances in Science and Technology (Vol. 63, pp. 340-347). Trans Tech Publications. | 2011 | 499 | 10.4028/www.scientific.net/AST.63.340 | 4251 | ceramic | ZTA | water | 100 | 0.0 | 0 | 17.5 | 51.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 267.0 | 1.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 125.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Preiss, A., Su, B., Collins, S., & Ellison, P. (2010). Fabrication of Functionally Graded ZTA Ceramics Using a Novel Combination of Freeze Casting and Electrophoretic Deposition. In Advances in Science and Technology (Vol. 63, pp. 340-347). Trans Tech Publications. | 2011 | 499 | 10.4028/www.scientific.net/AST.63.340 | 4252 | ceramic | ZTA | water | 100 | 0.0 | 0 | 17.5 | 51.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 268.0 | 1.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 155.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Preiss, A., Su, B., Collins, S., & Ellison, P. (2010). Fabrication of Functionally Graded ZTA Ceramics Using a Novel Combination of Freeze Casting and Electrophoretic Deposition. In Advances in Science and Technology (Vol. 63, pp. 340-347). Trans Tech Publications. | 2011 | 499 | 10.4028/www.scientific.net/AST.63.340 | 4253 | ceramic | ZTA | water | 100 | 0.0 | 0 | 17.5 | 51.0 | 100 | powder | 0.3 | 0 | 0 | 0 | 271.0 | 1.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 225.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ma, H. Y., Gao, Y., Li, Y. H., Gong, J., Li, X., Fan, B., & Deng, Y. L. (2009). Ice-templating synthesis of polyaniline microflakes stacked by one-dimensional nanofibers. The Journal of Physical Chemistry C, 113(21), 9047-9052. | 2009 | 367 | 10.1021/jp8112683 | 4773 | polymer | PANI | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ma, H. Y., Li, Y. W., Yang, S. X., Cao, F., Gong, J., & Deng, Y. L. (2010). Effects of solvent and doping acid on the morphology of polyaniline prepared with the ice-templating method. The Journal of Physical Chemistry C, 114(20), 9264-9269. | 2010 | 368 | 10.1021/jp101525q | 4774 | polymer | PANI | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Roberts, A. D., Wang, S., Li, X., & Zhang, H. (2014). Hierarchical porous nitrogen-rich carbon monoliths via ice-templating: high capacity and high-rate performance as lithium-ion battery anode materials. Journal of Materials Chemistry A, 2(42), 17787-17796. | 2014 | 524 | 10.1039/c4ta02839b | 5429 | polymer | PANI | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Roberts, A. D., Wang, S., Li, X., & Zhang, H. (2014). Hierarchical porous nitrogen-rich carbon monoliths via ice-templating: high capacity and high-rate performance as lithium-ion battery anode materials. Journal of Materials Chemistry A, 2(42), 17787-17796. | 2014 | 524 | 10.1039/c4ta02839b | 5430 | polymer | PANI | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Roberts, A. D., Wang, S., Li, X., & Zhang, H. (2014). Hierarchical porous nitrogen-rich carbon monoliths via ice-templating: high capacity and high-rate performance as lithium-ion battery anode materials. Journal of Materials Chemistry A, 2(42), 17787-17796. | 2014 | 524 | 10.1039/c4ta02839b | 5431 | polymer | PANI | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4702 | polymer | Enzymatic-cellulose | water | 100 | 0.0 | 0 | 0.47 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 99.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4703 | polymer | Enzymatic-cellulose | water | 100 | 0.0 | 0 | 0.5 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 99.25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4704 | polymer | Enzymatic-cellulose | water | 100 | 0.0 | 0 | 1.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 99.05 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4705 | polymer | Enzymatic-cellulose | water | 100 | 0.0 | 0 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 98.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4706 | polymer | Enzymatic-cellulose | water | 100 | 0.0 | 0 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 94.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4707 | polymer | Enzymatic-cellulose | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 96.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4708 | polymer | Enzymatic-cellulose | water | 100 | 0.0 | 0 | 4.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 97.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4709 | polymer | Enzymatic-cellulose | water | 100 | 0.0 | 0 | 3.5 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 98.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4710 | polymer | Enzymatic-cellulose | water | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 98.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4711 | polymer | Enzymatic-cellulose | water | 100 | 0.0 | 0 | 2.5 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 99.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4712 | polymer | Enzymatic-cellulose | water | 100 | 0.0 | 0 | 0.47 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4720 | polymer | Enzymatic-cellulose | water | 100 | 0.0 | 0 | 0.47 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 205.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 21 | 0 | honeycomb | green | 99.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.01 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4721 | polymer | Enzymatic-cellulose | water | 100 | 0.0 | 0 | 0.7 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 205.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 7 | 0 | honeycomb | green | 99.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.03 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4722 | polymer | Enzymatic-cellulose | water | 100 | 0.0 | 0 | 0.89 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 205.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 5 | 0 | honeycomb | green | 99.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.05 | 0.0 | 0.04 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4723 | polymer | Enzymatic-cellulose | water | 100 | 0.0 | 0 | 1.2 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 205.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 5 | 0 | honeycomb | green | 99.2 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 1.0 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4724 | polymer | Enzymatic-cellulose | water | 100 | 0.0 | 0 | 2.6 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 205.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 1 | 0 | honeycomb | green | 98.5 | 0.0 | 0.0 | 0.0 | 0.0 | 1.2 | 0.0 | 1.1 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4725 | polymer | Enzymatic-cellulose | water | 100 | 0.0 | 0 | 4.5 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 205.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 98.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.25 | 0.0 | 1.2 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4726 | polymer | Enzymatic-cellulose | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 205.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 97.9 | 0.0 | 0.0 | 0.0 | 0.0 | 2.5 | 0.0 | 2.0 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4733 | polymer | Enzymatic-cellulose | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 153.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 99.75 | 0.0 | 0.0 | 0.0 | 0.0 | 0.03 | 0.0 | 0.03 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4734 | polymer | Enzymatic-cellulose | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 173.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 99.75 | 0.0 | 0.0 | 0.0 | 0.0 | 0.03 | 0.0 | 0.03 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4735 | polymer | Enzymatic-cellulose | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 99.75 | 0.0 | 0.0 | 0.0 | 0.0 | 0.03 | 0.0 | 0.03 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4736 | polymer | Enzymatic-cellulose | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 99.75 | 0.0 | 0.0 | 0.0 | 0.0 | 0.04 | 0.0 | 0.04 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4737 | polymer | Enzymatic-cellulose | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 99.75 | 0.0 | 0.0 | 0.0 | 0.0 | 0.03 | 0.0 | 0.05 |
Martoïa, F., Cochereau, T., Dumont, P. J. J., Orgéas, L., Terrien, M., & Belgacem, M. N. (2016). Cellulose nanofibril foams: Links between ice-templating conditions, microstructures and mechanical properties. Materials & Design, 104, 376-391. | 2016 | 382 | 10.1016/j.matdes.2016.04.088 | 4738 | polymer | Enzymatic-cellulose | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 99.75 | 0.0 | 0.0 | 0.0 | 0.0 | 0.05 | 0.0 | 0.06 |
Medri, V., Sciti, D., Dalle Fabbriche, D., Piancastelli, A., & Landi, E. (2015). Ice templating of ZrB 2?SiC systems. Ceramics International, 41(8), 10324-10330. | 2015 | 383 | 10.1016/j.ceramint.2015.04.098 | 3753 | ceramic | ZrB2-12wt.%SiC-3wt.%Si3N4 (mixed) | camphene | 100 | 0.0 | 0 | 38.0 | 33.0 | 75 | 0 | 2.77 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 20 | cellular | sintered | 39.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Medri, V., Sciti, D., Dalle Fabbriche, D., Piancastelli, A., & Landi, E. (2015). Ice templating of ZrB 2?SiC systems. Ceramics International, 41(8), 10324-10330. | 2015 | 383 | 10.1016/j.ceramint.2015.04.098 | 3754 | ceramic | ZrB2-12wt.%SiC-3wt.%Si3N4 (mixed) | camphene | 100 | 0.0 | 0 | 38.0 | 33.0 | 75 | 0 | 2.77 | 0 | 1 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 17 | cellular | sintered | 49.0 | 275.0 | 75.0 | 200.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Medri, V., Sciti, D., Dalle Fabbriche, D., Piancastelli, A., & Landi, E. (2015). Ice templating of ZrB 2?SiC systems. Ceramics International, 41(8), 10324-10330. | 2015 | 383 | 10.1016/j.ceramint.2015.04.098 | 3755 | ceramic | ZrB2-12wt.%SiC-3wt.%Si3N4 (mixed) | camphene | 100 | 0.0 | 0 | 48.0 | 33.0 | 75 | 0 | 2.77 | 0 | 1 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 18 | cellular | sintered | 34.0 | 145.0 | 45.0 | 100.0 | 0.0 | 29.0 | 0.0 | 0.0 |
Medri, V., Sciti, D., Dalle Fabbriche, D., Piancastelli, A., & Landi, E. (2015). Ice templating of ZrB 2?SiC systems. Ceramics International, 41(8), 10324-10330. | 2015 | 383 | 10.1016/j.ceramint.2015.04.098 | 3756 | ceramic | ZrB2-12wt.%SiC-3wt.%Si3N4 (mixed) | camphene | 100 | 0.0 | 0 | 48.0 | 33.0 | 75 | 0 | 2.77 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 15 | cellular | sintered | 37.0 | 190.0 | 45.0 | 150.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Medri, V., Sciti, D., Dalle Fabbriche, D., Piancastelli, A., & Landi, E. (2015). Ice templating of ZrB 2?SiC systems. Ceramics International, 41(8), 10324-10330. | 2015 | 383 | 10.1016/j.ceramint.2015.04.098 | 3757 | ceramic | ZrB2-12wt.%SiC-3wt.%Si3N4 (mixed) | camphene | 100 | 0.0 | 0 | 48.0 | 33.0 | 75 | 0 | 2.77 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 15 | cellular | sintered | 39.0 | 180.0 | 55.0 | 125.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Medri, V., Sciti, D., Dalle Fabbriche, D., Piancastelli, A., & Landi, E. (2015). Ice templating of ZrB 2?SiC systems. Ceramics International, 41(8), 10324-10330. | 2015 | 383 | 10.1016/j.ceramint.2015.04.098 | 3758 | ceramic | ZrB2-12wt.%SiC-3wt.%Si3N4 (mixed) | camphene | 100 | 0.0 | 0 | 48.0 | 33.0 | 75 | 0 | 2.77 | 0 | 1 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 14 | cellular | sintered | 41.0 | 245.0 | 95.0 | 150.0 | 0.0 | 18.0 | 0.0 | 0.0 |
Moon, Y. W., Shin, K. H., Koh, Y. H., Choi, W. Y., & Kim, H. E. (2011). Production of highly aligned porous alumina ceramics by extruding frozen alumina/camphene body. Journal of the European Ceramic Society, 31(11), 1945-1950. | 2011 | 395 | 10.1016/j.jeurceramsoc.2011.04.033 | 3796 | ceramic/polymer | Al2O3-epoxy (impregnation) | camphene | 100 | 0.0 | 0 | 10.0 | 1.0 | 100 | 0 | 0.3 | 10 | 2 | 0 | 270.0 | 0.0 | 0.0 | one-sided | constant | 83.0 | 0.0 | 0 | 0 | 0 | 0 | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Petrini, M., Ferrante, M., & Su, B. (2013). Fabrication and characterization of biomimetic ceramic/polymer composite materials for dental restoration. Dental Materials, 29(4), 375-381. | 2013 | 478 | 10.1016/j.dental.2012.12.004 | 5470 | ceramic/polymer | Al2O3-epoxy (impregnation) | water | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., & Tamon, H. (2003). Porous properties of silica gels with controlled morphology synthesized by unidirectional freeze-gelation. Microporous and mesoporous materials, 63(1), 43-51. | 2003 | 406 | 10.1016/s1387-1811(03)00430-x | 3836 | ceramic/polymer | SiO2-aerogel (impregnation) | water | 100 | 0.0 | 0 | 2.7 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 16.67 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., & Tamon, H. (2003). Porous properties of silica gels with controlled morphology synthesized by unidirectional freeze-gelation. Microporous and mesoporous materials, 63(1), 43-51. | 2003 | 406 | 10.1016/s1387-1811(03)00430-x | 3837 | ceramic/polymer | SiO2-aerogel (impregnation) | water | 100 | 0.0 | 0 | 2.7 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 16.67 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., & Tamon, H. (2003). Porous properties of silica gels with controlled morphology synthesized by unidirectional freeze-gelation. Microporous and mesoporous materials, 63(1), 43-51. | 2003 | 406 | 10.1016/s1387-1811(03)00430-x | 3838 | ceramic/polymer | SiO2-aerogel (impregnation) | water | 100 | 0.0 | 0 | 2.7 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 16.67 | 0.0 | 0 | 0 | 0 | polygonal fiber | green | 0.0 | 0.0 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., & Tamon, H. (2003). Porous properties of silica gels with controlled morphology synthesized by unidirectional freeze-gelation. Microporous and mesoporous materials, 63(1), 43-51. | 2003 | 406 | 10.1016/s1387-1811(03)00430-x | 3839 | ceramic/polymer | SiO2-aerogel (impregnation) | water | 100 | 0.0 | 0 | 2.7 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 16.67 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., & Tamon, H. (2003). Porous properties of silica gels with controlled morphology synthesized by unidirectional freeze-gelation. Microporous and mesoporous materials, 63(1), 43-51. | 2003 | 406 | 10.1016/s1387-1811(03)00430-x | 3840 | ceramic/polymer | SiO2-aerogel (impregnation) | water | 100 | 0.0 | 0 | 5.6 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 16.67 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., & Tamon, H. (2003). Porous properties of silica gels with controlled morphology synthesized by unidirectional freeze-gelation. Microporous and mesoporous materials, 63(1), 43-51. | 2003 | 406 | 10.1016/s1387-1811(03)00430-x | 3841 | ceramic/polymer | SiO2-aerogel (impregnation) | water | 100 | 0.0 | 0 | 5.6 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 16.67 | 0.0 | 0 | 0 | 0 | polygonal fiber | green | 0.0 | 0.0 | 0.0 | 42.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., & Tamon, H. (2003). Porous properties of silica gels with controlled morphology synthesized by unidirectional freeze-gelation. Microporous and mesoporous materials, 63(1), 43-51. | 2003 | 406 | 10.1016/s1387-1811(03)00430-x | 3842 | ceramic/polymer | SiO2-aerogel (impregnation) | water | 100 | 0.0 | 0 | 2.7 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 16.67 | 0.0 | 0 | 0 | 0 | polygonal fiber | green | 0.0 | 0.0 | 0.0 | 36.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., & Tamon, H. (2003). Porous properties of silica gels with controlled morphology synthesized by unidirectional freeze-gelation. Microporous and mesoporous materials, 63(1), 43-51. | 2003 | 406 | 10.1016/s1387-1811(03)00430-x | 3843 | ceramic/polymer | SiO2-aerogel (impregnation) | water | 100 | 0.0 | 0 | 2.7 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 16.67 | 0.0 | 0 | 0 | 0 | polygonal fiber | green | 0.0 | 0.0 | 0.0 | 53.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., & Tamon, H. (2003). Porous properties of silica gels with controlled morphology synthesized by unidirectional freeze-gelation. Microporous and mesoporous materials, 63(1), 43-51. | 2003 | 406 | 10.1016/s1387-1811(03)00430-x | 3844 | ceramic/polymer | SiO2-aerogel (impregnation) | water | 100 | 0.0 | 0 | 2.7 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 16.67 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., & Tamon, H. (2003). Porous properties of silica gels with controlled morphology synthesized by unidirectional freeze-gelation. Microporous and mesoporous materials, 63(1), 43-51. | 2003 | 406 | 10.1016/s1387-1811(03)00430-x | 3845 | ceramic/polymer | SiO2-aerogel (impregnation) | water | 100 | 0.0 | 0 | 2.7 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 16.67 | 0.0 | 0 | 0 | 0 | flat fiber | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., & Tamon, H. (2003). Porous properties of silica gels with controlled morphology synthesized by unidirectional freeze-gelation. Microporous and mesoporous materials, 63(1), 43-51. | 2003 | 406 | 10.1016/s1387-1811(03)00430-x | 3846 | ceramic/polymer | SiO2-aerogel (impregnation) | water | 100 | 0.0 | 0 | 2.7 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 16.67 | 0.0 | 0 | 0 | 0 | flat fiber | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., & Tamon, H. (2003). Porous properties of silica gels with controlled morphology synthesized by unidirectional freeze-gelation. Microporous and mesoporous materials, 63(1), 43-51. | 2003 | 406 | 10.1016/s1387-1811(03)00430-x | 3847 | ceramic/polymer | SiO2-aerogel (impregnation) | water | 100 | 0.0 | 0 | 2.7 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 16.67 | 0.0 | 0 | 0 | 0 | flat fiber | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., & Tamon, H. (2003). Porous properties of silica gels with controlled morphology synthesized by unidirectional freeze-gelation. Microporous and mesoporous materials, 63(1), 43-51. | 2003 | 406 | 10.1016/s1387-1811(03)00430-x | 3848 | ceramic/polymer | SiO2-aerogel (impregnation) | water | 100 | 0.0 | 0 | 2.7 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 16.67 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., & Tamon, H. (2003). Porous properties of silica gels with controlled morphology synthesized by unidirectional freeze-gelation. Microporous and mesoporous materials, 63(1), 43-51. | 2003 | 406 | 10.1016/s1387-1811(03)00430-x | 3849 | ceramic/polymer | SiO2-aerogel (impregnation) | water | 100 | 0.0 | 0 | 2.7 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 16.67 | 0.0 | 0 | 0 | 0 | polygonal fiber | green | 0.0 | 0.0 | 0.0 | 35.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., & Tamon, H. (2003). Porous properties of silica gels with controlled morphology synthesized by unidirectional freeze-gelation. Microporous and mesoporous materials, 63(1), 43-51. | 2003 | 406 | 10.1016/s1387-1811(03)00430-x | 3850 | ceramic/polymer | SiO2-aerogel (impregnation) | water | 100 | 0.0 | 0 | 2.7 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 16.67 | 0.0 | 0 | 0 | 0 | polygonal fiber | green | 0.0 | 0.0 | 0.0 | 81.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., & Tamon, H. (2003). Porous properties of silica gels with controlled morphology synthesized by unidirectional freeze-gelation. Microporous and mesoporous materials, 63(1), 43-51. | 2003 | 406 | 10.1016/s1387-1811(03)00430-x | 3851 | ceramic/polymer | SiO2-aerogel (impregnation) | water | 100 | 0.0 | 0 | 2.7 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 16.67 | 0.0 | 0 | 0 | 0 | 0 | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., & Tamon, H. (2003). Porous properties of silica gels with controlled morphology synthesized by unidirectional freeze-gelation. Microporous and mesoporous materials, 63(1), 43-51. | 2003 | 406 | 10.1016/s1387-1811(03)00430-x | 3852 | ceramic/polymer | SiO2-aerogel (impregnation) | water | 100 | 0.0 | 0 | 2.7 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 16.67 | 0.0 | 0 | 0 | 0 | polygonal fiber | green | 0.0 | 0.0 | 0.0 | 35.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., & Tamon, H. (2003). Porous properties of silica gels with controlled morphology synthesized by unidirectional freeze-gelation. Microporous and mesoporous materials, 63(1), 43-51. | 2003 | 406 | 10.1016/s1387-1811(03)00430-x | 3853 | ceramic/polymer | SiO2-aerogel (impregnation) | water | 100 | 0.0 | 0 | 2.7 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 16.67 | 0.0 | 0 | 0 | 0 | polygonal fiber | green | 0.0 | 0.0 | 0.0 | 35.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., & Tamon, H. (2003). Porous properties of silica gels with controlled morphology synthesized by unidirectional freeze-gelation. Microporous and mesoporous materials, 63(1), 43-51. | 2003 | 406 | 10.1016/s1387-1811(03)00430-x | 3854 | ceramic/polymer | SiO2-aerogel (impregnation) | water | 100 | 0.0 | 0 | 2.7 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 16.67 | 0.0 | 0 | 0 | 0 | 0 | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., & Tamon, H. (2003). Porous properties of silica gels with controlled morphology synthesized by unidirectional freeze-gelation. Microporous and mesoporous materials, 63(1), 43-51. | 2003 | 406 | 10.1016/s1387-1811(03)00430-x | 3855 | ceramic/polymer | SiO2-aerogel (impregnation) | water | 100 | 0.0 | 0 | 2.7 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 16.67 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., & Tamon, H. (2003). Porous properties of silica gels with controlled morphology synthesized by unidirectional freeze-gelation. Microporous and mesoporous materials, 63(1), 43-51. | 2003 | 406 | 10.1016/s1387-1811(03)00430-x | 3856 | ceramic/polymer | SiO2-aerogel (impregnation) | water | 100 | 0.0 | 0 | 1.3 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 16.67 | 0.0 | 0 | 0 | 0 | polygonal fiber | green | 0.0 | 0.0 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., & Tamon, H. (2003). Porous properties of silica gels with controlled morphology synthesized by unidirectional freeze-gelation. Microporous and mesoporous materials, 63(1), 43-51. | 2003 | 406 | 10.1016/s1387-1811(03)00430-x | 3857 | ceramic/polymer | SiO2-aerogel (impregnation) | water | 100 | 0.0 | 0 | 5.1 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 16.67 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., & Tamon, H. (2003). Porous properties of silica gels with controlled morphology synthesized by unidirectional freeze-gelation. Microporous and mesoporous materials, 63(1), 43-51. | 2003 | 406 | 10.1016/s1387-1811(03)00430-x | 3858 | ceramic/polymer | SiO2-aerogel (impregnation) | water | 100 | 0.0 | 0 | 5.1 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 16.67 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., Yoshida, T., Taniguchi, K. I., & Tamon, H. (2005). Morphology of resorcinol?formaldehyde gels obtained through ice-templating. Carbon, 43(7), 1563-1565. | 2005 | 408 | 10.1016/j.carbon.2004.12.029 | 5504 | carbon | C | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., Yoshida, T., Taniguchi, K. I., & Tamon, H. (2005). Morphology of resorcinol?formaldehyde gels obtained through ice-templating. Carbon, 43(7), 1563-1565. | 2005 | 408 | 10.1016/j.carbon.2004.12.029 | 5505 | carbon | C | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 22.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., Yoshida, T., Taniguchi, K. I., & Tamon, H. (2005). Morphology of resorcinol?formaldehyde gels obtained through ice-templating. Carbon, 43(7), 1563-1565. | 2005 | 408 | 10.1016/j.carbon.2004.12.029 | 5506 | carbon | C | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., Yoshida, T., Taniguchi, K. I., & Tamon, H. (2005). Morphology of resorcinol?formaldehyde gels obtained through ice-templating. Carbon, 43(7), 1563-1565. | 2005 | 408 | 10.1016/j.carbon.2004.12.029 | 5507 | carbon | C | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., Yoshida, T., Taniguchi, K. I., & Tamon, H. (2005). Morphology of resorcinol?formaldehyde gels obtained through ice-templating. Carbon, 43(7), 1563-1565. | 2005 | 408 | 10.1016/j.carbon.2004.12.029 | 5508 | carbon | C | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., Yoshida, T., Taniguchi, K. I., & Tamon, H. (2005). Morphology of resorcinol?formaldehyde gels obtained through ice-templating. Carbon, 43(7), 1563-1565. | 2005 | 408 | 10.1016/j.carbon.2004.12.029 | 5509 | carbon | C | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., Yoshida, T., Taniguchi, K. I., & Tamon, H. (2005). Morphology of resorcinol?formaldehyde gels obtained through ice-templating. Carbon, 43(7), 1563-1565. | 2005 | 408 | 10.1016/j.carbon.2004.12.029 | 5510 | carbon | C | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., Yoshida, T., Taniguchi, K. I., & Tamon, H. (2005). Morphology of resorcinol?formaldehyde gels obtained through ice-templating. Carbon, 43(7), 1563-1565. | 2005 | 408 | 10.1016/j.carbon.2004.12.029 | 5511 | carbon | C | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mukai, S. R., Nishihara, H., Yoshida, T., Taniguchi, K. I., & Tamon, H. (2005). Morphology of resorcinol?formaldehyde gels obtained through ice-templating. Carbon, 43(7), 1563-1565. | 2005 | 408 | 10.1016/j.carbon.2004.12.029 | 5512 | carbon | C | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Iwamura, S., Kitano, K., Ogino, I., & Mukai, S. R. (2016). New method for introducing mesopores into carbon microhoneycombs using dextran. Microporous and Mesoporous Materials, 231, 171-177. | 2016 | 860 | 10.1016/j.micromeso.2016.05.031 | 4756 | carbon | C | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naglieri, V., Gludovatz, B., Tomsia, A. P., & Ritchie, R. O. (2015). Developing strength and toughness in bio-inspired silicon carbide hybrid materials containing a compliant phase. Acta Materialia, 98, 141-151. | 2015 | 416 | 10.1016/j.actamat.2015.07.022 | 4497 | ceramic/polymer | SiC-20wt.% PMMA (infiltrated) | water | 100 | 0.0 | 0 | 25.0 | 24.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 15.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 9.0 | 0.0 | 0.0 | 0.0 | 164.5 | 0.0 |
Naglieri, V., Gludovatz, B., Tomsia, A. P., & Ritchie, R. O. (2015). Developing strength and toughness in bio-inspired silicon carbide hybrid materials containing a compliant phase. Acta Materialia, 98, 141-151. | 2015 | 416 | 10.1016/j.actamat.2015.07.022 | 4498 | ceramic/polymer | SiC-25wt.% PMMA (infiltrated) | water | 100 | 0.0 | 0 | 30.0 | 24.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 35.0 | 0.0 | 0.0 | 0.0 | 126.6 | 0.0 |
Naglieri, V., Gludovatz, B., Tomsia, A. P., & Ritchie, R. O. (2015). Developing strength and toughness in bio-inspired silicon carbide hybrid materials containing a compliant phase. Acta Materialia, 98, 141-151. | 2015 | 416 | 10.1016/j.actamat.2015.07.022 | 4499 | ceramic/polymer | SiC-25wt.% PMMA (infiltrated) | water | 100 | 0.0 | 0 | 25.0 | 24.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 12.0 | 0.0 | 0.0 | 0.0 | 124.7 | 0.0 |
Naglieri, V., Gludovatz, B., Tomsia, A. P., & Ritchie, R. O. (2015). Developing strength and toughness in bio-inspired silicon carbide hybrid materials containing a compliant phase. Acta Materialia, 98, 141-151. | 2015 | 416 | 10.1016/j.actamat.2015.07.022 | 4500 | ceramic/polymer | SiC-25wt.% PMMA (infiltrated) | water | 100 | 0.0 | 0 | 25.0 | 24.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 7.0 | 0.0 | 0.0 | 0.0 | 148.8 | 0.0 |
Naglieri, V., Gludovatz, B., Tomsia, A. P., & Ritchie, R. O. (2015). Developing strength and toughness in bio-inspired silicon carbide hybrid materials containing a compliant phase. Acta Materialia, 98, 141-151. | 2015 | 416 | 10.1016/j.actamat.2015.07.022 | 4501 | ceramic/polymer | SiC-25wt.% PMMA (infiltrated) | water | 100 | 0.0 | 0 | 17.0 | 24.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 108.4 | 0.0 |
Nakagawa, K., Thongprachan, N., Charinpanitkul, T., & Tanthapanichakoon, W. (2010). Ice crystal formation in the carbon nanotube suspension: a modelling approach. Chemical Engineering Science, 65(4), 1438-1451. | 2010 | 418 | 10.1016/j.ces.2009.10.014 | 5768 | carbon | CNT | water | 100 | 0.0 | 0 | 0.97 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 3.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 60.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nakagawa, K., Thongprachan, N., Charinpanitkul, T., & Tanthapanichakoon, W. (2010). Ice crystal formation in the carbon nanotube suspension: a modelling approach. Chemical Engineering Science, 65(4), 1438-1451. | 2010 | 418 | 10.1016/j.ces.2009.10.014 | 5769 | carbon | CNT | water | 100 | 0.0 | 0 | 0.97 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 78.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nakagawa, K., Thongprachan, N., Charinpanitkul, T., & Tanthapanichakoon, W. (2010). Ice crystal formation in the carbon nanotube suspension: a modelling approach. Chemical Engineering Science, 65(4), 1438-1451. | 2010 | 418 | 10.1016/j.ces.2009.10.014 | 5770 | carbon | CNT | water | 100 | 0.0 | 0 | 0.97 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.1 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 99.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nakagawa, K., Thongprachan, N., Charinpanitkul, T., & Tanthapanichakoon, W. (2010). Ice crystal formation in the carbon nanotube suspension: a modelling approach. Chemical Engineering Science, 65(4), 1438-1451. | 2010 | 418 | 10.1016/j.ces.2009.10.014 | 5771 | carbon | CNT | water | 100 | 0.0 | 0 | 0.97 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 3.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 19.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nakagawa, K., Thongprachan, N., Charinpanitkul, T., & Tanthapanichakoon, W. (2010). Ice crystal formation in the carbon nanotube suspension: a modelling approach. Chemical Engineering Science, 65(4), 1438-1451. | 2010 | 418 | 10.1016/j.ces.2009.10.014 | 5772 | carbon | CNT | water | 100 | 0.0 | 0 | 0.97 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | immersion | constant | 180.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 30.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nakagawa, K., Thongprachan, N., Charinpanitkul, T., & Tanthapanichakoon, W. (2010). Ice crystal formation in the carbon nanotube suspension: a modelling approach. Chemical Engineering Science, 65(4), 1438-1451. | 2010 | 418 | 10.1016/j.ces.2009.10.014 | 5773 | carbon | CNT | water | 100 | 0.0 | 0 | 0.97 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 67.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 32.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nakagawa, K., Thongprachan, N., Charinpanitkul, T., & Tanthapanichakoon, W. (2010). Ice crystal formation in the carbon nanotube suspension: a modelling approach. Chemical Engineering Science, 65(4), 1438-1451. | 2010 | 418 | 10.1016/j.ces.2009.10.014 | 5774 | carbon | CNT | water | 100 | 0.0 | 0 | 0.97 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 20.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 40.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nakagawa, K., Thongprachan, N., Charinpanitkul, T., & Tanthapanichakoon, W. (2010). Ice crystal formation in the carbon nanotube suspension: a modelling approach. Chemical Engineering Science, 65(4), 1438-1451. | 2010 | 418 | 10.1016/j.ces.2009.10.014 | 5775 | carbon | CNT | water | 100 | 0.0 | 0 | 0.97 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 180.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 15.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Osi?ka, J., Il?íková, M., Mrlík, M., Al-Maadeed, M. A. S., ?louf, M., Tkac, J., & Kasák, P. (2016). Anisotropy in CNT composite fabricated by combining directional freezing and gamma irradiation of acrylic acid. Materials & Design, 97, 300-306. | 2016 | 452 | 10.1016/j.matdes.2016.02.101 | 4785 | carbon | CNT | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 160.0 | 0.0 | 0 | 0 | 0 | lamellar | solidification | 0.0 | 0.0 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Park, S. H., Kim, K. H., Roh, K. C., & Kim, K. B. (2013). Morphology control of three-dimensional carbon nanotube macrostructures fabricated using ice-templating method. Journal of Porous Materials, 20(5), 1289-1297. | 2013 | 461 | 10.1007/s10934-013-9713-3 | 4787 | carbon | CNT | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Park, S. H., Kim, K. H., Roh, K. C., & Kim, K. B. (2013). Morphology control of three-dimensional carbon nanotube macrostructures fabricated using ice-templating method. Journal of Porous Materials, 20(5), 1289-1297. | 2013 | 461 | 10.1007/s10934-013-9713-3 | 5751 | carbon | CNT | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 100.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Park, S. H., Kim, K. H., Roh, K. C., & Kim, K. B. (2013). Morphology control of three-dimensional carbon nanotube macrostructures fabricated using ice-templating method. Journal of Porous Materials, 20(5), 1289-1297. | 2013 | 461 | 10.1007/s10934-013-9713-3 | 5752 | carbon | CNT | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 200.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Park, S. H., Kim, K. H., Roh, K. C., & Kim, K. B. (2013). Morphology control of three-dimensional carbon nanotube macrostructures fabricated using ice-templating method. Journal of Porous Materials, 20(5), 1289-1297. | 2013 | 461 | 10.1007/s10934-013-9713-3 | 5753 | carbon | CNT | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 500.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Serrano, M. C., Nardecchia, S., García-Rama, C., Ferrer, M. L., Collazos-Castro, J. E., del Monte, F., & Gutiérrez, M. C. (2014). Chondroitin sulphate-based 3D scaffolds containing MWCNTs for nervous tissue repair. Biomaterials, 35(5), 1543-1551. | 2014 | 553 | 10.1016/j.biomaterials.2013.11.017 | 4794 | carbon | CNT | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mei, H., Xia, J., Han, D., Xiao, S., Deng, J., & Cheng, L. (2016). Dramatic increase in electrical conductivity in epoxy composites with uni-directionally oriented laminae of carbon nanotubes. Chemical Engineering Journal, 304, 970-976. | 2016 | 877 | 10.1016/j.cej.2016.07.025 | 5520 | carbon | CNT | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 97.37 | 0.0 | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mei, H., Xia, J., Han, D., Xiao, S., Deng, J., & Cheng, L. (2016). Dramatic increase in electrical conductivity in epoxy composites with uni-directionally oriented laminae of carbon nanotubes. Chemical Engineering Journal, 304, 970-976. | 2016 | 877 | 10.1016/j.cej.2016.07.025 | 5521 | carbon | CNT | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mei, H., Xia, J., Han, D., Xiao, S., Deng, J., & Cheng, L. (2016). Dramatic increase in electrical conductivity in epoxy composites with uni-directionally oriented laminae of carbon nanotubes. Chemical Engineering Journal, 304, 970-976. | 2016 | 877 | 10.1016/j.cej.2016.07.025 | 5522 | carbon | CNT | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mei, H., Xia, J., Han, D., Xiao, S., Deng, J., & Cheng, L. (2016). Dramatic increase in electrical conductivity in epoxy composites with uni-directionally oriented laminae of carbon nanotubes. Chemical Engineering Journal, 304, 970-976. | 2016 | 877 | 10.1016/j.cej.2016.07.025 | 5523 | carbon | CNT | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mei, H., Xia, J., Han, D., Xiao, S., Deng, J., & Cheng, L. (2016). Dramatic increase in electrical conductivity in epoxy composites with uni-directionally oriented laminae of carbon nanotubes. Chemical Engineering Journal, 304, 970-976. | 2016 | 877 | 10.1016/j.cej.2016.07.025 | 5524 | carbon | CNT | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mei, H., Xia, J., Han, D., Xiao, S., Deng, J., & Cheng, L. (2016). Dramatic increase in electrical conductivity in epoxy composites with uni-directionally oriented laminae of carbon nanotubes. Chemical Engineering Journal, 304, 970-976. | 2016 | 877 | 10.1016/j.cej.2016.07.025 | 5525 | carbon | CNT | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mei, H., Xia, J., Han, D., Xiao, S., Deng, J., & Cheng, L. (2016). Dramatic increase in electrical conductivity in epoxy composites with uni-directionally oriented laminae of carbon nanotubes. Chemical Engineering Journal, 304, 970-976. | 2016 | 877 | 10.1016/j.cej.2016.07.025 | 5526 | carbon | CNT | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mei, H., Xia, J., Han, D., Xiao, S., Deng, J., & Cheng, L. (2016). Dramatic increase in electrical conductivity in epoxy composites with uni-directionally oriented laminae of carbon nanotubes. Chemical Engineering Journal, 304, 970-976. | 2016 | 877 | 10.1016/j.cej.2016.07.025 | 5527 | carbon | CNT | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mei, H., Xia, J., Han, D., Xiao, S., Deng, J., & Cheng, L. (2016). Dramatic increase in electrical conductivity in epoxy composites with uni-directionally oriented laminae of carbon nanotubes. Chemical Engineering Journal, 304, 970-976. | 2016 | 877 | 10.1016/j.cej.2016.07.025 | 5528 | carbon | CNT | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mei, H., Xia, J., Han, D., Xiao, S., Deng, J., & Cheng, L. (2016). Dramatic increase in electrical conductivity in epoxy composites with uni-directionally oriented laminae of carbon nanotubes. Chemical Engineering Journal, 304, 970-976. | 2016 | 877 | 10.1016/j.cej.2016.07.025 | 5529 | carbon | CNT | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, J., Gong, Q., Zhuang, D., & Liang, J. (2015). Chemical vapor infiltration tailored hierarchical porous CNTs/C composite spheres fabricated by freeze casting and their adsorption properties. RSC Advances, 5(22), 16870-16877. | 2015 | 909 | 10.1039/C4RA16082G | 4928 | carbon | CNT | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.38 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, J., Gong, Q., Zhuang, D., & Liang, J. (2015). Chemical vapor infiltration tailored hierarchical porous CNTs/C composite spheres fabricated by freeze casting and their adsorption properties. RSC Advances, 5(22), 16870-16877. | 2015 | 909 | 10.1039/C4RA16082G | 4929 | carbon | CNT | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.38 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, J., Gong, Q., Zhuang, D., & Liang, J. (2015). Chemical vapor infiltration tailored hierarchical porous CNTs/C composite spheres fabricated by freeze casting and their adsorption properties. RSC Advances, 5(22), 16870-16877. | 2015 | 909 | 10.1039/C4RA16082G | 4930 | carbon | CNT | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.38 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, J., Gong, Q., Zhuang, D., & Liang, J. (2015). Chemical vapor infiltration tailored hierarchical porous CNTs/C composite spheres fabricated by freeze casting and their adsorption properties. RSC Advances, 5(22), 16870-16877. | 2015 | 909 | 10.1039/C4RA16082G | 4931 | carbon | CNT | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.38 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, J., Gong, Q., Zhuang, D., & Liang, J. (2015). Chemical vapor infiltration tailored hierarchical porous CNTs/C composite spheres fabricated by freeze casting and their adsorption properties. RSC Advances, 5(22), 16870-16877. | 2015 | 909 | 10.1039/C4RA16082G | 4932 | carbon | CNT | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, J., Gong, Q., Zhuang, D., & Liang, J. (2015). Chemical vapor infiltration tailored hierarchical porous CNTs/C composite spheres fabricated by freeze casting and their adsorption properties. RSC Advances, 5(22), 16870-16877. | 2015 | 909 | 10.1039/C4RA16082G | 4933 | carbon | CNT | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naviroj, M., Miller, S. M., Colombo, P., & Faber, K. T. (2015). Directionally aligned macroporous SiOC via freeze casting of preceramic polymers. Journal of the European Ceramic Society, 35(8), 2225-2232. | 2015 | 424 | 10.1016/j.jeurceramsoc.2015.02.013 | 3959 | ceramic | SiOC | cyclohexane | 100 | 0.0 | 0 | 5.0 | 89.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 91.4 | 0.0 | 45.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naviroj, M., Miller, S. M., Colombo, P., & Faber, K. T. (2015). Directionally aligned macroporous SiOC via freeze casting of preceramic polymers. Journal of the European Ceramic Society, 35(8), 2225-2232. | 2015 | 424 | 10.1016/j.jeurceramsoc.2015.02.013 | 3960 | ceramic | SiOC | cyclohexane | 100 | 0.0 | 0 | 20.0 | 89.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 77.1 | 0.0 | 17.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naviroj, M., Miller, S. M., Colombo, P., & Faber, K. T. (2015). Directionally aligned macroporous SiOC via freeze casting of preceramic polymers. Journal of the European Ceramic Society, 35(8), 2225-2232. | 2015 | 424 | 10.1016/j.jeurceramsoc.2015.02.013 | 3961 | ceramic | SiOC | cyclohexane | 100 | 0.0 | 0 | 40.0 | 89.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 61.4 | 0.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naviroj, M., Miller, S. M., Colombo, P., & Faber, K. T. (2015). Directionally aligned macroporous SiOC via freeze casting of preceramic polymers. Journal of the European Ceramic Society, 35(8), 2225-2232. | 2015 | 424 | 10.1016/j.jeurceramsoc.2015.02.013 | 3962 | ceramic | SiOC | TBA | 100 | 0.0 | 0 | 5.0 | 89.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 94.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naviroj, M., Miller, S. M., Colombo, P., & Faber, K. T. (2015). Directionally aligned macroporous SiOC via freeze casting of preceramic polymers. Journal of the European Ceramic Society, 35(8), 2225-2232. | 2015 | 424 | 10.1016/j.jeurceramsoc.2015.02.013 | 3963 | ceramic | SiOC | TBA | 100 | 0.0 | 0 | 20.0 | 89.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 75.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naviroj, M., Miller, S. M., Colombo, P., & Faber, K. T. (2015). Directionally aligned macroporous SiOC via freeze casting of preceramic polymers. Journal of the European Ceramic Society, 35(8), 2225-2232. | 2015 | 424 | 10.1016/j.jeurceramsoc.2015.02.013 | 3964 | ceramic | SiOC | TBA | 100 | 0.0 | 0 | 40.0 | 89.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 63.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naviroj, M., Miller, S. M., Colombo, P., & Faber, K. T. (2015). Directionally aligned macroporous SiOC via freeze casting of preceramic polymers. Journal of the European Ceramic Society, 35(8), 2225-2232. | 2015 | 424 | 10.1016/j.jeurceramsoc.2015.02.013 | 3965 | ceramic | SiOC | camphene | 100 | 0.0 | 0 | 5.0 | 89.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 288.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naviroj, M., Miller, S. M., Colombo, P., & Faber, K. T. (2015). Directionally aligned macroporous SiOC via freeze casting of preceramic polymers. Journal of the European Ceramic Society, 35(8), 2225-2232. | 2015 | 424 | 10.1016/j.jeurceramsoc.2015.02.013 | 3966 | ceramic | SiOC | camphene | 100 | 0.0 | 0 | 20.0 | 89.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 288.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naviroj, M., Miller, S. M., Colombo, P., & Faber, K. T. (2015). Directionally aligned macroporous SiOC via freeze casting of preceramic polymers. Journal of the European Ceramic Society, 35(8), 2225-2232. | 2015 | 424 | 10.1016/j.jeurceramsoc.2015.02.013 | 3967 | ceramic | SiOC | camphene | 100 | 0.0 | 0 | 40.0 | 89.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 288.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, H., Nunes, P. D. A., Wilhelm, M., & Rezwan, K. (2016). Hierarchically ordered micro/meso/macroporous polymer-derived ceramic monoliths fabricated by freeze-casting. Journal of the European Ceramic Society, 36(1), 51-58. | 2016 | 756 | 10.1016/j.jeurceramsoc.2015.09.018 | 4890 | ceramic | SiOC | water | 100 | 0.0 | 0 | 4.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, H., Nunes, P. D. A., Wilhelm, M., & Rezwan, K. (2016). Hierarchically ordered micro/meso/macroporous polymer-derived ceramic monoliths fabricated by freeze-casting. Journal of the European Ceramic Society, 36(1), 51-58. | 2016 | 756 | 10.1016/j.jeurceramsoc.2015.09.018 | 4891 | ceramic | SiOC | water | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, H., Nunes, P. D. A., Wilhelm, M., & Rezwan, K. (2016). Hierarchically ordered micro/meso/macroporous polymer-derived ceramic monoliths fabricated by freeze-casting. Journal of the European Ceramic Society, 36(1), 51-58. | 2016 | 756 | 10.1016/j.jeurceramsoc.2015.09.018 | 4892 | ceramic | SiOC | 0.0 | 0 | 0.0 | 0 | 14.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, H., Nunes, P. D. A., Wilhelm, M., & Rezwan, K. (2016). Hierarchically ordered micro/meso/macroporous polymer-derived ceramic monoliths fabricated by freeze-casting. Journal of the European Ceramic Society, 36(1), 51-58. | 2016 | 756 | 10.1016/j.jeurceramsoc.2015.09.018 | 4893 | ceramic | SiOC | 0.0 | 0 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, H., Nunes, P. D. A., Wilhelm, M., & Rezwan, K. (2016). Hierarchically ordered micro/meso/macroporous polymer-derived ceramic monoliths fabricated by freeze-casting. Journal of the European Ceramic Society, 36(1), 51-58. | 2016 | 756 | 10.1016/j.jeurceramsoc.2015.09.018 | 4894 | ceramic | SiOC | 0.0 | 0 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, H., Nunes, P. D. A., Wilhelm, M., & Rezwan, K. (2016). Hierarchically ordered micro/meso/macroporous polymer-derived ceramic monoliths fabricated by freeze-casting. Journal of the European Ceramic Society, 36(1), 51-58. | 2016 | 756 | 10.1016/j.jeurceramsoc.2015.09.018 | 4895 | ceramic | SiOC | 0.0 | 0 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naviroj, M., Wang, M. M., Johnson, M. T., & Faber, K. T. (2017). Nucleation-controlled freeze casting of preceramic polymers for uniaxial pores in Si-based ceramics. Scripta Materialia, 130, 32-36. | 2017 | 824 | 10.1016/j.scriptamat.2016.10.038 | 5018 | ceramic | SiOC | cyclohexane | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | parabolic | 5.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 72.0 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naviroj, M., Wang, M. M., Johnson, M. T., & Faber, K. T. (2017). Nucleation-controlled freeze casting of preceramic polymers for uniaxial pores in Si-based ceramics. Scripta Materialia, 130, 32-36. | 2017 | 824 | 10.1016/j.scriptamat.2016.10.038 | 5019 | ceramic | SiOC | cyclohexane | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | template (nuc-ctrl) | parabolic | 5.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 74.0 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naviroj, M., Wang, M. M., Johnson, M. T., & Faber, K. T. (2017). Nucleation-controlled freeze casting of preceramic polymers for uniaxial pores in Si-based ceramics. Scripta Materialia, 130, 32-36. | 2017 | 824 | 10.1016/j.scriptamat.2016.10.038 | 5020 | ceramic | SiOC | cyclohexane | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | template (nuc-ctrl) | parabolic | 5.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 67.0 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naviroj, M., Wang, M. M., Johnson, M. T., & Faber, K. T. (2017). Nucleation-controlled freeze casting of preceramic polymers for uniaxial pores in Si-based ceramics. Scripta Materialia, 130, 32-36. | 2017 | 824 | 10.1016/j.scriptamat.2016.10.038 | 5021 | ceramic | SiOC | cyclohexane | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | template (nuc-ctrl) | parabolic | 5.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 71.0 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naviroj, M., Voorhees, P. W., & Faber, K. T. (2017). Suspension-and solution-based freeze casting for porous ceramics. Journal of Materials Research, 1-11. | 2017 | 1002 | 10.1557/jmr.2017.133 | 6161 | ceramic | SiOC | cyclooctane | 100 | 0.0 | 0 | 17.0 | 121.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 15.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 5.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naviroj, M., Voorhees, P. W., & Faber, K. T. (2017). Suspension-and solution-based freeze casting for porous ceramics. Journal of Materials Research, 1-11. | 2017 | 1002 | 10.1557/jmr.2017.133 | 6162 | ceramic | SiOC | cyclohexane | 100 | 0.0 | 0 | 17.0 | 121.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 15.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 11.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naviroj, M., Voorhees, P. W., & Faber, K. T. (2017). Suspension-and solution-based freeze casting for porous ceramics. Journal of Materials Research, 1-11. | 2017 | 1002 | 10.1557/jmr.2017.133 | 6163 | ceramic | SiOC | dioxane | 100 | 0.0 | 0 | 17.0 | 121.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 15.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Naviroj, M., Voorhees, P. W., & Faber, K. T. (2017). Suspension-and solution-based freeze casting for porous ceramics. Journal of Materials Research, 1-11. | 2017 | 1002 | 10.1557/jmr.2017.133 | 6164 | ceramic | SiOC | dimethyl carbonate | 100 | 0.0 | 0 | 17.0 | 121.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 15.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 24.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Production of High?Tensile?Strength Paracetamol Tablets Using the Freeze?Casting Process. Chemical Engineering & Technology, 38(6), 991-998. | 2015 | 426 | 10.1002/ceat.201400700 | 5762 | pharmaceutical | paracetamol | water | 100 | 0.0 | 0 | 46.0 | 100.0 | 0 | powder | 0.0 | 18 | 0 | 0 | 249.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 63.55 | 0.0 | 6.22 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Production of High?Tensile?Strength Paracetamol Tablets Using the Freeze?Casting Process. Chemical Engineering & Technology, 38(6), 991-998. | 2015 | 426 | 10.1002/ceat.201400700 | 5763 | pharmaceutical | paracetamol | water | 100 | 0.0 | 0 | 44.0 | 100.0 | 0 | powder | 0.0 | 28 | 0 | 0 | 249.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 60.0 | 0.0 | 5.67 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Production of High?Tensile?Strength Paracetamol Tablets Using the Freeze?Casting Process. Chemical Engineering & Technology, 38(6), 991-998. | 2015 | 426 | 10.1002/ceat.201400700 | 5764 | pharmaceutical | paracetamol | water | 100 | 0.0 | 0 | 43.0 | 100.0 | 0 | powder | 0.0 | 37 | 0 | 0 | 249.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 57.51 | 0.0 | 4.94 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Production of High?Tensile?Strength Paracetamol Tablets Using the Freeze?Casting Process. Chemical Engineering & Technology, 38(6), 991-998. | 2015 | 426 | 10.1002/ceat.201400700 | 5765 | pharmaceutical | paracetamol | water | 100 | 0.0 | 0 | 42.0 | 100.0 | 0 | powder | 0.0 | 44 | 0 | 0 | 249.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 58.76 | 0.0 | 4.85 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Production of High?Tensile?Strength Paracetamol Tablets Using the Freeze?Casting Process. Chemical Engineering & Technology, 38(6), 991-998. | 2015 | 426 | 10.1002/ceat.201400700 | 5766 | pharmaceutical | paracetamol | water | 100 | 0.0 | 0 | 41.0 | 100.0 | 0 | powder | 0.0 | 51 | 0 | 0 | 249.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 56.79 | 0.0 | 4.61 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Production of High?Tensile?Strength Paracetamol Tablets Using the Freeze?Casting Process. Chemical Engineering & Technology, 38(6), 991-998. | 2015 | 426 | 10.1002/ceat.201400700 | 5767 | pharmaceutical | paracetamol | water | 100 | 0.0 | 0 | 39.0 | 100.0 | 0 | powder | 0.0 | 68 | 0 | 0 | 249.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Frohberg, P., Nguyen, T. N. P., & Ulrich, J. (2016). New Aspects in the Formulation of Drugs Based on Three Case Studies. Molecules, 21(5), 577. | 2016 | 429 | 10.1002/ceat.201600036 | 4780 | pharmaceutical | paracetamol | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Production of High?Tensile?Strength Paracetamol Tablets Using the Freeze?Casting Process. Chemical Engineering & Technology, 38(6), 991-998. | 2015 | 480 | 10.1002/ceat.201400700 | 4254 | pharmaceutical | paracetamol | water | 100 | 0.0 | 0 | 41.0 | 100.0 | 100 | dissolved | 0.0 | 9 | 0 | 0 | 249.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 63.55 | 0.0 | 6.22 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Production of High?Tensile?Strength Paracetamol Tablets Using the Freeze?Casting Process. Chemical Engineering & Technology, 38(6), 991-998. | 2015 | 480 | 10.1002/ceat.201400700 | 4255 | pharmaceutical | paracetamol | water | 100 | 0.0 | 0 | 40.0 | 100.0 | 100 | dissolved | 0.0 | 15 | 0 | 0 | 249.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 60.0 | 0.0 | 5.67 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Production of High?Tensile?Strength Paracetamol Tablets Using the Freeze?Casting Process. Chemical Engineering & Technology, 38(6), 991-998. | 2015 | 480 | 10.1002/ceat.201400700 | 4256 | pharmaceutical | paracetamol | water | 100 | 0.0 | 0 | 38.0 | 100.0 | 100 | dissolved | 0.0 | 200 | 0 | 0 | 249.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 57.51 | 0.0 | 4.94 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Production of High?Tensile?Strength Paracetamol Tablets Using the Freeze?Casting Process. Chemical Engineering & Technology, 38(6), 991-998. | 2015 | 480 | 10.1002/ceat.201400700 | 4257 | pharmaceutical | paracetamol | water | 100 | 0.0 | 0 | 36.0 | 100.0 | 100 | dissolved | 0.0 | 25 | 0 | 0 | 249.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 58.76 | 0.0 | 4.85 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Production of High?Tensile?Strength Paracetamol Tablets Using the Freeze?Casting Process. Chemical Engineering & Technology, 38(6), 991-998. | 2015 | 480 | 10.1002/ceat.201400700 | 4258 | pharmaceutical | paracetamol | water | 100 | 0.0 | 0 | 33.0 | 100.0 | 100 | dissolved | 0.0 | 29 | 0 | 0 | 249.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 56.79 | 0.0 | 4.61 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Production of High?Tensile?Strength Paracetamol Tablets Using the Freeze?Casting Process. Chemical Engineering & Technology, 38(6), 991-998. | 2015 | 480 | 10.1002/ceat.201400700 | 4259 | pharmaceutical | paracetamol | water | 100 | 0.0 | 0 | 32.0 | 100.0 | 100 | dissolved | 0.0 | 39 | 0 | 0 | 249.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T., & Ulrich, J. (2014). Fast Dispersible Cocoa Tablets: A Case Study of Freeze?Casting Applied to Foods. Chemical Engineering & Technology, 37(8), 1376-1382. | 2014 | 427 | 10.1002/ceat.201400032 | 3971 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 36.0 | 90.0 | 100 | powder | 160.0 | 0 | 0 | 0 | 249.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T., & Ulrich, J. (2014). Fast Dispersible Cocoa Tablets: A Case Study of Freeze?Casting Applied to Foods. Chemical Engineering & Technology, 37(8), 1376-1382. | 2014 | 427 | 10.1002/ceat.201400032 | 3972 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 39.0 | 90.0 | 100 | powder | 160.0 | 0 | 0 | 0 | 249.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 75.56 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T., & Ulrich, J. (2014). Fast Dispersible Cocoa Tablets: A Case Study of Freeze?Casting Applied to Foods. Chemical Engineering & Technology, 37(8), 1376-1382. | 2014 | 427 | 10.1002/ceat.201400032 | 3973 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 41.0 | 90.0 | 100 | powder | 160.0 | 0 | 0 | 0 | 249.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 71.21 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T., & Ulrich, J. (2014). Fast Dispersible Cocoa Tablets: A Case Study of Freeze?Casting Applied to Foods. Chemical Engineering & Technology, 37(8), 1376-1382. | 2014 | 427 | 10.1002/ceat.201400032 | 3974 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 45.0 | 90.0 | 100 | powder | 160.0 | 0 | 0 | 0 | 249.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 69.19 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T., & Ulrich, J. (2014). Fast Dispersible Cocoa Tablets: A Case Study of Freeze?Casting Applied to Foods. Chemical Engineering & Technology, 37(8), 1376-1382. | 2014 | 427 | 10.1002/ceat.201400032 | 3975 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 36.0 | 90.0 | 100 | powder | 160.0 | 15 | 0 | 0 | 249.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T., & Ulrich, J. (2014). Fast Dispersible Cocoa Tablets: A Case Study of Freeze?Casting Applied to Foods. Chemical Engineering & Technology, 37(8), 1376-1382. | 2014 | 427 | 10.1002/ceat.201400032 | 3976 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 45.0 | 90.0 | 100 | powder | 160.0 | 10 | 0 | 0 | 249.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T., & Ulrich, J. (2014). Fast Dispersible Cocoa Tablets: A Case Study of Freeze?Casting Applied to Foods. Chemical Engineering & Technology, 37(8), 1376-1382. | 2014 | 427 | 10.1002/ceat.201400032 | 3977 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 39.0 | 90.0 | 100 | powder | 160.0 | 25 | 0 | 0 | 249.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T., & Ulrich, J. (2014). Fast Dispersible Cocoa Tablets: A Case Study of Freeze?Casting Applied to Foods. Chemical Engineering & Technology, 37(8), 1376-1382. | 2014 | 427 | 10.1002/ceat.201400032 | 3978 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 41.0 | 90.0 | 100 | powder | 160.0 | 23 | 0 | 0 | 249.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T., & Ulrich, J. (2014). Fast Dispersible Cocoa Tablets: A Case Study of Freeze?Casting Applied to Foods. Chemical Engineering & Technology, 37(8), 1376-1382. | 2014 | 427 | 10.1002/ceat.201400032 | 3979 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 39.0 | 90.0 | 100 | powder | 160.0 | 50 | 0 | 0 | 249.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T., & Ulrich, J. (2014). Fast Dispersible Cocoa Tablets: A Case Study of Freeze?Casting Applied to Foods. Chemical Engineering & Technology, 37(8), 1376-1382. | 2014 | 427 | 10.1002/ceat.201400032 | 3980 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 41.0 | 90.0 | 100 | powder | 160.0 | 46 | 0 | 0 | 249.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T., & Ulrich, J. (2014). Fast Dispersible Cocoa Tablets: A Case Study of Freeze?Casting Applied to Foods. Chemical Engineering & Technology, 37(8), 1376-1382. | 2014 | 427 | 10.1002/ceat.201400032 | 3981 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 39.0 | 90.0 | 100 | powder | 160.0 | 0 | 0 | 0 | 249.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 75.37 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T., & Ulrich, J. (2014). Fast Dispersible Cocoa Tablets: A Case Study of Freeze?Casting Applied to Foods. Chemical Engineering & Technology, 37(8), 1376-1382. | 2014 | 427 | 10.1002/ceat.201400032 | 3982 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 41.0 | 90.0 | 100 | powder | 160.0 | 0 | 0 | 0 | 249.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 71.48 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T., & Ulrich, J. (2014). Fast Dispersible Cocoa Tablets: A Case Study of Freeze?Casting Applied to Foods. Chemical Engineering & Technology, 37(8), 1376-1382. | 2014 | 427 | 10.1002/ceat.201400032 | 3983 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 45.0 | 90.0 | 100 | powder | 160.0 | 0 | 0 | 0 | 249.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 66.03 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T., & Ulrich, J. (2014). Fast Dispersible Cocoa Tablets: A Case Study of Freeze?Casting Applied to Foods. Chemical Engineering & Technology, 37(8), 1376-1382. | 2014 | 427 | 10.1002/ceat.201400032 | 3984 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 41.0 | 90.0 | 100 | powder | 160.0 | 0 | 0 | 0 | 249.0 | 1.0 | 0.0 | double-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 72.89 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Sugar alcohols?Multifunctional agents in the freeze casting process of foods. Journal of Food Engineering, 153, 1-7. | 2015 | 428 | 10.1016/j.jfoodeng.2014.12.007 | 3985 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 39.0 | 90.0 | 100 | powder | 160.0 | 0 | 0 | 0 | 249.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 75.37 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Sugar alcohols?Multifunctional agents in the freeze casting process of foods. Journal of Food Engineering, 153, 1-7. | 2015 | 428 | 10.1016/j.jfoodeng.2014.12.007 | 3986 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 39.0 | 90.0 | 100 | powder | 160.0 | 0 | 0 | 0 | 249.0 | 1.0 | 0.0 | double-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 75.58 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Sugar alcohols?Multifunctional agents in the freeze casting process of foods. Journal of Food Engineering, 153, 1-7. | 2015 | 428 | 10.1016/j.jfoodeng.2014.12.007 | 3987 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 39.0 | 90.0 | 100 | powder | 160.0 | 12 | 0 | 0 | 249.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 72.75 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Sugar alcohols?Multifunctional agents in the freeze casting process of foods. Journal of Food Engineering, 153, 1-7. | 2015 | 428 | 10.1016/j.jfoodeng.2014.12.007 | 3988 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 39.0 | 90.0 | 100 | powder | 160.0 | 25 | 0 | 0 | 249.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 64.14 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Sugar alcohols?Multifunctional agents in the freeze casting process of foods. Journal of Food Engineering, 153, 1-7. | 2015 | 428 | 10.1016/j.jfoodeng.2014.12.007 | 3989 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 39.0 | 90.0 | 100 | powder | 160.0 | 38 | 0 | 0 | 249.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 58.52 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Sugar alcohols?Multifunctional agents in the freeze casting process of foods. Journal of Food Engineering, 153, 1-7. | 2015 | 428 | 10.1016/j.jfoodeng.2014.12.007 | 3990 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 39.0 | 90.0 | 100 | powder | 160.0 | 50 | 0 | 0 | 249.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 64.14 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Sugar alcohols?Multifunctional agents in the freeze casting process of foods. Journal of Food Engineering, 153, 1-7. | 2015 | 428 | 10.1016/j.jfoodeng.2014.12.007 | 3991 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 39.0 | 90.0 | 100 | powder | 160.0 | 12 | 0 | 0 | 249.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 74.57 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Sugar alcohols?Multifunctional agents in the freeze casting process of foods. Journal of Food Engineering, 153, 1-7. | 2015 | 428 | 10.1016/j.jfoodeng.2014.12.007 | 3992 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 39.0 | 90.0 | 100 | powder | 160.0 | 25 | 0 | 0 | 249.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 69.61 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Sugar alcohols?Multifunctional agents in the freeze casting process of foods. Journal of Food Engineering, 153, 1-7. | 2015 | 428 | 10.1016/j.jfoodeng.2014.12.007 | 3993 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 39.0 | 90.0 | 100 | powder | 160.0 | 38 | 0 | 0 | 249.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 59.18 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Sugar alcohols?Multifunctional agents in the freeze casting process of foods. Journal of Food Engineering, 153, 1-7. | 2015 | 428 | 10.1016/j.jfoodeng.2014.12.007 | 3994 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 39.0 | 90.0 | 100 | powder | 160.0 | 50 | 0 | 0 | 249.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 69.61 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Sugar alcohols?Multifunctional agents in the freeze casting process of foods. Journal of Food Engineering, 153, 1-7. | 2015 | 428 | 10.1016/j.jfoodeng.2014.12.007 | 3995 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 39.0 | 90.0 | 100 | powder | 160.0 | 12 | 0 | 0 | 249.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Sugar alcohols?Multifunctional agents in the freeze casting process of foods. Journal of Food Engineering, 153, 1-7. | 2015 | 428 | 10.1016/j.jfoodeng.2014.12.007 | 3996 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 39.0 | 90.0 | 100 | powder | 160.0 | 25 | 0 | 0 | 249.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Sugar alcohols?Multifunctional agents in the freeze casting process of foods. Journal of Food Engineering, 153, 1-7. | 2015 | 428 | 10.1016/j.jfoodeng.2014.12.007 | 3997 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 39.0 | 90.0 | 100 | powder | 160.0 | 38 | 0 | 0 | 249.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Sugar alcohols?Multifunctional agents in the freeze casting process of foods. Journal of Food Engineering, 153, 1-7. | 2015 | 428 | 10.1016/j.jfoodeng.2014.12.007 | 3998 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 39.0 | 90.0 | 100 | powder | 160.0 | 50 | 0 | 0 | 249.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 65.26 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Sugar alcohols?Multifunctional agents in the freeze casting process of foods. Journal of Food Engineering, 153, 1-7. | 2015 | 428 | 10.1016/j.jfoodeng.2014.12.007 | 3999 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 39.0 | 90.0 | 100 | powder | 160.0 | 12 | 0 | 0 | 249.0 | 0.0 | 0.0 | double-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Sugar alcohols?Multifunctional agents in the freeze casting process of foods. Journal of Food Engineering, 153, 1-7. | 2015 | 428 | 10.1016/j.jfoodeng.2014.12.007 | 4000 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 39.0 | 90.0 | 100 | powder | 160.0 | 25 | 0 | 0 | 249.0 | 1.0 | 0.0 | double-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Sugar alcohols?Multifunctional agents in the freeze casting process of foods. Journal of Food Engineering, 153, 1-7. | 2015 | 428 | 10.1016/j.jfoodeng.2014.12.007 | 4001 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 39.0 | 90.0 | 100 | powder | 160.0 | 38 | 0 | 0 | 249.0 | 1.0 | 0.0 | double-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Sugar alcohols?Multifunctional agents in the freeze casting process of foods. Journal of Food Engineering, 153, 1-7. | 2015 | 428 | 10.1016/j.jfoodeng.2014.12.007 | 4002 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 39.0 | 90.0 | 100 | powder | 160.0 | 50 | 0 | 0 | 249.0 | 1.0 | 0.0 | double-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 66.24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Sugar alcohols?Multifunctional agents in the freeze casting process of foods. Journal of Food Engineering, 153, 1-7. | 2015 | 428 | 10.1016/j.jfoodeng.2014.12.007 | 4003 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 39.0 | 90.0 | 100 | powder | 160.0 | 12 | 0 | 0 | 249.0 | 1.0 | 0.0 | double-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Sugar alcohols?Multifunctional agents in the freeze casting process of foods. Journal of Food Engineering, 153, 1-7. | 2015 | 428 | 10.1016/j.jfoodeng.2014.12.007 | 4004 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 39.0 | 90.0 | 100 | powder | 160.0 | 25 | 0 | 0 | 249.0 | 1.0 | 0.0 | double-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Sugar alcohols?Multifunctional agents in the freeze casting process of foods. Journal of Food Engineering, 153, 1-7. | 2015 | 428 | 10.1016/j.jfoodeng.2014.12.007 | 4005 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 39.0 | 90.0 | 100 | powder | 160.0 | 38 | 0 | 0 | 249.0 | 1.0 | 0.0 | double-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Sugar alcohols?Multifunctional agents in the freeze casting process of foods. Journal of Food Engineering, 153, 1-7. | 2015 | 428 | 10.1016/j.jfoodeng.2014.12.007 | 4006 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 39.0 | 90.0 | 100 | powder | 160.0 | 50 | 0 | 0 | 249.0 | 1.0 | 0.0 | double-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 69.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Sugar alcohols?Multifunctional agents in the freeze casting process of foods. Journal of Food Engineering, 153, 1-7. | 2015 | 428 | 10.1016/j.jfoodeng.2014.12.007 | 4007 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 39.0 | 90.0 | 100 | powder | 160.0 | 12 | 0 | 0 | 249.0 | 1.0 | 0.0 | double-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Sugar alcohols?Multifunctional agents in the freeze casting process of foods. Journal of Food Engineering, 153, 1-7. | 2015 | 428 | 10.1016/j.jfoodeng.2014.12.007 | 4008 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 39.0 | 90.0 | 100 | powder | 160.0 | 25 | 0 | 0 | 249.0 | 1.0 | 0.0 | double-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Sugar alcohols?Multifunctional agents in the freeze casting process of foods. Journal of Food Engineering, 153, 1-7. | 2015 | 428 | 10.1016/j.jfoodeng.2014.12.007 | 4009 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 39.0 | 90.0 | 100 | powder | 160.0 | 38 | 0 | 0 | 249.0 | 1.0 | 0.0 | double-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nguyen, P. T. N., & Ulrich, J. (2015). Sugar alcohols?Multifunctional agents in the freeze casting process of foods. Journal of Food Engineering, 153, 1-7. | 2015 | 428 | 10.1016/j.jfoodeng.2014.12.007 | 4010 | foodstuff | cocoa | water | 100 | 0.0 | 0 | 39.0 | 90.0 | 100 | powder | 160.0 | 50 | 0 | 0 | 249.0 | 1.0 | 0.0 | double-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nieto-Suárez, M., Palmisano, G., Ferrer, M. L., Gutiérrez, M. C., Yurdakal, S., Augugliaro, V., ... & del Monte, F. (2009). Self-assembled titania?silica?sepiolite based nanocomposites for water decontamination. Journal of Materials Chemistry, 19(14), 2070-2075. | 2009 | 432 | 10.1039/b813864h | 4781 | ceramic | SiO2-TiO2 (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nishihara, H., Mukai, S. R., Fujii, Y., Tago, T., Masuda, T., & Tamon, H. (2006). Preparation of monolithic SiO 2?Al 2 O 3 cryogels with inter-connected macropores through ice templating. Journal of Materials Chemistry, 16(31), 3231-3236. | 2006 | 435 | 10.1039/b604780g | 5012 | ceramic | Al2O3-SiO2 (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nishihara, H., Mukai, S. R., Fujii, Y., Tago, T., Masuda, T., & Tamon, H. (2006). Preparation of monolithic SiO 2?Al 2 O 3 cryogels with inter-connected macropores through ice templating. Journal of Materials Chemistry, 16(31), 3231-3236. | 2006 | 435 | 10.1039/b604780g | 5013 | ceramic | Al2O3-SiO2 (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nishihara, H., Mukai, S. R., Fujii, Y., Tago, T., Masuda, T., & Tamon, H. (2006). Preparation of monolithic SiO 2?Al 2 O 3 cryogels with inter-connected macropores through ice templating. Journal of Materials Chemistry, 16(31), 3231-3236. | 2006 | 435 | 10.1039/b604780g | 5014 | ceramic | Al2O3-SiO2 (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nishihara, H., Mukai, S. R., Fujii, Y., Tago, T., Masuda, T., & Tamon, H. (2006). Preparation of monolithic SiO 2?Al 2 O 3 cryogels with inter-connected macropores through ice templating. Journal of Materials Chemistry, 16(31), 3231-3236. | 2006 | 435 | 10.1039/b604780g | 5015 | ceramic | Al2O3-SiO2 (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nishihara, H., Mukai, S. R., Fujii, Y., Tago, T., Masuda, T., & Tamon, H. (2006). Preparation of monolithic SiO 2?Al 2 O 3 cryogels with inter-connected macropores through ice templating. Journal of Materials Chemistry, 16(31), 3231-3236. | 2006 | 435 | 10.1039/b604780g | 5016 | ceramic | Al2O3-SiO2 (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nishihara, H., Mukai, S. R., Fujii, Y., Tago, T., Masuda, T., & Tamon, H. (2006). Preparation of monolithic SiO 2?Al 2 O 3 cryogels with inter-connected macropores through ice templating. Journal of Materials Chemistry, 16(31), 3231-3236. | 2006 | 435 | 10.1039/b604780g | 5017 | ceramic | Al2O3-SiO2 (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Oh, S. T., Chang, S. Y., & Suk, M. J. (2012). Microstructure of porous Cu fabricated by freeze-drying process of CuO/camphene slurry. Transactions of Nonferrous Metals Society of China, 22, s688-s691. | 2012 | 440 | 10.1016/s1003-6326(12)61787-7 | 4044 | metal | Cu | camphene | 100 | 0.0 | 0 | 10.0 | 45.0 | 100 | 0 | 1.0 | 0 | 0 | 0 | 248.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Oh, S. T., Chang, S. Y., & Suk, M. J. (2012). Microstructure of porous Cu fabricated by freeze-drying process of CuO/camphene slurry. Transactions of Nonferrous Metals Society of China, 22, s688-s691. | 2012 | 440 | 10.1016/s1003-6326(12)61787-7 | 4045 | metal | Cu | camphene | 100 | 0.0 | 0 | 17.0 | 45.0 | 100 | 0 | 1.0 | 0 | 0 | 0 | 248.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Oh, S. T., Chang, S. Y., & Suk, M. J. (2012). Microstructure of porous Cu fabricated by freeze-drying process of CuO/camphene slurry. Transactions of Nonferrous Metals Society of China, 22, s688-s691. | 2012 | 440 | 10.1016/s1003-6326(12)61787-7 | 4046 | metal | Cu | camphene | 100 | 0.0 | 0 | 20.0 | 45.0 | 100 | 0 | 1.0 | 0 | 0 | 0 | 248.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ramos, A. I., & Dunand, D. C. (2012). Preparation and characterization of directionally freeze-cast copper foams. Metals, 2(3), 265-273. | 2012 | 515 | 10.3390/met2030265 | 4217 | metal | Cu | water | 100 | 0.0 | 0 | 10.0 | 45.0 | 100 | 0 | 0.06 | 0 | 0 | 0 | 257.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ramos, A. I., & Dunand, D. C. (2012). Preparation and characterization of directionally freeze-cast copper foams. Metals, 2(3), 265-273. | 2012 | 515 | 10.3390/met2030265 | 4218 | metal | Cu | water | 100 | 0.0 | 0 | 15.0 | 45.0 | 100 | 0 | 0.06 | 0 | 0 | 0 | 257.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.0 | 0.0 | 91.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ran, H., Feng, P., Liu, Z., Wang, X., Niu, J., & Zhang, H. (2015). Complex-shaped porous Cu bodies fabricated by freeze-casting and vacuum sintering. Metals, 5(4), 1821-1828. | 2015 | 516 | 10.3390/met5041821 | 4219 | metal | Cu | water | 100 | 0.0 | 0 | 20.0 | 45.0 | 100 | 0 | 74.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 60 | 0 | 0 | cellular | sintered | 49.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ran, H., Feng, P., Liu, Z., Wang, X., Niu, J., & Zhang, H. (2015). Complex-shaped porous Cu bodies fabricated by freeze-casting and vacuum sintering. Metals, 5(4), 1821-1828. | 2015 | 516 | 10.3390/met5041821 | 4220 | metal | Cu | water | 100 | 0.0 | 0 | 25.0 | 45.0 | 100 | 0 | 74.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 55 | 0 | 0 | cellular | sintered | 44.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ran, H., Feng, P., Liu, Z., Wang, X., Niu, J., & Zhang, H. (2015). Complex-shaped porous Cu bodies fabricated by freeze-casting and vacuum sintering. Metals, 5(4), 1821-1828. | 2015 | 516 | 10.3390/met5041821 | 4221 | metal | Cu | water | 100 | 0.0 | 0 | 30.0 | 45.0 | 100 | 0 | 74.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 51 | 0 | 0 | cellular | sintered | 38.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ran, H., Feng, P., Liu, Z., Wang, X., Niu, J., & Zhang, H. (2015). Complex-shaped porous Cu bodies fabricated by freeze-casting and vacuum sintering. Metals, 5(4), 1821-1828. | 2015 | 516 | 10.3390/met5041821 | 4222 | metal | Cu | water | 100 | 0.0 | 0 | 35.0 | 45.0 | 100 | 0 | 74.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 46 | 0 | 0 | cellular | sintered | 34.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ran, H., Feng, P., Liu, Z., Wang, X., Niu, J., & Zhang, H. (2015). Complex-shaped porous Cu bodies fabricated by freeze-casting and vacuum sintering. Metals, 5(4), 1821-1828. | 2015 | 516 | 10.3390/met5041821 | 4223 | metal | Cu | water | 100 | 0.0 | 0 | 40.0 | 45.0 | 100 | 0 | 74.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 42 | 0 | 0 | cellular | sintered | 30.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Um, J. H., Choi, M., Park, H., Cho, Y. H., Dunand, D. C., Choe, H., & Sung, Y. E. (2016). 3D macroporous electrode and high-performance in lithium-ion batteries using SnO2 coated on Cu foam. Scientific reports, 6, 18626. | 2016 | 628 | 10.1038/srep18626 | 2983 | metal | Cu | water | 100 | 0.0 | 0 | 15.47 | 45.0 | 100 | 0 | 0.06 | 2 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 43 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 14.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Park, H., Choi, M., Choe, H., & Dunand, D. C. (2017). Microstructure and compressive behavior of ice-templated copper foams with directional, lamellar pores. Materials Science and Engineering: A, 679, 435-445. | 2017 | 825 | 10.1016/j.msea.2016.10.057 | 1223 | metal | Cu | water | 100 | 0.0 | 0 | 12.5 | 45.0 | 100 | powder | 0.06 | 2 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 46 | 0 | 0 | lamellar | sintered | 73.0 | 124.0 | 64.0 | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Park, H., Choi, M., Choe, H., & Dunand, D. C. (2017). Microstructure and compressive behavior of ice-templated copper foams with directional, lamellar pores. Materials Science and Engineering: A, 679, 435-445. | 2017 | 825 | 10.1016/j.msea.2016.10.057 | 1224 | metal | Cu | water | 100 | 0.0 | 0 | 12.5 | 45.0 | 100 | powder | 0.06 | 2 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 83 | 0 | 0 | lamellar | sintered | 67.0 | 80.0 | 51.0 | 29.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Park, H., Choi, M., Choe, H., & Dunand, D. C. (2017). Microstructure and compressive behavior of ice-templated copper foams with directional, lamellar pores. Materials Science and Engineering: A, 679, 435-445. | 2017 | 825 | 10.1016/j.msea.2016.10.057 | 1225 | metal | Cu | water | 100 | 0.0 | 0 | 12.5 | 45.0 | 100 | powder | 0.06 | 2 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 83 | 0 | 0 | lamellar | sintered | 67.0 | 80.0 | 51.0 | 29.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Park, H., Choi, M., Choe, H., & Dunand, D. C. (2017). Microstructure and compressive behavior of ice-templated copper foams with directional, lamellar pores. Materials Science and Engineering: A, 679, 435-445. | 2017 | 825 | 10.1016/j.msea.2016.10.057 | 1226 | metal | Cu | water | 100 | 0.0 | 0 | 12.5 | 45.0 | 100 | powder | 0.06 | 2 | 0 | 0 | 258.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 85 | 0 | 0 | lamellar | sintered | 67.0 | 68.0 | 41.0 | 27.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Park, H., Choi, M., Choe, H., & Dunand, D. C. (2017). Microstructure and compressive behavior of ice-templated copper foams with directional, lamellar pores. Materials Science and Engineering: A, 679, 435-445. | 2017 | 825 | 10.1016/j.msea.2016.10.057 | 1227 | metal | Cu | water | 100 | 0.0 | 0 | 12.5 | 45.0 | 100 | powder | 0.06 | 2 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 85 | 0 | 0 | lamellar | sintered | 67.0 | 37.0 | 18.0 | 19.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Park, H., Choi, M., Choe, H., & Dunand, D. C. (2017). Microstructure and compressive behavior of ice-templated copper foams with directional, lamellar pores. Materials Science and Engineering: A, 679, 435-445. | 2017 | 825 | 10.1016/j.msea.2016.10.057 | 1228 | metal | Cu | water | 100 | 0.0 | 0 | 12.5 | 45.0 | 100 | powder | 0.06 | 2 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 86 | 0 | 0 | lamellar | sintered | 63.0 | 36.0 | 16.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Park, H., Choi, M., Choe, H., & Dunand, D. C. (2017). Microstructure and compressive behavior of ice-templated copper foams with directional, lamellar pores. Materials Science and Engineering: A, 679, 435-445. | 2017 | 825 | 10.1016/j.msea.2016.10.057 | 1229 | metal | Cu | water | 100 | 0.0 | 0 | 12.5 | 45.0 | 100 | powder | 0.06 | 2 | 0 | 0 | 258.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 85 | 0 | 0 | lamellar | sintered | 63.0 | 68.0 | 41.0 | 27.0 | 0.0 | 43.0 | 0.0 | 0.0 |
Park, H., Choi, M., Choe, H., & Dunand, D. C. (2017). Microstructure and compressive behavior of ice-templated copper foams with directional, lamellar pores. Materials Science and Engineering: A, 679, 435-445. | 2017 | 825 | 10.1016/j.msea.2016.10.057 | 1230 | metal | Cu | water | 100 | 0.0 | 0 | 13.7 | 45.0 | 100 | powder | 0.06 | 2 | 0 | 0 | 258.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 77 | 0 | 0 | lamellar | sintered | 58.0 | 67.0 | 39.0 | 28.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Park, H., Choi, M., Choe, H., & Dunand, D. C. (2017). Microstructure and compressive behavior of ice-templated copper foams with directional, lamellar pores. Materials Science and Engineering: A, 679, 435-445. | 2017 | 825 | 10.1016/j.msea.2016.10.057 | 1231 | metal | Cu | water | 100 | 0.0 | 0 | 16.0 | 45.0 | 100 | powder | 0.06 | 2 | 0 | 0 | 258.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 79 | 0 | 0 | lamellar | sintered | 54.0 | 71.0 | 33.0 | 38.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Park, H., Choi, M., Choe, H., & Dunand, D. C. (2017). Microstructure and compressive behavior of ice-templated copper foams with directional, lamellar pores. Materials Science and Engineering: A, 679, 435-445. | 2017 | 825 | 10.1016/j.msea.2016.10.057 | 1232 | metal | Cu | water | 100 | 0.0 | 0 | 19.2 | 45.0 | 100 | powder | 0.06 | 2 | 0 | 0 | 258.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 81 | 0 | 0 | lamellar | sintered | 45.0 | 78.0 | 15.0 | 63.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Park, H., Choi, H., Nam, K., Lee, S., Um, J. H., Kim, K., ... & Choe, H. (2017). Anode Design Based on Microscale Porous Scaffolds for Advanced Lithium Ion Batteries. Journal of Electronic Materials, 46(6), 3789-3795. | 2017 | 925 | 10.1007/s11664-017-5289-z | 4511 | metal | Cu | water | 100 | 0.0 | 0 | 0.0 | 45.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 63.0 | 0.0 | 39.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Wu, J., Luo, B., Zhang, L., & Lai, Y. (2017). Porous Cu foams with oriented pore structure by freeze casting. Materials Letters. | 2017 | 960 | 10.1016/j.matlet.2017.06.011 | 6152 | metal | Cu | water | 100 | 0.0 | 0 | 15.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 0.0 | 28.0 | 0.0 | 0.0 | 12.6 | 0.0 | 0.0 |
Liu, X., Wu, J., Luo, B., Zhang, L., & Lai, Y. (2017). Porous Cu foams with oriented pore structure by freeze casting. Materials Letters. | 2017 | 960 | 10.1016/j.matlet.2017.06.011 | 6153 | metal | Cu | water | 100 | 0.0 | 0 | 15.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 71.0 | 0.0 | 18.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, X., Wu, J., Luo, B., Zhang, L., & Lai, Y. (2017). Porous Cu foams with oriented pore structure by freeze casting. Materials Letters. | 2017 | 960 | 10.1016/j.matlet.2017.06.011 | 6154 | metal | Cu | water | 100 | 0.0 | 0 | 15.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.0 | 0.0 | 12.0 | 0.0 | 0.0 | 25.4 | 0.0 | 0.0 |
Oh, S. T., Do Kim, Y., & Suk, M. J. (2015). Freeze drying for porous Mo with different sublimable vehicle compositions in the camphor-naphthalene system. Materials Letters, 139, 268-270. | 2015 | 441 | 10.1016/j.matlet.2014.10.097 | 4047 | metal | Mo | camphor | 69 | naphthalene | 30 | 5.0 | 62.0 | 100 | 0 | 10.0 | 0 | 0 | 0 | 248.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Oh, S. T., Do Kim, Y., & Suk, M. J. (2015). Freeze drying for porous Mo with different sublimable vehicle compositions in the camphor-naphthalene system. Materials Letters, 139, 268-270. | 2015 | 441 | 10.1016/j.matlet.2014.10.097 | 4048 | metal | Mo | camphor | 64 | naphthalene | 34 | 5.0 | 62.0 | 100 | 0 | 10.0 | 0 | 0 | 0 | 248.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | needle | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Oh, S. T., Do Kim, Y., & Suk, M. J. (2015). Freeze drying for porous Mo with different sublimable vehicle compositions in the camphor-naphthalene system. Materials Letters, 139, 268-270. | 2015 | 441 | 10.1016/j.matlet.2014.10.097 | 4049 | metal | Mo | camphor | 55 | naphthalene | 44 | 5.0 | 62.0 | 100 | 0 | 10.0 | 0 | 0 | 0 | 248.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | plates | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Oh, S. T., Lee, W., Chang, S. Y., & Suk, M. J. (2014). Synthesis of porous Cu?Sn using freeze-drying process of CuO?SnO2/camphene slurries. Research on Chemical Intermediates, 40(7), 2495-2500. | 2014 | 443 | 10.1007/s11164-014-1659-9 | 4050 | metal | Cu-Sn (mixed) | camphene | 100 | 0.0 | 0 | 15.0 | 45.0 | 44 | 0 | 1.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 200.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ojuva, A., Järveläinen, M., Bauer, M., Keskinen, L., Valkonen, M., Akhtar, F., ... & Bergström, L. (2015). Mechanical performance and CO 2 uptake of ion-exchanged zeolite A structured by freeze-casting. Journal of the European Ceramic Society, 35(9), 2607-2618. | 2015 | 445 | 10.1016/j.jeurceramsoc.2015.03.001 | 5754 | ceramic | Zeo-12wt.% bentonite | water | 100 | 0.0 | 0 | 13.0 | 0.0 | 0 | 0 | 0.0 | 10 | 0 | 0 | 0.0 | 1.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 19.3 | 11.3 | 8.0 | 4.0 | 0.02 | 0.0 | 4.79 |
Ojuva, A., Järveläinen, M., Bauer, M., Keskinen, L., Valkonen, M., Akhtar, F., ... & Bergström, L. (2015). Mechanical performance and CO 2 uptake of ion-exchanged zeolite A structured by freeze-casting. Journal of the European Ceramic Society, 35(9), 2607-2618. | 2015 | 445 | 10.1016/j.jeurceramsoc.2015.03.001 | 5755 | ceramic | Zeo-12wt.% bentonite | water | 100 | 0.0 | 0 | 13.0 | 0.0 | 0 | 0 | 0.0 | 10 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 10.7 | 6.7 | 4.0 | 3.5 | 0.09 | 0.0 | 22.7 |
Ojuva, A., Järveläinen, M., Bauer, M., Keskinen, L., Valkonen, M., Akhtar, F., ... & Bergström, L. (2015). Mechanical performance and CO 2 uptake of ion-exchanged zeolite A structured by freeze-casting. Journal of the European Ceramic Society, 35(9), 2607-2618. | 2015 | 445 | 10.1016/j.jeurceramsoc.2015.03.001 | 5756 | ceramic | Zeo-12wt.% bentonite | water | 100 | 0.0 | 0 | 19.0 | 0.0 | 0 | 0 | 0.0 | 10 | 0 | 0 | 0.0 | 1.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ojuva, A., Järveläinen, M., Bauer, M., Keskinen, L., Valkonen, M., Akhtar, F., ... & Bergström, L. (2015). Mechanical performance and CO 2 uptake of ion-exchanged zeolite A structured by freeze-casting. Journal of the European Ceramic Society, 35(9), 2607-2618. | 2015 | 445 | 10.1016/j.jeurceramsoc.2015.03.001 | 5757 | ceramic | Zeo-12wt.% bentonite | water | 100 | 0.0 | 0 | 19.0 | 0.0 | 0 | 0 | 0.0 | 10 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ojuva, A., Järveläinen, M., Bauer, M., Keskinen, L., Valkonen, M., Akhtar, F., ... & Bergström, L. (2015). Mechanical performance and CO 2 uptake of ion-exchanged zeolite A structured by freeze-casting. Journal of the European Ceramic Society, 35(9), 2607-2618. | 2015 | 445 | 10.1016/j.jeurceramsoc.2015.03.001 | 5758 | ceramic | Zeo-12wt.% bentonite | water | 100 | 0.0 | 0 | 29.0 | 0.0 | 0 | 0 | 0.0 | 10 | 0 | 0 | 0.0 | 1.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ojuva, A., Järveläinen, M., Bauer, M., Keskinen, L., Valkonen, M., Akhtar, F., ... & Bergström, L. (2015). Mechanical performance and CO 2 uptake of ion-exchanged zeolite A structured by freeze-casting. Journal of the European Ceramic Society, 35(9), 2607-2618. | 2015 | 445 | 10.1016/j.jeurceramsoc.2015.03.001 | 5759 | ceramic | Zeo-12wt.% bentonite | water | 100 | 0.0 | 0 | 29.0 | 0.0 | 0 | 0 | 0.0 | 10 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ojuva, A., Järveläinen, M., Bauer, M., Keskinen, L., Valkonen, M., Akhtar, F., ... & Bergström, L. (2015). Mechanical performance and CO 2 uptake of ion-exchanged zeolite A structured by freeze-casting. Journal of the European Ceramic Society, 35(9), 2607-2618. | 2015 | 445 | 10.1016/j.jeurceramsoc.2015.03.001 | 5760 | ceramic | Zeo-12wt.% bentonite | water | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 10 | 0 | 0 | 0.0 | 1.5 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 30.2 | 12.2 | 18.0 | 2.4 | 2.5 | 0.0 | 59.3 |
Ojuva, A., Järveläinen, M., Bauer, M., Keskinen, L., Valkonen, M., Akhtar, F., ... & Bergström, L. (2015). Mechanical performance and CO 2 uptake of ion-exchanged zeolite A structured by freeze-casting. Journal of the European Ceramic Society, 35(9), 2607-2618. | 2015 | 445 | 10.1016/j.jeurceramsoc.2015.03.001 | 5761 | ceramic | Zeo-12wt.% bentonite | water | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 10 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 14.9 | 8.9 | 6.0 | 2.2 | 9.77 | 0.0 | 896.0 |
Okaji, R., Taki, K., Nagamine, S., & Ohshima, M. (2013). Preparation of a unique, multihollow?core honeycomb structure via the unidirectional freezing of a binary solvent system. Journal of Applied Polymer Science, 130(1), 526-534. | 2013 | 449 | 10.1002/app.39201 | 5830 | polymer | DUDM | dioxane | 100 | 0.0 | 0 | 15.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 9.7 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Taki, K., Nagamine, S., & Ohshima, M. (2013). Preparation of a unique, multihollow?core honeycomb structure via the unidirectional freezing of a binary solvent system. Journal of Applied Polymer Science, 130(1), 526-534. | 2013 | 449 | 10.1002/app.39201 | 5831 | polymer | DUDM | dioxane | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 9.7 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Taki, K., Nagamine, S., & Ohshima, M. (2013). Preparation of a unique, multihollow?core honeycomb structure via the unidirectional freezing of a binary solvent system. Journal of Applied Polymer Science, 130(1), 526-534. | 2013 | 449 | 10.1002/app.39201 | 5832 | polymer | DUDM | dioxane | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 9.7 | 0.0 | 0 | 0 | 0 | dendritic | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Taki, K., Nagamine, S., & Ohshima, M. (2013). Preparation of a unique, multihollow?core honeycomb structure via the unidirectional freezing of a binary solvent system. Journal of Applied Polymer Science, 130(1), 526-534. | 2013 | 449 | 10.1002/app.39201 | 5833 | polymer | DUDM | TBA | 20 | dioxane | 80 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 9.7 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 8.38 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Taki, K., Nagamine, S., & Ohshima, M. (2013). Preparation of a unique, multihollow?core honeycomb structure via the unidirectional freezing of a binary solvent system. Journal of Applied Polymer Science, 130(1), 526-534. | 2013 | 449 | 10.1002/app.39201 | 5834 | polymer | DUDM | TBA | 20 | dioxane | 80 | 11.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 9.7 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 8.38 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Taki, K., Nagamine, S., & Ohshima, M. (2013). Preparation of a unique, multihollow?core honeycomb structure via the unidirectional freezing of a binary solvent system. Journal of Applied Polymer Science, 130(1), 526-534. | 2013 | 449 | 10.1002/app.39201 | 5835 | polymer | DUDM | TBA | 20 | dioxane | 80 | 15.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 9.7 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 8.38 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Taki, K., Nagamine, S., & Ohshima, M. (2013). Preparation of a unique, multihollow?core honeycomb structure via the unidirectional freezing of a binary solvent system. Journal of Applied Polymer Science, 130(1), 526-534. | 2013 | 449 | 10.1002/app.39201 | 5836 | polymer | DUDM | TBA | 100 | 0.0 | 0 | 4.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 9.7 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 7.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Taki, K., Nagamine, S., & Ohshima, M. (2013). Preparation of a unique, multihollow?core honeycomb structure via the unidirectional freezing of a binary solvent system. Journal of Applied Polymer Science, 130(1), 526-534. | 2013 | 449 | 10.1002/app.39201 | 5837 | polymer | DUDM | TBA | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 9.7 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 7.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Okaji, R., Taki, K., Nagamine, S., & Ohshima, M. (2013). Preparation of a unique, multihollow?core honeycomb structure via the unidirectional freezing of a binary solvent system. Journal of Applied Polymer Science, 130(1), 526-534. | 2013 | 449 | 10.1002/app.39201 | 5838 | polymer | DUDM | TBA | 100 | 0.0 | 0 | 15.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 9.7 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 7.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Padilla, A. M., Chou, S. G., Luthra, S., & Pikal, M. J. (2011). The study of amorphous phase separation in a model polymer phase?separating system using raman microscopy and a low?temperature stage: Effect of cooling rate and nucleation temperature. Journal of pharmaceutical sciences, 100(4), 1362-1376. | 2011 | 456 | 10.1002/jps.22357 | 5485 | polymer | Polyvinylpyrrolidone | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Padilla, A. M., Chou, S. G., Luthra, S., & Pikal, M. J. (2011). The study of amorphous phase separation in a model polymer phase?separating system using raman microscopy and a low?temperature stage: Effect of cooling rate and nucleation temperature. Journal of pharmaceutical sciences, 100(4), 1362-1376. | 2011 | 456 | 10.1002/jps.22357 | 5486 | polymer | Polyvinylpyrrolidone | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Padilla, A. M., Chou, S. G., Luthra, S., & Pikal, M. J. (2011). The study of amorphous phase separation in a model polymer phase?separating system using raman microscopy and a low?temperature stage: Effect of cooling rate and nucleation temperature. Journal of pharmaceutical sciences, 100(4), 1362-1376. | 2011 | 456 | 10.1002/jps.22357 | 5487 | polymer | Polyvinylpyrrolidone | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Padilla, A. M., Chou, S. G., Luthra, S., & Pikal, M. J. (2011). The study of amorphous phase separation in a model polymer phase?separating system using raman microscopy and a low?temperature stage: Effect of cooling rate and nucleation temperature. Journal of pharmaceutical sciences, 100(4), 1362-1376. | 2011 | 456 | 10.1002/jps.22357 | 5488 | polymer | Polyvinylpyrrolidone | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Padilla, A. M., Chou, S. G., Luthra, S., & Pikal, M. J. (2011). The study of amorphous phase separation in a model polymer phase?separating system using raman microscopy and a low?temperature stage: Effect of cooling rate and nucleation temperature. Journal of pharmaceutical sciences, 100(4), 1362-1376. | 2011 | 456 | 10.1002/jps.22357 | 5489 | polymer | Polyvinylpyrrolidone | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Padilla, A. M., Chou, S. G., Luthra, S., & Pikal, M. J. (2011). The study of amorphous phase separation in a model polymer phase?separating system using raman microscopy and a low?temperature stage: Effect of cooling rate and nucleation temperature. Journal of pharmaceutical sciences, 100(4), 1362-1376. | 2011 | 456 | 10.1002/jps.22357 | 5490 | polymer | Polyvinylpyrrolidone | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Padilla, A. M., Chou, S. G., Luthra, S., & Pikal, M. J. (2011). The study of amorphous phase separation in a model polymer phase?separating system using raman microscopy and a low?temperature stage: Effect of cooling rate and nucleation temperature. Journal of pharmaceutical sciences, 100(4), 1362-1376. | 2011 | 456 | 10.1002/jps.22357 | 5491 | polymer | Polyvinylpyrrolidone | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Padilla, A. M., Chou, S. G., Luthra, S., & Pikal, M. J. (2011). The study of amorphous phase separation in a model polymer phase?separating system using raman microscopy and a low?temperature stage: Effect of cooling rate and nucleation temperature. Journal of pharmaceutical sciences, 100(4), 1362-1376. | 2011 | 456 | 10.1002/jps.22357 | 5492 | polymer | Polyvinylpyrrolidone | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Padilla, A. M., Chou, S. G., Luthra, S., & Pikal, M. J. (2011). The study of amorphous phase separation in a model polymer phase?separating system using raman microscopy and a low?temperature stage: Effect of cooling rate and nucleation temperature. Journal of pharmaceutical sciences, 100(4), 1362-1376. | 2011 | 456 | 10.1002/jps.22357 | 5493 | polymer | Polyvinylpyrrolidone | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Padilla, A. M., Chou, S. G., Luthra, S., & Pikal, M. J. (2011). The study of amorphous phase separation in a model polymer phase?separating system using raman microscopy and a low?temperature stage: Effect of cooling rate and nucleation temperature. Journal of pharmaceutical sciences, 100(4), 1362-1376. | 2011 | 456 | 10.1002/jps.22357 | 5494 | polymer | Polyvinylpyrrolidone | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Padilla, A. M., Chou, S. G., Luthra, S., & Pikal, M. J. (2011). The study of amorphous phase separation in a model polymer phase?separating system using raman microscopy and a low?temperature stage: Effect of cooling rate and nucleation temperature. Journal of pharmaceutical sciences, 100(4), 1362-1376. | 2011 | 456 | 10.1002/jps.22357 | 5495 | polymer | Polyvinylpyrrolidone | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Padilla, A. M., Chou, S. G., Luthra, S., & Pikal, M. J. (2011). The study of amorphous phase separation in a model polymer phase?separating system using raman microscopy and a low?temperature stage: Effect of cooling rate and nucleation temperature. Journal of pharmaceutical sciences, 100(4), 1362-1376. | 2011 | 456 | 10.1002/jps.22357 | 5496 | polymer | Polyvinylpyrrolidone | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Padilla, A. M., Chou, S. G., Luthra, S., & Pikal, M. J. (2011). The study of amorphous phase separation in a model polymer phase?separating system using raman microscopy and a low?temperature stage: Effect of cooling rate and nucleation temperature. Journal of pharmaceutical sciences, 100(4), 1362-1376. | 2011 | 456 | 10.1002/jps.22357 | 5497 | polymer | Polyvinylpyrrolidone | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Padilla, A. M., Chou, S. G., Luthra, S., & Pikal, M. J. (2011). The study of amorphous phase separation in a model polymer phase?separating system using raman microscopy and a low?temperature stage: Effect of cooling rate and nucleation temperature. Journal of pharmaceutical sciences, 100(4), 1362-1376. | 2011 | 456 | 10.1002/jps.22357 | 5498 | polymer | Polyvinylpyrrolidone | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Park, H., Noh, Y., Choi, H., Hong, K., Kwon, K., & Choe, H. (2016). Processing, Microstructure, and Oxidation Behavior of Iron Foams. Metallurgical and Materials Transactions A, 47(9), 4760-4766. | 2016 | 460 | 10.1007/s11661-016-3601-9 | 4081 | metal | Fe | water | 100 | 0.0 | 0 | 10.5 | 17.0 | 100 | 0 | 5.0 | 3 | 0 | 0 | 258.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 77.7 | 16.3 | 10.0 | 6.3 | 0.0 | 0.0 | 0.0 | 0.0 |
Park, H., Noh, Y., Choi, H., Hong, K., Kwon, K., & Choe, H. (2016). Processing, Microstructure, and Oxidation Behavior of Iron Foams. Metallurgical and Materials Transactions A, 47(9), 4760-4766. | 2016 | 460 | 10.1007/s11661-016-3601-9 | 4082 | metal | Fe | water | 100 | 0.0 | 0 | 14.1 | 17.0 | 100 | 0 | 5.0 | 3 | 0 | 0 | 258.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.5 | 0.0 | 0.0 | 20.2 | 0.0 | 0.0 | 0.0 | 0.0 |
Park, H., Noh, Y., Choi, H., Hong, K., Kwon, K., & Choe, H. (2016). Processing, Microstructure, and Oxidation Behavior of Iron Foams. Metallurgical and Materials Transactions A, 47(9), 4760-4766. | 2016 | 460 | 10.1007/s11661-016-3601-9 | 4083 | metal | Fe | water | 100 | 0.0 | 0 | 19.0 | 17.0 | 100 | 0 | 5.0 | 3 | 0 | 0 | 258.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 51.1 | 0.0 | 0.0 | 25.2 | 0.0 | 0.0 | 0.0 | 0.0 |
Park, H., Noh, Y., Choi, H., Hong, K., Kwon, K., & Choe, H. (2016). Processing, Microstructure, and Oxidation Behavior of Iron Foams. Metallurgical and Materials Transactions A, 47(9), 4760-4766. | 2016 | 460 | 10.1007/s11661-016-3601-9 | 4084 | metal | Fe | water | 100 | 0.0 | 0 | 11.0 | 17.0 | 100 | 0 | 5.0 | 3 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 59.0 | 0.0 | 32.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Park, H., Noh, Y., Choi, H., Hong, K., Kwon, K., & Choe, H. (2016). Processing, Microstructure, and Oxidation Behavior of Iron Foams. Metallurgical and Materials Transactions A, 47(9), 4760-4766. | 2016 | 460 | 10.1007/s11661-016-3601-9 | 4085 | metal | Fe | water | 100 | 0.0 | 0 | 15.0 | 17.0 | 100 | 0 | 5.0 | 3 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 50.4 | 0.0 | 16.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Park, H., Noh, Y., Choi, H., Hong, K., Kwon, K., & Choe, H. (2016). Processing, Microstructure, and Oxidation Behavior of Iron Foams. Metallurgical and Materials Transactions A, 47(9), 4760-4766. | 2016 | 460 | 10.1007/s11661-016-3601-9 | 4086 | metal | Fe | water | 100 | 0.0 | 0 | 19.0 | 17.0 | 100 | 0 | 5.0 | 3 | 0 | 0 | 173.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 26.3 | 0.0 | 6.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yook, S. W., Jung, H. D., Park, C. H., Shin, K. H., Koh, Y. H., Estrin, Y., & Kim, H. E. (2012). Reverse freeze casting: a new method for fabricating highly porous titanium scaffolds with aligned large pores. Acta biomaterialia, 8(6), 2401-2410. | 2012 | 721 | 10.1016/j.actbio.2012.03.020 | 1238 | metal | Fe | camphene | 100 | 0.0 | 0 | 20.0 | 16.0 | 100 | 0 | 65.0 | 0 | 0 | 0 | 276.0 | 0.0 | 0.0 | reverse | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 400.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Plunk, A. A., & Dunand, D. C. (2017). Iron foams created by directional freeze casting of iron oxide, reduction and sintering. Materials Letters, 191, 112-115. | 2017 | 922 | 10.1016/j.matlet.2016.12.104 | 1041 | metal | Fe | water | 100 | 0.0 | 0 | 18.5 | 17.0 | 100 | powder | 0.05 | 4 | 1 | 0 | 256.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 86.0 | 82.0 | 46.0 | 36.0 | 0.0 | 8.0 | 0.0 | 1300.0 |
Plunk, A. A., & Dunand, D. C. (2017). Iron foams created by directional freeze casting of iron oxide, reduction and sintering. Materials Letters, 191, 112-115. | 2017 | 922 | 10.1016/j.matlet.2016.12.104 | 1042 | metal | Fe | water | 100 | 0.0 | 0 | 18.5 | 17.0 | 100 | powder | 0.05 | 4 | 1 | 0 | 256.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 71.0 | 0.0 | 0.0 | 36.0 | 0.0 | 15.0 | 0.0 | 1600.0 |
Plunk, A. A., & Dunand, D. C. (2017). Iron foams created by directional freeze casting of iron oxide, reduction and sintering. Materials Letters, 191, 112-115. | 2017 | 922 | 10.1016/j.matlet.2016.12.104 | 1043 | metal | Fe | water | 100 | 0.0 | 0 | 18.5 | 17.0 | 100 | powder | 0.05 | 4 | 1 | 0 | 256.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 61.0 | 76.0 | 40.0 | 36.0 | 0.0 | 20.0 | 0.0 | 3100.0 |
Plunk, A. A., & Dunand, D. C. (2017). Iron foams created by directional freeze casting of iron oxide, reduction and sintering. Materials Letters, 191, 112-115. | 2017 | 922 | 10.1016/j.matlet.2016.12.104 | 1044 | metal | Fe | water | 100 | 0.0 | 0 | 14.0 | 17.0 | 100 | powder | 0.05 | 4 | 1 | 0 | 256.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 85.0 | 76.0 | 49.0 | 27.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Plunk, A. A., & Dunand, D. C. (2017). Iron foams created by directional freeze casting of iron oxide, reduction and sintering. Materials Letters, 191, 112-115. | 2017 | 922 | 10.1016/j.matlet.2016.12.104 | 1045 | metal | Fe | water | 100 | 0.0 | 0 | 23.0 | 17.0 | 100 | powder | 50.0 | 4 | 1 | 0 | 256.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 50.0 | 83.0 | 37.0 | 46.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pei, L., Jin, Q., Zhu, Z., Zhao, Q., Liang, J., & Chen, J. (2015). Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three-dimensional graphene. Nano Research, 8(1), 184-192. | 2015 | 468 | 10.1007/s12274-014-0609-6 | 4790 | ceramic | SnO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nam, K., Kim, H. G., Choi, H., Park, H., Kang, J. S., Sung, Y. E., ... & Choe, H. (2017). Morphology and Gas-Sensing Properties of Tin Oxide Foams with Dual Pore Structure. Journal of Electronic Materials, 46(6), 3748-3756. | 2017 | 926 | 10.1007/s11664-016-5242-6 | 4514 | ceramic | SnO2 | water | 100 | 0.0 | 0 | 9.0 | 86.0 | 100 | powder | 0.08 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 72.0 | 12.5 | 11.0 | 1.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Nam, K., Kim, H. G., Choi, H., Park, H., Kang, J. S., Sung, Y. E., ... & Choe, H. (2017). Morphology and Gas-Sensing Properties of Tin Oxide Foams with Dual Pore Structure. Journal of Electronic Materials, 46(6), 3748-3756. | 2017 | 926 | 10.1007/s11664-016-5242-6 | 4515 | ceramic | SnO2 | water | 100 | 0.0 | 0 | 9.0 | 86.0 | 100 | powder | 0.08 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 72.0 | 11.5 | 9.0 | 2.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Nam, K., Kim, H. G., Choi, H., Park, H., Kang, J. S., Sung, Y. E., ... & Choe, H. (2017). Morphology and Gas-Sensing Properties of Tin Oxide Foams with Dual Pore Structure. Journal of Electronic Materials, 46(6), 3748-3756. | 2017 | 926 | 10.1007/s11664-016-5242-6 | 4516 | ceramic | SnO2 | water | 100 | 0.0 | 0 | 9.0 | 86.0 | 100 | powder | 0.08 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 62.0 | 10.75 | 7.0 | 3.75 | 0.0 | 0.0 | 0.0 | 0.0 |
Nam, K., Kim, H. G., Choi, H., Park, H., Kang, J. S., Sung, Y. E., ... & Choe, H. (2017). Morphology and Gas-Sensing Properties of Tin Oxide Foams with Dual Pore Structure. Journal of Electronic Materials, 46(6), 3748-3756. | 2017 | 926 | 10.1007/s11664-016-5242-6 | 4517 | ceramic | SnO2 | water | 100 | 0.0 | 0 | 9.0 | 86.0 | 100 | powder | 0.08 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 55.0 | 9.8 | 6.0 | 3.8 | 0.0 | 0.0 | 0.0 | 0.0 |
Nam, K., Kim, H. G., Choi, H., Park, H., Kang, J. S., Sung, Y. E., ... & Choe, H. (2017). Morphology and Gas-Sensing Properties of Tin Oxide Foams with Dual Pore Structure. Journal of Electronic Materials, 46(6), 3748-3756. | 2017 | 926 | 10.1007/s11664-016-5242-6 | 4518 | ceramic | SnO2 | water | 100 | 0.0 | 0 | 9.0 | 86.0 | 100 | powder | 0.08 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nam, K., Kim, H. G., Choi, H., Park, H., Kang, J. S., Sung, Y. E., ... & Choe, H. (2017). Morphology and Gas-Sensing Properties of Tin Oxide Foams with Dual Pore Structure. Journal of Electronic Materials, 46(6), 3748-3756. | 2017 | 926 | 10.1007/s11664-016-5242-6 | 4519 | ceramic | SnO2 | water | 100 | 0.0 | 0 | 9.0 | 86.0 | 100 | powder | 0.08 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nam, K., Kim, H. G., Choi, H., Park, H., Kang, J. S., Sung, Y. E., ... & Choe, H. (2017). Morphology and Gas-Sensing Properties of Tin Oxide Foams with Dual Pore Structure. Journal of Electronic Materials, 46(6), 3748-3756. | 2017 | 926 | 10.1007/s11664-016-5242-6 | 4520 | ceramic | SnO2 | water | 100 | 0.0 | 0 | 9.0 | 86.0 | 100 | powder | 0.08 | 2 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 58.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Nam, K., Wolfenstine, J., Choi, H., Garcia-Mendez, R., Sakamoto, J., & Choe, H. (2017). Study on the mechanical properties of porous tin oxide. Ceramics International. | 2017 | 1003 | 10.1016/j.ceramint.2017.05.128 | 6176 | ceramic | SnO2 | water | 100 | 0.0 | 0 | 9.0 | 86.0 | 100 | powder | 0.03 | 3 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 73.0 | 0.0 | 0.0 | 1.9 | 0.0 | 12.6 | 0.0 | 15.5 |
Nam, K., Wolfenstine, J., Choi, H., Garcia-Mendez, R., Sakamoto, J., & Choe, H. (2017). Study on the mechanical properties of porous tin oxide. Ceramics International. | 2017 | 1003 | 10.1016/j.ceramint.2017.05.128 | 6177 | ceramic | SnO2 | water | 100 | 0.0 | 0 | 9.0 | 86.0 | 100 | powder | 0.03 | 3 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 68.0 | 0.0 | 0.0 | 0.0 | 0.0 | 51.2 | 0.0 | 37.0 |
Nam, K., Wolfenstine, J., Choi, H., Garcia-Mendez, R., Sakamoto, J., & Choe, H. (2017). Study on the mechanical properties of porous tin oxide. Ceramics International. | 2017 | 1003 | 10.1016/j.ceramint.2017.05.128 | 6178 | ceramic | SnO2 | water | 100 | 0.0 | 0 | 9.0 | 86.0 | 100 | powder | 0.03 | 3 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 59.0 | 0.0 | 0.0 | 0.0 | 0.0 | 62.6 | 0.0 | 55.2 |
Nam, K., Wolfenstine, J., Choi, H., Garcia-Mendez, R., Sakamoto, J., & Choe, H. (2017). Study on the mechanical properties of porous tin oxide. Ceramics International. | 2017 | 1003 | 10.1016/j.ceramint.2017.05.128 | 6179 | ceramic | SnO2 | water | 100 | 0.0 | 0 | 9.0 | 86.0 | 100 | powder | 0.03 | 3 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 50.0 | 0.0 | 0.0 | 3.9 | 0.0 | 95.4 | 0.0 | 54.8 |
Peng, X., He, C., Liu, J., & Wang, H. (2016). Biomimetic jellyfish-like PVA/graphene oxide nanocomposite hydrogels with anisotropic and pH-responsive mechanical properties. Journal of materials science, 51(12), 5901-5911. | 2016 | 472 | 10.1007/s10853-016-9891-x | 5173 | carbon/polymer | graphene-PVA | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Peng, X., He, C., Liu, J., & Wang, H. (2016). Biomimetic jellyfish-like PVA/graphene oxide nanocomposite hydrogels with anisotropic and pH-responsive mechanical properties. Journal of materials science, 51(12), 5901-5911. | 2016 | 472 | 10.1007/s10853-016-9891-x | 5174 | carbon/polymer | graphene-PVA | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Peng, X., He, C., Liu, J., & Wang, H. (2016). Biomimetic jellyfish-like PVA/graphene oxide nanocomposite hydrogels with anisotropic and pH-responsive mechanical properties. Journal of materials science, 51(12), 5901-5911. | 2016 | 472 | 10.1007/s10853-016-9891-x | 5175 | carbon/polymer | graphene-PVA | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Peng, X., He, C., Liu, J., & Wang, H. (2016). Biomimetic jellyfish-like PVA/graphene oxide nanocomposite hydrogels with anisotropic and pH-responsive mechanical properties. Journal of materials science, 51(12), 5901-5911. | 2016 | 472 | 10.1007/s10853-016-9891-x | 5176 | carbon/polymer | graphene-PVA | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Vickery, J. L., Patil, A. J., & Mann, S. (2009). Fabrication of Graphene?Polymer Nanocomposites With Higher?Order Three?Dimensional Architectures. Advanced Materials, 21(21), 2180-2184. | 2009 | 631 | 10.1002/adma.200803606 | 5334 | carbon/polymer | graphene-PVA | water | 100 | 0.0 | 0 | 8.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Porter, M. M., Meraz, L., Calderon, A., Choi, H., Chouhan, A., Wang, L., ... & McKittrick, J. (2015). Torsional properties of helix-reinforced composites fabricated by magnetic freeze casting. Composite Structures, 119, 174-184. | 2015 | 491 | 10.1016/j.compstruct.2014.08.033 | 5197 | ceramic/polymer | ZrO2-epoxy | water | 100 | 0.0 | 0 | 37.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Porter, M. M., Meraz, L., Calderon, A., Choi, H., Chouhan, A., Wang, L., ... & McKittrick, J. (2015). Torsional properties of helix-reinforced composites fabricated by magnetic freeze casting. Composite Structures, 119, 174-184. | 2015 | 491 | 10.1016/j.compstruct.2014.08.033 | 5198 | ceramic/polymer | ZrO2-epoxy | water | 100 | 0.0 | 0 | 38.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Porter, M. M., Meraz, L., Calderon, A., Choi, H., Chouhan, A., Wang, L., ... & McKittrick, J. (2015). Torsional properties of helix-reinforced composites fabricated by magnetic freeze casting. Composite Structures, 119, 174-184. | 2015 | 491 | 10.1016/j.compstruct.2014.08.033 | 5199 | ceramic/polymer | ZrO2-epoxy | water | 100 | 0.0 | 0 | 36.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Porter, M. M., Meraz, L., Calderon, A., Choi, H., Chouhan, A., Wang, L., ... & McKittrick, J. (2015). Torsional properties of helix-reinforced composites fabricated by magnetic freeze casting. Composite Structures, 119, 174-184. | 2015 | 491 | 10.1016/j.compstruct.2014.08.033 | 5200 | ceramic/polymer | ZrO2-epoxy | water | 100 | 0.0 | 0 | 37.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Porter, M. M., Meraz, L., Calderon, A., Choi, H., Chouhan, A., Wang, L., ... & McKittrick, J. (2015). Torsional properties of helix-reinforced composites fabricated by magnetic freeze casting. Composite Structures, 119, 174-184. | 2015 | 491 | 10.1016/j.compstruct.2014.08.033 | 5201 | ceramic/polymer | ZrO2-epoxy | water | 100 | 0.0 | 0 | 58.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Porter, M. M., Meraz, L., Calderon, A., Choi, H., Chouhan, A., Wang, L., ... & McKittrick, J. (2015). Torsional properties of helix-reinforced composites fabricated by magnetic freeze casting. Composite Structures, 119, 174-184. | 2015 | 491 | 10.1016/j.compstruct.2014.08.033 | 5202 | ceramic/polymer | ZrO2-epoxy | water | 100 | 0.0 | 0 | 59.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Porter, M. M., Meraz, L., Calderon, A., Choi, H., Chouhan, A., Wang, L., ... & McKittrick, J. (2015). Torsional properties of helix-reinforced composites fabricated by magnetic freeze casting. Composite Structures, 119, 174-184. | 2015 | 491 | 10.1016/j.compstruct.2014.08.033 | 5203 | ceramic/polymer | ZrO2-epoxy | water | 100 | 0.0 | 0 | 57.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Porter, M. M., Meraz, L., Calderon, A., Choi, H., Chouhan, A., Wang, L., ... & McKittrick, J. (2015). Torsional properties of helix-reinforced composites fabricated by magnetic freeze casting. Composite Structures, 119, 174-184. | 2015 | 491 | 10.1016/j.compstruct.2014.08.033 | 5204 | ceramic/polymer | ZrO2-epoxy | water | 100 | 0.0 | 0 | 59.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Porter, M. M., Meraz, L., Calderon, A., Choi, H., Chouhan, A., Wang, L., ... & McKittrick, J. (2015). Torsional properties of helix-reinforced composites fabricated by magnetic freeze casting. Composite Structures, 119, 174-184. | 2015 | 491 | 10.1016/j.compstruct.2014.08.033 | 5205 | ceramic/polymer | ZrO2-epoxy | water | 100 | 0.0 | 0 | 63.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pot, M. W., Faraj, K. A., Adawy, A., van Enckevort, W. J., van Moerkerk, H. T., Vlieg, E., ... & van Kuppevelt, T. H. (2015). Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations. ACS applied materials & interfaces, 7(16), 8495-8505. | 2015 | 493 | 0 | 4653 | polymer | Collagen-0.5wt.% PVA | water | 100 | 0.0 | 0 | 0.45 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pot, M. W., Faraj, K. A., Adawy, A., van Enckevort, W. J., van Moerkerk, H. T., Vlieg, E., ... & van Kuppevelt, T. H. (2015). Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations. ACS applied materials & interfaces, 7(16), 8495-8505. | 2015 | 493 | 0 | 4654 | pharmaceutical | Bindzil | water | 100 | 0.0 | 0 | 0.45 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Witte, A., & Ulrich, J. (2010). An alternative technology to form tablets. Chemical Engineering & Technology, 33(5), 757-761. | 2010 | 664 | 10.1002/ceat.200900576 | 4557 | pharmaceutical | Bindzil | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pot, M. W., Faraj, K. A., Adawy, A., van Enckevort, W. J., van Moerkerk, H. T., Vlieg, E., ... & van Kuppevelt, T. H. (2015). Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations. ACS applied materials & interfaces, 7(16), 8495-8505. | 2015 | 493 | 0 | 4655 | polymer | Collagen-2.5wt.% PVA | water | 100 | 0.0 | 0 | 0.45 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pot, M. W., Faraj, K. A., Adawy, A., van Enckevort, W. J., van Moerkerk, H. T., Vlieg, E., ... & van Kuppevelt, T. H. (2015). Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations. ACS applied materials & interfaces, 7(16), 8495-8505. | 2015 | 493 | 0 | 4656 | polymer | Collagen-5wt.% PVA | water | 100 | 0.0 | 0 | 0.45 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pourhaghgouy, M., Zamanian, A., Shahrezaee, M., & Masouleh, M. P. (2016). Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass. Materials Science and Engineering: C, 58, 180-186. | 2015 | 495 | 10.1016/j.msec.2015.07.065 | 5207 | ceramic/polymer | chitosan-10wt.% bioglass | water | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pourhaghgouy, M., Zamanian, A., Shahrezaee, M., & Masouleh, M. P. (2016). Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass. Materials Science and Engineering: C, 58, 180-186. | 2015 | 495 | 10.1016/j.msec.2015.07.065 | 5208 | ceramic/polymer | chitosan-30wt.% bioglass | water | 100 | 0.0 | 0 | 15.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pourhaghgouy, M., Zamanian, A., Shahrezaee, M., & Masouleh, M. P. (2016). Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass. Materials Science and Engineering: C, 58, 180-186. | 2015 | 495 | 10.1016/j.msec.2015.07.065 | 5209 | ceramic/polymer | chitosan-50wt.% bioglass | water | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pulkin, M., Koch, D., & Grathwohl, G. (2011). Silica effect on porous calcium phosphate ceramics from the freeze gelation route. International Journal of Applied Ceramic Technology, 8(6), 1414-1424. | 2011 | 501 | 10.1111/j.1744-7402.2010.02603.x | 4675 | ceramic | HAP-5wt.% SiO2 (mixed) | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 94 | 0 | 0.0 | 0 | 0 | 0 | 123.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pulkin, M., Koch, D., & Grathwohl, G. (2011). Silica effect on porous calcium phosphate ceramics from the freeze gelation route. International Journal of Applied Ceramic Technology, 8(6), 1414-1424. | 2011 | 501 | 10.1111/j.1744-7402.2010.02603.x | 4676 | ceramic | HAP-5wt.% SiO2 (mixed) | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 94 | 0 | 0.0 | 0 | 0 | 0 | 123.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 74.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pulkin, M., Koch, D., & Grathwohl, G. (2011). Silica effect on porous calcium phosphate ceramics from the freeze gelation route. International Journal of Applied Ceramic Technology, 8(6), 1414-1424. | 2011 | 501 | 10.1111/j.1744-7402.2010.02603.x | 4677 | ceramic | HAP-5wt.% SiO2 (mixed) | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 94 | 0 | 0.0 | 0 | 0 | 0 | 123.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 73.0 | 0.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pulkin, M., Koch, D., & Grathwohl, G. (2011). Silica effect on porous calcium phosphate ceramics from the freeze gelation route. International Journal of Applied Ceramic Technology, 8(6), 1414-1424. | 2011 | 501 | 10.1111/j.1744-7402.2010.02603.x | 4678 | ceramic | HAP-5wt.% SiO2 (mixed) | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 94 | 0 | 0.0 | 0 | 0 | 0 | 123.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 74.0 | 0.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pulkin, M., Koch, D., & Grathwohl, G. (2011). Silica effect on porous calcium phosphate ceramics from the freeze gelation route. International Journal of Applied Ceramic Technology, 8(6), 1414-1424. | 2011 | 501 | 10.1111/j.1744-7402.2010.02603.x | 4679 | ceramic | HAP-5wt.% SiO2 (mixed) | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 94 | 0 | 0.0 | 0 | 0 | 0 | 123.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.0 | 0.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pulkin, M., Koch, D., & Grathwohl, G. (2011). Silica effect on porous calcium phosphate ceramics from the freeze gelation route. International Journal of Applied Ceramic Technology, 8(6), 1414-1424. | 2011 | 501 | 10.1111/j.1744-7402.2010.02603.x | 4680 | ceramic | HAP-5wt.% SiO2 (mixed) | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 94 | 0 | 0.0 | 0 | 0 | 0 | 123.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 50.0 | 0.0 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pulkin, M., Koch, D., & Grathwohl, G. (2011). Silica effect on porous calcium phosphate ceramics from the freeze gelation route. International Journal of Applied Ceramic Technology, 8(6), 1414-1424. | 2011 | 501 | 10.1111/j.1744-7402.2010.02603.x | 4681 | ceramic | HAP-1wt.% SiO2 (mixed) | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 99 | 0 | 0.0 | 0 | 0 | 0 | 123.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pulkin, M., Koch, D., & Grathwohl, G. (2011). Silica effect on porous calcium phosphate ceramics from the freeze gelation route. International Journal of Applied Ceramic Technology, 8(6), 1414-1424. | 2011 | 501 | 10.1111/j.1744-7402.2010.02603.x | 4682 | ceramic | HAP-1wt.% SiO2 (mixed) | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 99 | 0 | 0.0 | 0 | 0 | 0 | 123.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pulkin, M., Koch, D., & Grathwohl, G. (2011). Silica effect on porous calcium phosphate ceramics from the freeze gelation route. International Journal of Applied Ceramic Technology, 8(6), 1414-1424. | 2011 | 501 | 10.1111/j.1744-7402.2010.02603.x | 4683 | ceramic | HAP-1wt.% SiO2 (mixed) | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 99 | 0 | 0.0 | 0 | 0 | 0 | 123.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pulkin, M., Koch, D., & Grathwohl, G. (2011). Silica effect on porous calcium phosphate ceramics from the freeze gelation route. International Journal of Applied Ceramic Technology, 8(6), 1414-1424. | 2011 | 501 | 10.1111/j.1744-7402.2010.02603.x | 4684 | ceramic | HAP-1wt.% SiO2 (mixed) | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 99 | 0 | 0.0 | 0 | 0 | 0 | 123.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pulkin, M., Koch, D., & Grathwohl, G. (2011). Silica effect on porous calcium phosphate ceramics from the freeze gelation route. International Journal of Applied Ceramic Technology, 8(6), 1414-1424. | 2011 | 501 | 10.1111/j.1744-7402.2010.02603.x | 4685 | ceramic | HAP-1wt.% SiO2 (mixed) | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 99 | 0 | 0.0 | 0 | 0 | 0 | 123.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pulkin, M., Koch, D., & Grathwohl, G. (2011). Silica effect on porous calcium phosphate ceramics from the freeze gelation route. International Journal of Applied Ceramic Technology, 8(6), 1414-1424. | 2011 | 501 | 10.1111/j.1744-7402.2010.02603.x | 4686 | ceramic | HAP-1wt.% SiO2 (mixed) | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 99 | 0 | 0.0 | 0 | 0 | 0 | 123.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pulkin, M., Koch, D., & Grathwohl, G. (2011). Silica effect on porous calcium phosphate ceramics from the freeze gelation route. International Journal of Applied Ceramic Technology, 8(6), 1414-1424. | 2011 | 501 | 10.1111/j.1744-7402.2010.02603.x | 4687 | ceramic | HAP-2wt.% SiO2 (mixed) | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 98 | 0 | 0.0 | 0 | 0 | 0 | 123.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pulkin, M., Koch, D., & Grathwohl, G. (2011). Silica effect on porous calcium phosphate ceramics from the freeze gelation route. International Journal of Applied Ceramic Technology, 8(6), 1414-1424. | 2011 | 501 | 10.1111/j.1744-7402.2010.02603.x | 4688 | ceramic | HAP-2wt.% SiO2 (mixed) | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 98 | 0 | 0.0 | 0 | 0 | 0 | 123.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pulkin, M., Koch, D., & Grathwohl, G. (2011). Silica effect on porous calcium phosphate ceramics from the freeze gelation route. International Journal of Applied Ceramic Technology, 8(6), 1414-1424. | 2011 | 501 | 10.1111/j.1744-7402.2010.02603.x | 4689 | ceramic | HAP-2wt.% SiO2 (mixed) | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 98 | 0 | 0.0 | 0 | 0 | 0 | 123.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pulkin, M., Koch, D., & Grathwohl, G. (2011). Silica effect on porous calcium phosphate ceramics from the freeze gelation route. International Journal of Applied Ceramic Technology, 8(6), 1414-1424. | 2011 | 501 | 10.1111/j.1744-7402.2010.02603.x | 4690 | ceramic | HAP-2wt.% SiO2 (mixed) | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 98 | 0 | 0.0 | 0 | 0 | 0 | 123.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pulkin, M., Koch, D., & Grathwohl, G. (2011). Silica effect on porous calcium phosphate ceramics from the freeze gelation route. International Journal of Applied Ceramic Technology, 8(6), 1414-1424. | 2011 | 501 | 10.1111/j.1744-7402.2010.02603.x | 4691 | ceramic | HAP-2wt.% SiO2 (mixed) | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 98 | 0 | 0.0 | 0 | 0 | 0 | 123.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pulkin, M., Koch, D., & Grathwohl, G. (2011). Silica effect on porous calcium phosphate ceramics from the freeze gelation route. International Journal of Applied Ceramic Technology, 8(6), 1414-1424. | 2011 | 501 | 10.1111/j.1744-7402.2010.02603.x | 4692 | ceramic | HAP-2wt.% SiO2 (mixed) | water | 100 | 0.0 | 0 | 25.0 | 18.0 | 98 | 0 | 0.0 | 0 | 0 | 0 | 123.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qi, X., He, F., & Ye, J. (2012). Microstructure and mechanical properties of calcium phosphate cement/gelatine composite scaffold with oriented pore structure for bone tissue engineering. Journal of Wuhan University of Technology--Materials Science Edition, 27(1), 92-95. | 2012 | 503 | 10.1007/s11595-012-0414-6 | 4694 | ceramic/polymer | CPC-gelatin (infiltration) | water | 100 | 0.0 | 0 | 0.0 | 13.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 198.0 | 0.0 | 0.0 | radial-in | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.12 | 0.0 | 5.12 |
Qi, X., Ye, J., & Wang, Y. (2009). Alginate/poly (lactic?co?glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering. Journal of Biomedical Materials Research Part A, 89(4), 980-987. | 2009 | 504 | 10.1002/jbm.a.32054 | 4661 | ceramic/polymer | CPC-PLGA | water | 100 | 0.0 | 0 | 15.0 | 0.0 | 0 | 0 | 0.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 89.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qi, X., Ye, J., & Wang, Y. (2009). Alginate/poly (lactic?co?glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering. Journal of Biomedical Materials Research Part A, 89(4), 980-987. | 2009 | 504 | 10.1002/jbm.a.32054 | 4662 | ceramic/polymer | CPC-PLGA | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 85.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qi, X., Ye, J., & Wang, Y. (2009). Alginate/poly (lactic?co?glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering. Journal of Biomedical Materials Research Part A, 89(4), 980-987. | 2009 | 504 | 10.1002/jbm.a.32054 | 4663 | ceramic/polymer | CPC-PLGA | water | 100 | 0.0 | 0 | 25.0 | 0.0 | 0 | 0 | 0.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 79.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.44 | 0.0 | 0.0 |
Qi, X., Ye, J., & Wang, Y. (2009). Alginate/poly (lactic?co?glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering. Journal of Biomedical Materials Research Part A, 89(4), 980-987. | 2009 | 504 | 10.1002/jbm.a.32054 | 4664 | ceramic/polymer | CPC-PLGA | water | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 72.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.14 | 0.0 | 0.0 |
Qi, X., Ye, J., & Wang, Y. (2009). Alginate/poly (lactic?co?glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering. Journal of Biomedical Materials Research Part A, 89(4), 980-987. | 2009 | 504 | 10.1002/jbm.a.32054 | 4665 | ceramic/polymer | CPC-PLGA | water | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qi, X., Ye, J., & Wang, Y. (2009). Alginate/poly (lactic?co?glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering. Journal of Biomedical Materials Research Part A, 89(4), 980-987. | 2009 | 504 | 10.1002/jbm.a.32054 | 4666 | ceramic/polymer | CPC-PLGA | water | 100 | 0.0 | 0 | 15.0 | 0.0 | 0 | 0 | 0.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qi, X., Ye, J., & Wang, Y. (2009). Alginate/poly (lactic?co?glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering. Journal of Biomedical Materials Research Part A, 89(4), 980-987. | 2009 | 504 | 10.1002/jbm.a.32054 | 4667 | ceramic/polymer | CPC-PLGA | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qi, X., Ye, J., & Wang, Y. (2009). Alginate/poly (lactic?co?glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering. Journal of Biomedical Materials Research Part A, 89(4), 980-987. | 2009 | 504 | 10.1002/jbm.a.32054 | 4668 | ceramic/polymer | CPC-PLGA | water | 100 | 0.0 | 0 | 25.0 | 0.0 | 0 | 0 | 0.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Qiu, L., Bulut Coskun, M., Tang, Y., Liu, J. Z., Alan, T., Ding, J., ... & Li, D. (2016). Ultrafast Dynamic Piezoresistive Response of Graphene?Based Cellular Elastomers. Advanced Materials, 28(1), 194-200. | 2016 | 508 | 10.1002/adma.201503957 | 4695 | carbon/polymer | graphene-elastomers | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.01 | 0.0 | 0.0 | 0.0 | 0.0 |
Qiu, L., Liu, J. Z., Chang, S. L., Wu, Y., & Li, D. (2012). Biomimetic superelastic graphene-based cellular monoliths. Nature communications, 3, 1241. | 2012 | 510 | 0 | 4696 | carbon/polymer | graphene-elastomers | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 0.0 | 0.01 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, P., Lv, L., Liang, Y., Li, J., Cheng, H., Zhao, Y., & Qu, L. (2016). A versatile, superelastic polystyrene/graphene capsule-like framework. Journal of Materials Chemistry A, 4(26), 10118-10123. | 2016 | 512 | 10.1039/c6ta03899a | 4791 | carbon/polymer | graphene-polystyrene | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | green | 0.0 | 0.0 | 45.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Quintero Ortega, I. A., Mota-Morales, J. D., Elizalde Pen?a, E. A., Za?rate-Trivin?o, D. G., De Santiago, Y. A., Ortiz, A., ... & Luna-Ba?rcenas, G. (2012). Cryogenic Process to Elaborate Poly (ethylene glycol) Scaffolds. Experimental and Simulation Studies. Industrial & Engineering Chemistry Research, 52(2), 706-715. | 2013 | 513 | 10.1021/ie301441j | 5432 | polymer | PEG | water | 100 | 0.0 | 0 | 8.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Rogina, A., Rico, P., Ferrer, G. G., Ivankovi?, M., & Ivankovi?, H. (2015). Effect of in situ formed hydroxyapatite on microstructure of freeze-gelled chitosan-based biocomposite scaffolds. European Polymer Journal, 68, 278-287. | 2015 | 527 | 10.1016/j.eurpolymj.2015.05.004 | 5423 | ceramic/polymer | chitosan-10wt.% HAP | acetic acid | 100 | 0.0 | 0 | 3.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 87.6 | 0.0 | 38.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Rogina, A., Rico, P., Ferrer, G. G., Ivankovi?, M., & Ivankovi?, H. (2015). Effect of in situ formed hydroxyapatite on microstructure of freeze-gelled chitosan-based biocomposite scaffolds. European Polymer Journal, 68, 278-287. | 2015 | 527 | 10.1016/j.eurpolymj.2015.05.004 | 5424 | ceramic/polymer | chitosan-20wt.% HAP | acetic acid | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 88.3 | 0.0 | 46.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Rogina, A., Rico, P., Ferrer, G. G., Ivankovi?, M., & Ivankovi?, H. (2015). Effect of in situ formed hydroxyapatite on microstructure of freeze-gelled chitosan-based biocomposite scaffolds. European Polymer Journal, 68, 278-287. | 2015 | 527 | 10.1016/j.eurpolymj.2015.05.004 | 5425 | ceramic/polymer | chitosan-30wt.% HAP | acetic acid | 100 | 0.0 | 0 | 11.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 84.2 | 0.0 | 39.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Rogina, A., Rico, P., Ferrer, G. G., Ivankovi?, M., & Ivankovi?, H. (2015). Effect of in situ formed hydroxyapatite on microstructure of freeze-gelled chitosan-based biocomposite scaffolds. European Polymer Journal, 68, 278-287. | 2015 | 527 | 10.1016/j.eurpolymj.2015.05.004 | 5426 | ceramic/polymer | chitosan-40wt.% HAP | acetic acid | 100 | 0.0 | 0 | 19.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 86.8 | 0.0 | 48.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Rogina, A., Rico, P., Ferrer, G. G., Ivankovi?, M., & Ivankovi?, H. (2015). Effect of in situ formed hydroxyapatite on microstructure of freeze-gelled chitosan-based biocomposite scaffolds. European Polymer Journal, 68, 278-287. | 2015 | 527 | 10.1016/j.eurpolymj.2015.05.004 | 5427 | ceramic/polymer | chitosan-50wt.% HAP | acetic acid | 100 | 0.0 | 0 | 22.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 73.0 | 0.0 | 24.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Rogina, A., Rico, P., Ferrer, G. G., Ivankovi?, M., & Ivankovi?, H. (2015). Effect of in situ formed hydroxyapatite on microstructure of freeze-gelled chitosan-based biocomposite scaffolds. European Polymer Journal, 68, 278-287. | 2015 | 527 | 10.1016/j.eurpolymj.2015.05.004 | 5428 | ceramic/polymer | chitosan-60wt.% HAP | acetic acid | 100 | 0.0 | 0 | 30.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 84.1 | 0.0 | 35.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Romeo, H. E., Hoppe, C. E., Lopez-Quintela, M. A., Williams, R. J., Minaberry, Y., & Jobbágy, M. (2012). Directional freezing of liquid crystalline systems: from silver nanowire/PVA aqueous dispersions to highly ordered and electrically conductive macroporous scaffolds. Journal of Materials Chemistry, 22(18), 9195-9201. | 2012 | 528 | 10.1039/c2jm16329b | 4239 | metal/polymer | Ag-PVA | water | 100 | 0.0 | 0 | 0.01 | 5.0 | 100 | nanowires | 0.1 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 37.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 95.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Romeo, H. E., Hoppe, C. E., Lopez-Quintela, M. A., Williams, R. J., Minaberry, Y., & Jobbágy, M. (2012). Directional freezing of liquid crystalline systems: from silver nanowire/PVA aqueous dispersions to highly ordered and electrically conductive macroporous scaffolds. Journal of Materials Chemistry, 22(18), 9195-9201. | 2012 | 528 | 10.1039/c2jm16329b | 4240 | metal/polymer | Ag-PVA | water | 100 | 0.0 | 0 | 0.1 | 5.0 | 100 | nanowires | 0.1 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 37.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 95.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Romeo, H. E., Hoppe, C. E., Lopez-Quintela, M. A., Williams, R. J., Minaberry, Y., & Jobbágy, M. (2012). Directional freezing of liquid crystalline systems: from silver nanowire/PVA aqueous dispersions to highly ordered and electrically conductive macroporous scaffolds. Journal of Materials Chemistry, 22(18), 9195-9201. | 2012 | 528 | 10.1039/c2jm16329b | 4241 | metal/polymer | Ag-PVA | water | 100 | 0.0 | 0 | 0.01 | 5.0 | 100 | nanowires | 0.1 | 5 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 37.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 95.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Romeo, H. E., Hoppe, C. E., Lopez-Quintela, M. A., Williams, R. J., Minaberry, Y., & Jobbágy, M. (2012). Directional freezing of liquid crystalline systems: from silver nanowire/PVA aqueous dispersions to highly ordered and electrically conductive macroporous scaffolds. Journal of Materials Chemistry, 22(18), 9195-9201. | 2012 | 528 | 10.1039/c2jm16329b | 4242 | metal/polymer | Ag-PVA | water | 100 | 0.0 | 0 | 0.1 | 5.0 | 100 | nanowires | 0.1 | 5 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 37.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 95.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Romeo, H. E., Hoppe, C. E., Lopez-Quintela, M. A., Williams, R. J., Minaberry, Y., & Jobbágy, M. (2012). Directional freezing of liquid crystalline systems: from silver nanowire/PVA aqueous dispersions to highly ordered and electrically conductive macroporous scaffolds. Journal of Materials Chemistry, 22(18), 9195-9201. | 2012 | 528 | 10.1039/c2jm16329b | 4243 | metal/polymer | Ag-PVA | water | 100 | 0.0 | 0 | 0.01 | 5.0 | 100 | nanowires | 0.1 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 48.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 95.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Romeo, H. E., Hoppe, C. E., Lopez-Quintela, M. A., Williams, R. J., Minaberry, Y., & Jobbágy, M. (2012). Directional freezing of liquid crystalline systems: from silver nanowire/PVA aqueous dispersions to highly ordered and electrically conductive macroporous scaffolds. Journal of Materials Chemistry, 22(18), 9195-9201. | 2012 | 528 | 10.1039/c2jm16329b | 4244 | metal/polymer | Ag-PVA | water | 100 | 0.0 | 0 | 0.1 | 5.0 | 100 | nanowires | 0.1 | 1 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 48.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 95.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Romeo, H. E., Hoppe, C. E., Lopez-Quintela, M. A., Williams, R. J., Minaberry, Y., & Jobbágy, M. (2012). Directional freezing of liquid crystalline systems: from silver nanowire/PVA aqueous dispersions to highly ordered and electrically conductive macroporous scaffolds. Journal of Materials Chemistry, 22(18), 9195-9201. | 2012 | 528 | 10.1039/c2jm16329b | 4245 | metal/polymer | Ag-PVA | water | 100 | 0.0 | 0 | 0.01 | 5.0 | 100 | nanowires | 0.1 | 5 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 48.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 95.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Romeo, H. E., Hoppe, C. E., Lopez-Quintela, M. A., Williams, R. J., Minaberry, Y., & Jobbágy, M. (2012). Directional freezing of liquid crystalline systems: from silver nanowire/PVA aqueous dispersions to highly ordered and electrically conductive macroporous scaffolds. Journal of Materials Chemistry, 22(18), 9195-9201. | 2012 | 528 | 10.1039/c2jm16329b | 4246 | metal/polymer | Ag-PVA | water | 100 | 0.0 | 0 | 0.1 | 5.0 | 100 | nanowires | 0.1 | 5 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 48.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 95.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Röthlisberger, A., Häberli, S., Spolenak, R., & Dunand, D. C. (2016). Synthesis, structure and mechanical properties of ice-templated tungsten foams. Journal of Materials Research, 31(6), 753-764. | 2016 | 530 | http://dx.doi.org/10.1557/jmr.2016.62 | 1009 | metal | W | water | 100 | 0.0 | 0 | 20.0 | 31.0 | 100 | powder | 0.1 | 2 | 0 | 0 | 258.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 50 | lamellar | sintered | 48.3 | 0.0 | 0.0 | 0.0 | 0.0 | 70.0 | 0.0 | 10900.0 |
Röthlisberger, A., Häberli, S., Spolenak, R., & Dunand, D. C. (2016). Synthesis, structure and mechanical properties of ice-templated tungsten foams. Journal of Materials Research, 31(6), 753-764. | 2016 | 530 | http://dx.doi.org/10.1557/jmr.2016.62 | 1010 | metal | W | water | 100 | 0.0 | 0 | 20.0 | 31.0 | 100 | powder | 0.1 | 2 | 0 | 0 | 258.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 50 | lamellar | sintered | 66.0 | 0.0 | 0.0 | 15.4 | 0.0 | 0.0 | 0.0 | 0.0 |
Röthlisberger, A., Häberli, S., Spolenak, R., & Dunand, D. C. (2016). Synthesis, structure and mechanical properties of ice-templated tungsten foams. Journal of Materials Research, 31(6), 753-764. | 2016 | 530 | http://dx.doi.org/10.1557/jmr.2016.62 | 1011 | metal | W | water | 100 | 0.0 | 0 | 20.0 | 31.0 | 100 | powder | 0.1 | 2 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 49 | lamellar | sintered | 50.0 | 0.0 | 0.0 | 17.0 | 0.0 | 96.0 | 0.0 | 15000.0 |
Röthlisberger, A., Häberli, S., Spolenak, R., & Dunand, D. C. (2016). Synthesis, structure and mechanical properties of ice-templated tungsten foams. Journal of Materials Research, 31(6), 753-764. | 2016 | 530 | http://dx.doi.org/10.1557/jmr.2016.62 | 1012 | metal | W | water | 100 | 0.0 | 0 | 20.0 | 31.0 | 100 | powder | 0.1 | 2 | 0 | 0 | 248.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 49 | lamellar | sintered | 52.9 | 0.0 | 0.0 | 16.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Röthlisberger, A., Häberli, S., Spolenak, R., & Dunand, D. C. (2016). Synthesis, structure and mechanical properties of ice-templated tungsten foams. Journal of Materials Research, 31(6), 753-764. | 2016 | 530 | http://dx.doi.org/10.1557/jmr.2016.62 | 1013 | metal | W | water | 100 | 0.0 | 0 | 20.0 | 31.0 | 100 | powder | 0.1 | 2 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 48 | lamellar | sintered | 60.7 | 0.0 | 0.0 | 26.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Röthlisberger, A., Häberli, S., Spolenak, R., & Dunand, D. C. (2016). Synthesis, structure and mechanical properties of ice-templated tungsten foams. Journal of Materials Research, 31(6), 753-764. | 2016 | 530 | http://dx.doi.org/10.1557/jmr.2016.62 | 1014 | metal | W | water | 100 | 0.0 | 0 | 22.5 | 31.0 | 100 | powder | 0.1 | 2 | 0 | 0 | 258.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 47 | lamellar | sintered | 57.6 | 0.0 | 0.0 | 17.7 | 0.0 | 0.0 | 0.0 | 0.0 |
Röthlisberger, A., Häberli, S., Spolenak, R., & Dunand, D. C. (2016). Synthesis, structure and mechanical properties of ice-templated tungsten foams. Journal of Materials Research, 31(6), 753-764. | 2016 | 530 | http://dx.doi.org/10.1557/jmr.2016.62 | 1015 | metal | W | water | 100 | 0.0 | 0 | 22.5 | 31.0 | 100 | powder | 0.1 | 2 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 48 | lamellar | sintered | 50.2 | 0.0 | 0.0 | 15.1 | 0.0 | 0.0 | 0.0 | 0.0 |
Röthlisberger, A., Häberli, S., Spolenak, R., & Dunand, D. C. (2016). Synthesis, structure and mechanical properties of ice-templated tungsten foams. Journal of Materials Research, 31(6), 753-764. | 2016 | 530 | http://dx.doi.org/10.1557/jmr.2016.62 | 1016 | metal | W | water | 100 | 0.0 | 0 | 22.5 | 31.0 | 100 | powder | 0.1 | 2 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 46 | lamellar | sintered | 55.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Röthlisberger, A., Häberli, S., Spolenak, R., & Dunand, D. C. (2016). Synthesis, structure and mechanical properties of ice-templated tungsten foams. Journal of Materials Research, 31(6), 753-764. | 2016 | 530 | http://dx.doi.org/10.1557/jmr.2016.62 | 1017 | metal | W | water | 100 | 0.0 | 0 | 22.5 | 31.0 | 100 | powder | 0.1 | 2 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 43 | lamellar | sintered | 65.5 | 0.0 | 0.0 | 16.7 | 0.0 | 0.0 | 0.0 | 0.0 |
Röthlisberger, A., Häberli, S., Spolenak, R., & Dunand, D. C. (2016). Synthesis, structure and mechanical properties of ice-templated tungsten foams. Journal of Materials Research, 31(6), 753-764. | 2016 | 530 | http://dx.doi.org/10.1557/jmr.2016.62 | 1019 | metal | W | water | 100 | 0.0 | 0 | 22.5 | 31.0 | 100 | powder | 0.1 | 2 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 49 | lamellar | sintered | 55.0 | 0.0 | 0.0 | 10.4 | 0.0 | 0.0 | 0.0 | 0.0 |
Röthlisberger, A., Häberli, S., Spolenak, R., & Dunand, D. C. (2016). Synthesis, structure and mechanical properties of ice-templated tungsten foams. Journal of Materials Research, 31(6), 753-764. | 2016 | 530 | http://dx.doi.org/10.1557/jmr.2016.62 | 1021 | metal | W | water | 100 | 0.0 | 0 | 25.0 | 31.0 | 100 | powder | 0.1 | 2 | 0 | 0 | 258.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 48 | lamellar | sintered | 49.1 | 0.0 | 0.0 | 21.9 | 0.0 | 0.0 | 0.0 | 0.0 |
Röthlisberger, A., Häberli, S., Spolenak, R., & Dunand, D. C. (2016). Synthesis, structure and mechanical properties of ice-templated tungsten foams. Journal of Materials Research, 31(6), 753-764. | 2016 | 530 | http://dx.doi.org/10.1557/jmr.2016.62 | 1022 | metal | W | water | 100 | 0.0 | 0 | 25.0 | 31.0 | 100 | powder | 0.1 | 2 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 49 | lamellar | sintered | 49.6 | 0.0 | 0.0 | 22.7 | 0.0 | 0.0 | 0.0 | 0.0 |
Röthlisberger, A., Häberli, S., Spolenak, R., & Dunand, D. C. (2016). Synthesis, structure and mechanical properties of ice-templated tungsten foams. Journal of Materials Research, 31(6), 753-764. | 2016 | 530 | http://dx.doi.org/10.1557/jmr.2016.62 | 1023 | metal | W | water | 100 | 0.0 | 0 | 25.0 | 31.0 | 100 | powder | 0.1 | 2 | 0 | 0 | 248.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 50 | lamellar | sintered | 44.3 | 0.0 | 0.0 | 17.8 | 0.0 | 0.0 | 0.0 | 0.0 |
Röthlisberger, A., Häberli, S., Spolenak, R., & Dunand, D. C. (2016). Synthesis, structure and mechanical properties of ice-templated tungsten foams. Journal of Materials Research, 31(6), 753-764. | 2016 | 530 | http://dx.doi.org/10.1557/jmr.2016.62 | 1024 | metal | W | water | 100 | 0.0 | 0 | 25.0 | 31.0 | 100 | powder | 0.1 | 2 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 50 | lamellar | sintered | 46.5 | 0.0 | 0.0 | 26.6 | 0.0 | 0.0 | 0.0 | 0.0 |
Röthlisberger, A., Häberli, S., Spolenak, R., & Dunand, D. C. (2016). Synthesis, structure and mechanical properties of ice-templated tungsten foams. Journal of Materials Research, 31(6), 753-764. | 2016 | 530 | http://dx.doi.org/10.1557/jmr.2016.62 | 1025 | metal | W | water | 100 | 0.0 | 0 | 27.5 | 31.0 | 100 | powder | 0.1 | 2 | 0 | 0 | 258.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 48 | lamellar | sintered | 36.1 | 0.0 | 0.0 | 21.9 | 0.0 | 0.0 | 0.0 | 0.0 |
Röthlisberger, A., Häberli, S., Spolenak, R., & Dunand, D. C. (2016). Synthesis, structure and mechanical properties of ice-templated tungsten foams. Journal of Materials Research, 31(6), 753-764. | 2016 | 530 | http://dx.doi.org/10.1557/jmr.2016.62 | 1026 | metal | W | water | 100 | 0.0 | 0 | 27.5 | 31.0 | 100 | powder | 0.1 | 2 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 49 | lamellar | sintered | 44.4 | 0.0 | 0.0 | 19.9 | 0.0 | 0.0 | 0.0 | 0.0 |
Röthlisberger, A., Häberli, S., Spolenak, R., & Dunand, D. C. (2016). Synthesis, structure and mechanical properties of ice-templated tungsten foams. Journal of Materials Research, 31(6), 753-764. | 2016 | 530 | http://dx.doi.org/10.1557/jmr.2016.62 | 1027 | metal | W | water | 100 | 0.0 | 0 | 27.5 | 31.0 | 100 | powder | 0.1 | 2 | 0 | 0 | 248.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 48 | lamellar | sintered | 43.3 | 0.0 | 0.0 | 18.2 | 0.0 | 0.0 | 0.0 | 0.0 |
Röthlisberger, A., Häberli, S., Spolenak, R., & Dunand, D. C. (2016). Synthesis, structure and mechanical properties of ice-templated tungsten foams. Journal of Materials Research, 31(6), 753-764. | 2016 | 530 | http://dx.doi.org/10.1557/jmr.2016.62 | 1028 | metal | W | water | 100 | 0.0 | 0 | 27.5 | 31.0 | 100 | powder | 0.1 | 2 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 50 | lamellar | sintered | 33.2 | 0.0 | 0.0 | 36.7 | 0.0 | 0.0 | 0.0 | 0.0 |
Röthlisberger, A., Häberli, S., Spolenak, R., & Dunand, D. C. (2016). Synthesis, structure and mechanical properties of ice-templated tungsten foams. Journal of Materials Research, 31(6), 753-764. | 2016 | 530 | http://dx.doi.org/10.1557/jmr.2016.62 | 1029 | metal | W | water | 100 | 0.0 | 0 | 30.0 | 31.0 | 100 | powder | 0.1 | 2 | 0 | 0 | 258.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 50 | lamellar | sintered | 32.8 | 0.0 | 0.0 | 30.2 | 0.0 | 0.0 | 0.0 | 0.0 |
Röthlisberger, A., Häberli, S., Spolenak, R., & Dunand, D. C. (2016). Synthesis, structure and mechanical properties of ice-templated tungsten foams. Journal of Materials Research, 31(6), 753-764. | 2016 | 530 | http://dx.doi.org/10.1557/jmr.2016.62 | 1030 | metal | W | water | 100 | 0.0 | 0 | 30.0 | 31.0 | 100 | powder | 0.1 | 2 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 48 | lamellar | sintered | 32.0 | 0.0 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Röthlisberger, A., Häberli, S., Spolenak, R., & Dunand, D. C. (2016). Synthesis, structure and mechanical properties of ice-templated tungsten foams. Journal of Materials Research, 31(6), 753-764. | 2016 | 530 | http://dx.doi.org/10.1557/jmr.2016.62 | 1031 | metal | W | water | 100 | 0.0 | 0 | 30.0 | 31.0 | 100 | powder | 0.1 | 2 | 0 | 0 | 248.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 48 | lamellar | sintered | 43.5 | 0.0 | 0.0 | 27.8 | 0.0 | 0.0 | 0.0 | 0.0 |
Röthlisberger, A., Häberli, S., Spolenak, R., & Dunand, D. C. (2016). Synthesis, structure and mechanical properties of ice-templated tungsten foams. Journal of Materials Research, 31(6), 753-764. | 2016 | 530 | http://dx.doi.org/10.1557/jmr.2016.62 | 1032 | metal | W | water | 100 | 0.0 | 0 | 30.0 | 31.0 | 100 | powder | 0.1 | 2 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 50 | lamellar | sintered | 35.3 | 0.0 | 0.0 | 49.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Röthlisberger, A., Häberli, S., Spolenak, R., & Dunand, D. C. (2016). Synthesis, structure and mechanical properties of ice-templated tungsten foams. Journal of Materials Research, 31(6), 753-764. | 2016 | 530 | http://dx.doi.org/10.1557/jmr.2016.62 | 1033 | metal | W | water | 100 | 0.0 | 0 | 35.0 | 31.0 | 100 | powder | 0.1 | 2 | 0 | 0 | 248.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 49 | lamellar | sintered | 27.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Röthlisberger, A., Häberli, S., Spolenak, R., & Dunand, D. C. (2016). Synthesis, structure and mechanical properties of ice-templated tungsten foams. Journal of Materials Research, 31(6), 753-764. | 2016 | 530 | http://dx.doi.org/10.1557/jmr.2016.62 | 1034 | metal | W | water | 100 | 0.0 | 0 | 15.0 | 31.0 | 100 | powder | 0.1 | 2 | 0 | 0 | 256.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 40 | lamellar | sintered | 63.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Röthlisberger, A., Häberli, S., Spolenak, R., & Dunand, D. C. (2016). Synthesis, structure and mechanical properties of ice-templated tungsten foams. Journal of Materials Research, 31(6), 753-764. | 2016 | 530 | http://dx.doi.org/10.1557/jmr.2016.62 | 1035 | metal | W | water | 100 | 0.0 | 0 | 20.0 | 31.0 | 100 | powder | 0.1 | 2 | 0 | 0 | 258.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 34 | lamellar | sintered | 64.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Röthlisberger, A., Häberli, S., Spolenak, R., & Dunand, D. C. (2016). Synthesis, structure and mechanical properties of ice-templated tungsten foams. Journal of Materials Research, 31(6), 753-764. | 2016 | 530 | http://dx.doi.org/10.1557/jmr.2016.62 | 1036 | metal | W | water | 100 | 0.0 | 0 | 22.5 | 31.0 | 100 | powder | 0.1 | 2 | 0 | 0 | 258.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 34 | lamellar | sintered | 66.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Röthlisberger, A., Häberli, S., Spolenak, R., & Dunand, D. C. (2016). Synthesis, structure and mechanical properties of ice-templated tungsten foams. Journal of Materials Research, 31(6), 753-764. | 2016 | 530 | http://dx.doi.org/10.1557/jmr.2016.62 | 1037 | metal | W | water | 100 | 0.0 | 0 | 30.0 | 31.0 | 100 | powder | 0.1 | 2 | 0 | 0 | 261.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 31 | lamellar | sintered | 59.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Röthlisberger, A., Häberli, S., Spolenak, R., & Dunand, D. C. (2016). Synthesis, structure and mechanical properties of ice-templated tungsten foams. Journal of Materials Research, 31(6), 753-764. | 2016 | 530 | http://dx.doi.org/10.1557/jmr.2016.62 | 1018 | metal | W (test @ 673 K) | water | 100 | 0.0 | 0 | 22.5 | 31.0 | 100 | powder | 0.1 | 2 | 0 | 0 | 248.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 48 | lamellar | sintered | 51.7 | 0.0 | 0.0 | 10.7 | 0.0 | 92.0 | 0.0 | 24200.0 |
Röthlisberger, A., Häberli, S., Spolenak, R., & Dunand, D. C. (2016). Synthesis, structure and mechanical properties of ice-templated tungsten foams. Journal of Materials Research, 31(6), 753-764. | 2016 | 530 | http://dx.doi.org/10.1557/jmr.2016.62 | 1020 | metal | W (test @ 673 K) | water | 100 | 0.0 | 0 | 22.5 | 31.0 | 100 | powder | 0.1 | 2 | 0 | 0 | 238.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 49 | lamellar | sintered | 48.0 | 0.0 | 0.0 | 24.3 | 0.0 | 135.0 | 0.0 | 17800.0 |
Sadeghpour, S., Amirjani, A., Hafezi, M., & Zamanian, A. (2014). Fabrication of a novel nanostructured calcium zirconium silicate scaffolds prepared by a freeze-casting method for bone tissue engineering. Ceramics International, 40(10), 16107-16114. | 2014 | 541 | 10.1016/j.ceramint.2014.07.039 | 3035 | ceramic | Ca3ZrSi2O9 | water | 100 | 0.0 | 0 | 12.5 | 36.0 | 100 | 0 | 0.0 | 5 | 2 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 68 | 0 | 33 | lamellar | sintered | 64.27 | 0.0 | 0.0 | 0.0 | 0.0 | 1.3 | 0.0 | 26.2 |
Sadeghpour, S., Amirjani, A., Hafezi, M., & Zamanian, A. (2014). Fabrication of a novel nanostructured calcium zirconium silicate scaffolds prepared by a freeze-casting method for bone tissue engineering. Ceramics International, 40(10), 16107-16114. | 2014 | 541 | 10.1016/j.ceramint.2014.07.039 | 3036 | ceramic | Ca3ZrSi2O9 | water | 100 | 0.0 | 0 | 12.5 | 36.0 | 100 | 0 | 0.0 | 5 | 2 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 68 | 0 | 31 | lamellar | sintered | 63.57 | 0.0 | 0.0 | 0.0 | 0.0 | 1.5 | 0.0 | 21.8 |
Sadeghpour, S., Amirjani, A., Hafezi, M., & Zamanian, A. (2014). Fabrication of a novel nanostructured calcium zirconium silicate scaffolds prepared by a freeze-casting method for bone tissue engineering. Ceramics International, 40(10), 16107-16114. | 2014 | 541 | 10.1016/j.ceramint.2014.07.039 | 3037 | ceramic | Ca3ZrSi2O9 | water | 100 | 0.0 | 0 | 20.0 | 36.0 | 100 | 0 | 0.0 | 5 | 2 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 66 | 0 | 32 | lamellar | sintered | 58.44 | 0.0 | 0.0 | 0.0 | 0.0 | 1.8 | 0.0 | 41.3 |
Sadeghpour, S., Amirjani, A., Hafezi, M., & Zamanian, A. (2014). Fabrication of a novel nanostructured calcium zirconium silicate scaffolds prepared by a freeze-casting method for bone tissue engineering. Ceramics International, 40(10), 16107-16114. | 2014 | 541 | 10.1016/j.ceramint.2014.07.039 | 3038 | ceramic | Ca3ZrSi2O9 | water | 100 | 0.0 | 0 | 20.0 | 36.0 | 100 | 0 | 0.0 | 5 | 2 | 0 | 0.0 | 4.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 66 | 0 | 31 | lamellar | sintered | 58.22 | 0.0 | 0.0 | 0.0 | 0.0 | 2.1 | 0.0 | 59.8 |
Sarasam, A. R., Samli, A. I., Hess, L., Ihnat, M. A., & Madihally, S. V. (2007). Blending chitosan with polycaprolactone: porous scaffolds and toxicity. Macromolecular bioscience, 7(9?10), 1160-1167. | 2007 | 544 | 10.1002/mabi.200700001 | 4613 | polymer | PCL | acetic acid | 100 | 0.0 | 0 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sarasam, A. R., Samli, A. I., Hess, L., Ihnat, M. A., & Madihally, S. V. (2007). Blending chitosan with polycaprolactone: porous scaffolds and toxicity. Macromolecular bioscience, 7(9?10), 1160-1167. | 2007 | 544 | 10.1002/mabi.200700001 | 4614 | polymer | PCL | acetic acid | 100 | 0.0 | 0 | 2.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sarasam, A. R., Samli, A. I., Hess, L., Ihnat, M. A., & Madihally, S. V. (2007). Blending chitosan with polycaprolactone: porous scaffolds and toxicity. Macromolecular bioscience, 7(9?10), 1160-1167. | 2007 | 544 | 10.1002/mabi.200700001 | 4615 | polymer | PCL | chloroform | 100 | 0.0 | 0 | 5.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sarasam, A. R., Samli, A. I., Hess, L., Ihnat, M. A., & Madihally, S. V. (2007). Blending chitosan with polycaprolactone: porous scaffolds and toxicity. Macromolecular bioscience, 7(9?10), 1160-1167. | 2007 | 544 | 10.1002/mabi.200700001 | 4616 | polymer | PCL | chloroform | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sarasam, A. R., Samli, A. I., Hess, L., Ihnat, M. A., & Madihally, S. V. (2007). Blending chitosan with polycaprolactone: porous scaffolds and toxicity. Macromolecular bioscience, 7(9?10), 1160-1167. | 2007 | 544 | 10.1002/mabi.200700001 | 4617 | polymer | PCL | acetic acid | 100 | 0.0 | 0 | 4.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sarasam, A. R., Samli, A. I., Hess, L., Ihnat, M. A., & Madihally, S. V. (2007). Blending chitosan with polycaprolactone: porous scaffolds and toxicity. Macromolecular bioscience, 7(9?10), 1160-1167. | 2007 | 544 | 10.1002/mabi.200700001 | 4618 | polymer | PCL | acetic acid | 100 | 0.0 | 0 | 4.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | gel | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, Y., Sun, L., Fu, H., & Duan, X. (2016). Facile fabrication of a 3D electrospun fibrous mat by ice-templating for a tumor spheroid culture. Polymer Chemistry, 7(44), 6805-6811. | 2016 | 867 | 10.1039/C6PY01718E | 4765 | polymer | PCL | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Scanlon, S., Aggeli, A., Boden, N., McLeish, T. C., Hine, P., Koopmans, R. J., & Crowder, C. (2009). Organisation of self-assembling peptide nanostructures into macroscopically ordered lamella-like layers by ice crystallisation. Soft Matter, 5(6), 1237-1246. | 2009 | 545 | 10.1039/b815558e | 5556 | polymer/biological | Peptide hydrogels | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Scanlon, S., Aggeli, A., Boden, N., McLeish, T. C., Hine, P., Koopmans, R. J., & Crowder, C. (2009). Organisation of self-assembling peptide nanostructures into macroscopically ordered lamella-like layers by ice crystallisation. Soft Matter, 5(6), 1237-1246. | 2009 | 545 | 10.1039/b815558e | 5557 | polymer | Agar | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tong, H. M., Noda, I., & Gryte, C. C. (1984). CPS 768 Formation of anisotropic ice-agar composites by directional freezing. Colloid & Polymer Science, 262(7), 589-595. | 1984 | 958 | 10.1007/BF01451524 | 6020 | polymer | Agar | water | 100 | 0.0 | 0 | 2.0 | 120.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | 0 | 1.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 120.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tong, H. M., Noda, I., & Gryte, C. C. (1984). CPS 768 Formation of anisotropic ice-agar composites by directional freezing. Colloid & Polymer Science, 262(7), 589-595. | 1984 | 958 | 10.1007/BF01451524 | 6021 | polymer | Agar | water | 100 | 0.0 | 0 | 2.0 | 120.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | 0 | 2.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 180.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tong, H. M., Noda, I., & Gryte, C. C. (1984). CPS 768 Formation of anisotropic ice-agar composites by directional freezing. Colloid & Polymer Science, 262(7), 589-595. | 1984 | 958 | 10.1007/BF01451524 | 6022 | polymer | Agar | water | 100 | 0.0 | 0 | 2.0 | 120.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | 0 | 4.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tong, H. M., Noda, I., & Gryte, C. C. (1984). CPS 768 Formation of anisotropic ice-agar composites by directional freezing. Colloid & Polymer Science, 262(7), 589-595. | 1984 | 958 | 10.1007/BF01451524 | 6023 | polymer | Agar | water | 100 | 0.0 | 0 | 4.0 | 120.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | 0 | 1.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 370.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tong, H. M., Noda, I., & Gryte, C. C. (1984). CPS 768 Formation of anisotropic ice-agar composites by directional freezing. Colloid & Polymer Science, 262(7), 589-595. | 1984 | 958 | 10.1007/BF01451524 | 6024 | polymer | Agar | water | 100 | 0.0 | 0 | 4.0 | 120.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | 0 | 2.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 250.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tong, H. M., Noda, I., & Gryte, C. C. (1984). CPS 768 Formation of anisotropic ice-agar composites by directional freezing. Colloid & Polymer Science, 262(7), 589-595. | 1984 | 958 | 10.1007/BF01451524 | 6025 | polymer | Agar | water | 100 | 0.0 | 0 | 4.0 | 120.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | 0 | 4.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 180.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tong, H. M., Noda, I., & Gryte, C. C. (1984). CPS 768 Formation of anisotropic ice-agar composites by directional freezing. Colloid & Polymer Science, 262(7), 589-595. | 1984 | 958 | 10.1007/BF01451524 | 6026 | polymer | Agar | water | 100 | 0.0 | 0 | 4.0 | 120.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | 0 | 9.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tong, H. M., Noda, I., & Gryte, C. C. (1984). CPS 768 Formation of anisotropic ice-agar composites by directional freezing. Colloid & Polymer Science, 262(7), 589-595. | 1984 | 958 | 10.1007/BF01451524 | 6027 | polymer | Agar | water | 100 | 0.0 | 0 | 7.0 | 120.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | 0 | 1.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 320.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tong, H. M., Noda, I., & Gryte, C. C. (1984). CPS 768 Formation of anisotropic ice-agar composites by directional freezing. Colloid & Polymer Science, 262(7), 589-595. | 1984 | 958 | 10.1007/BF01451524 | 6028 | polymer | Agar | water | 100 | 0.0 | 0 | 7.0 | 120.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | 0 | 2.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 260.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tong, H. M., Noda, I., & Gryte, C. C. (1984). CPS 768 Formation of anisotropic ice-agar composites by directional freezing. Colloid & Polymer Science, 262(7), 589-595. | 1984 | 958 | 10.1007/BF01451524 | 6029 | polymer | Agar | water | 100 | 0.0 | 0 | 7.0 | 120.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | 0 | 4.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 240.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tong, H. M., Noda, I., & Gryte, C. C. (1984). CPS 768 Formation of anisotropic ice-agar composites by directional freezing. Colloid & Polymer Science, 262(7), 589-595. | 1984 | 958 | 10.1007/BF01451524 | 6030 | polymer | Agar | water | 100 | 0.0 | 0 | 7.0 | 120.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | 0 | 9.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 210.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5351 | pharmaceutical | starch | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5352 | pharmaceutical | starch | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5353 | pharmaceutical | starch | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5354 | pharmaceutical | starch | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5355 | pharmaceutical | starch | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5356 | pharmaceutical | starch | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5357 | pharmaceutical | starch | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5358 | pharmaceutical | starch | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5359 | pharmaceutical | starch | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5360 | pharmaceutical | starch | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5361 | pharmaceutical | starch | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5362 | pharmaceutical | starch | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5363 | pharmaceutical | starch | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5364 | pharmaceutical | starch | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5365 | pharmaceutical | starch | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5366 | pharmaceutical | starch | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5367 | pharmaceutical | starch | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5368 | pharmaceutical | starch | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5369 | pharmaceutical | starch | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5370 | pharmaceutical | starch | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5371 | pharmaceutical | starch | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5372 | pharmaceutical | starch | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5373 | pharmaceutical | starch | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5374 | pharmaceutical | starch | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5375 | pharmaceutical | starch | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5376 | pharmaceutical | starch-0.001wt.% P. syringae | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5377 | pharmaceutical | starch-0.001wt.% P. syringae | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5378 | pharmaceutical | starch-0.001wt.% P. syringae | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5379 | pharmaceutical | starch-0.001wt.% P. syringae | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5380 | pharmaceutical | starch-0.001wt.% P. syringae | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5381 | pharmaceutical | starch-0.001wt.% P. syringae | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5382 | pharmaceutical | starch-0.001wt.% P. syringae | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5383 | pharmaceutical | starch-0.001wt.% P. syringae | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5384 | pharmaceutical | starch-0.001wt.% P. syringae | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5385 | pharmaceutical | starch-0.001wt.% P. syringae | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5386 | pharmaceutical | starch-0.001wt.% P. syringae | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5387 | pharmaceutical | starch-0.001wt.% P. syringae | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5388 | pharmaceutical | starch-0.001wt.% P. syringae | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5389 | pharmaceutical | starch-0.001wt.% P. syringae | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5390 | pharmaceutical | starch-0.001wt.% P. syringae | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5391 | pharmaceutical | starch-0.001wt.% P. syringae | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5392 | pharmaceutical | starch-0.001wt.% P. syringae | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5393 | pharmaceutical | starch-0.001wt.% P. syringae | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5394 | pharmaceutical | starch-0.001wt.% P. syringae | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5395 | pharmaceutical | starch-0.001wt.% P. syringae | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5396 | pharmaceutical | starch-0.001wt.% P. syringae | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5397 | pharmaceutical | starch-0.001wt.% P. syringae | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5398 | pharmaceutical | starch-0.001wt.% P. syringae | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5399 | pharmaceutical | starch-0.001wt.% P. syringae | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Searles, J. A., Carpenter, J. F., & Randolph, T. W. (2001). Annealing to optimize the primary drying rate, reduce freezing?induced drying rate heterogeneity, and determine Tg? in pharmaceutical lyophilization. Journal of pharmaceutical sciences, 90(7), 872-887. | 2001 | 550 | 10.1002/jps.1040 | 5400 | pharmaceutical | starch-0.001wt.% P. syringae | water | 100 | 0.0 | 0 | 7.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sepúlveda, R., Plunk, A. A., & Dunand, D. C. (2015). Microstructure of Fe 2 O 3 scaffolds created by freeze-casting and sintering. Materials Letters, 142, 56-59. | 2015 | 552 | 10.1016/j.matlet.2014.11.155 | 3095 | ceramic | Fe2O3 | camphene | 100 | 0.0 | 0 | 5.0 | 17.0 | 100 | 0 | 0.03 | 0 | 0 | 0 | 303.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 81.6 | 24.0 | 20.0 | 4.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sepúlveda, R., Plunk, A. A., & Dunand, D. C. (2015). Microstructure of Fe 2 O 3 scaffolds created by freeze-casting and sintering. Materials Letters, 142, 56-59. | 2015 | 552 | 10.1016/j.matlet.2014.11.155 | 3096 | ceramic | Fe2O3 | camphene | 100 | 0.0 | 0 | 5.0 | 17.0 | 100 | 0 | 0.03 | 0 | 0 | 0 | 308.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 81.2 | 33.0 | 26.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sepúlveda, R., Plunk, A. A., & Dunand, D. C. (2015). Microstructure of Fe 2 O 3 scaffolds created by freeze-casting and sintering. Materials Letters, 142, 56-59. | 2015 | 552 | 10.1016/j.matlet.2014.11.155 | 3097 | ceramic | Fe2O3 | camphene | 100 | 0.0 | 0 | 5.0 | 17.0 | 100 | 0 | 0.03 | 0 | 0 | 0 | 313.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 80.5 | 44.0 | 35.0 | 9.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sepúlveda, R., Plunk, A. A., & Dunand, D. C. (2015). Microstructure of Fe 2 O 3 scaffolds created by freeze-casting and sintering. Materials Letters, 142, 56-59. | 2015 | 552 | 10.1016/j.matlet.2014.11.155 | 3098 | ceramic | Fe2O3 | camphene | 100 | 0.0 | 0 | 5.0 | 17.0 | 100 | 0 | 0.03 | 0 | 0 | 0 | 316.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 81.4 | 125.0 | 110.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sexton, M. R., Madden, M. E., Swindle, A. L., Hamilton, V. E., Bickmore, B. R., & Madden, A. E. (2017). Considering the formation of hematite spherules on Mars by freezing aqueous hematite nanoparticle suspensions. Icarus, 286, 202-211. | 2016 | 883 | 10.1016/j.icarus.2016.10.014 | 5731 | ceramic | Fe2O3 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shaga, A., Shen, P., Guo, R. F., & Jiang, Q. C. (2016). Effects of oxide addition on the microstructure and mechanical properties of lamellar SiC scaffolds and Al?Si?Mg/SiC composites prepared by freeze casting and pressureless infiltration. Ceramics International, 42(8), 9653-9659. | 2016 | 558 | 10.1016/j.ceramint.2016.03.052 | 2726 | metal/ceramic | SiC/Al-Si-Mg | water | 100 | 0.0 | 0 | 30.0 | 24.0 | 69 | 0 | 5.0 | 0 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 62.0 | 0.0 | 0.0 | 0.0 | 0.0 | 54.0 | 0.0 | 156000.0 |
Shaga, A., Shen, P., Sun, C., & Jiang, Q. (2015). Lamellar-interpenetrated Al?Si?Mg/SiC composites fabricated by freeze casting and pressureless infiltration. Materials Science and Engineering: A, 630, 78-84. | 2015 | 559 | 10.1016/j.msea.2015.02.012 | 2727 | metal/ceramic | SiC/Al-Si-Mg | water | 100 | 0.0 | 0 | 20.0 | 24.0 | 100 | 0 | 5.0 | 0 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 577.0 | 0.0 | 119000.0 |
Shaga, A., Shen, P., Sun, C., & Jiang, Q. (2015). Lamellar-interpenetrated Al?Si?Mg/SiC composites fabricated by freeze casting and pressureless infiltration. Materials Science and Engineering: A, 630, 78-84. | 2015 | 559 | 10.1016/j.msea.2015.02.012 | 2728 | metal/ceramic | SiC/Al-Si-Mg | water | 100 | 0.0 | 0 | 30.0 | 24.0 | 100 | 0 | 5.0 | 0 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 722.0 | 0.0 | 140000.0 |
Shaga, A., Shen, P., Sun, C., & Jiang, Q. (2015). Lamellar-interpenetrated Al?Si?Mg/SiC composites fabricated by freeze casting and pressureless infiltration. Materials Science and Engineering: A, 630, 78-84. | 2015 | 559 | 10.1016/j.msea.2015.02.012 | 2729 | metal/ceramic | SiC/Al-Si-Mg | water | 100 | 0.0 | 0 | 40.0 | 24.0 | 100 | 0 | 5.0 | 0 | 0 | 0 | 263.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dense | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 675.0 | 0.0 | 162000.0 |
Shen, X., Chen, L., Li, D., Zhu, L., Wang, H., Liu, C., ... & Chen, H. (2011). Assembly of colloidal nanoparticles directed by the microstructures of polycrystalline ice. ACS nano, 5(10), 8426-8433. | 2011 | 566 | 10.1021/nn203399z | 4796 | metal | Au | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Shen, Y., Hua, Z., Zhang, L., & Hao, X. (2015). Bioglass-assisted preparation of network sodium titanate bioceramics. RSC Advances, 5(24), 18788-18795. | 2015 | 567 | 10.1039/c4ra14617d | 2768 | ceramic | Na2Ti3O7-40wt.% Bioglass | water | 100 | 0.0 | 0 | 22.0 | 10.0 | 100 | 0 | 64.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 32.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 38.2 | 0.0 |
Shen, Y., Hua, Z., Zhang, L., & Hao, X. (2015). Bioglass-assisted preparation of network sodium titanate bioceramics. RSC Advances, 5(24), 18788-18795. | 2015 | 567 | 10.1039/c4ra14617d | 2772 | ceramic | Na2Ti3O7-40wt.% Bioglass | water | 100 | 0.0 | 0 | 22.0 | 10.0 | 100 | 0 | 64.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 40.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 37.8 | 0.0 |
Shen, Y., Hua, Z., Zhang, L., & Hao, X. (2015). Bioglass-assisted preparation of network sodium titanate bioceramics. RSC Advances, 5(24), 18788-18795. | 2015 | 567 | 10.1039/c4ra14617d | 2769 | ceramic | Na2Ti3O7-30wt.% Bioglass | water | 100 | 0.0 | 0 | 16.0 | 10.0 | 100 | 0 | 64.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 65.56 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 61.4 | 0.0 |
Shen, Y., Hua, Z., Zhang, L., & Hao, X. (2015). Bioglass-assisted preparation of network sodium titanate bioceramics. RSC Advances, 5(24), 18788-18795. | 2015 | 567 | 10.1039/c4ra14617d | 2773 | ceramic | Na2Ti3O7-30wt.% Bioglass | water | 100 | 0.0 | 0 | 16.0 | 10.0 | 100 | 0 | 64.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 75.23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 51.0 | 0.0 |
Shen, Y., Hua, Z., Zhang, L., & Hao, X. (2015). Bioglass-assisted preparation of network sodium titanate bioceramics. RSC Advances, 5(24), 18788-18795. | 2015 | 567 | 10.1039/c4ra14617d | 2770 | ceramic | Na2Ti3O7-15wt.% Bioglass | water | 100 | 0.0 | 0 | 7.0 | 10.0 | 100 | 0 | 64.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 72.78 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 56.2 | 0.0 |
Shen, Y., Hua, Z., Zhang, L., & Hao, X. (2015). Bioglass-assisted preparation of network sodium titanate bioceramics. RSC Advances, 5(24), 18788-18795. | 2015 | 567 | 10.1039/c4ra14617d | 2774 | ceramic | Na2Ti3O7-15wt.% Bioglass | water | 100 | 0.0 | 0 | 7.0 | 10.0 | 100 | 0 | 64.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 82.75 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 40.2 | 0.0 |
Shen, Y., Hua, Z., Zhang, L., & Hao, X. (2015). Bioglass-assisted preparation of network sodium titanate bioceramics. RSC Advances, 5(24), 18788-18795. | 2015 | 567 | 10.1039/c4ra14617d | 2771 | ceramic | Na2Ti3O7-5wt.% Bioglass | water | 100 | 0.0 | 0 | 2.0 | 10.0 | 100 | 0 | 64.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 83.95 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 45.3 | 0.0 |
Shen, Y., Hua, Z., Zhang, L., & Hao, X. (2015). Bioglass-assisted preparation of network sodium titanate bioceramics. RSC Advances, 5(24), 18788-18795. | 2015 | 567 | 10.1039/c4ra14617d | 2775 | ceramic | Na2Ti3O7-5wt.% Bioglass | water | 100 | 0.0 | 0 | 2.0 | 10.0 | 100 | 0 | 64.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 90.21 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 34.8 | 0.0 |
Shen, Y., Hua, Z., Zhang, L., & Hao, X. (2015). Bioglass-assisted preparation of network sodium titanate bioceramics. RSC Advances, 5(24), 18788-18795. | 2015 | 567 | 10.1039/c4ra14617d | 2776 | ceramic | Na2Ti3O7-10wt.% Bioglass | water | 100 | 0.0 | 0 | 5.0 | 10.0 | 100 | 0 | 64.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 86.23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 24.4 | 0.0 |
Siddiqui, N., Pramanik, K., & Jabbari, E. (2015). Osteogenic differentiation of human mesenchymal stem cells in freeze-gelled chitosan/nano ?-tricalcium phosphate porous scaffolds crosslinked with genipin. Materials Science and Engineering: C, 54, 76-83. | 2015 | 575 | 10.1016/j.msec.2015.05.005 | 2781 | ceramic/polymer | Chitosan-TCP (mixed) | water | 100 | 0.0 | 0 | 14.68 | 39.0 | 92 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 15 | 0 | 0 | cellular | green | 83.0 | 0.0 | 165.0 | 0.0 | 0.0 | 2.67 | 0.0 | 0.0 |
Siddiqui, N., Pramanik, K., & Jabbari, E. (2015). Osteogenic differentiation of human mesenchymal stem cells in freeze-gelled chitosan/nano ?-tricalcium phosphate porous scaffolds crosslinked with genipin. Materials Science and Engineering: C, 54, 76-83. | 2015 | 575 | 10.1016/j.msec.2015.05.005 | 2782 | ceramic/polymer | Chitosan-TCP (mixed) | water | 100 | 0.0 | 0 | 14.68 | 39.0 | 92 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 15 | 0 | 0 | cellular | green | 78.0 | 0.0 | 168.0 | 0.0 | 0.0 | 2.69 | 0.0 | 0.0 |
Siddiqui, N., Pramanik, K., & Jabbari, E. (2015). Osteogenic differentiation of human mesenchymal stem cells in freeze-gelled chitosan/nano ?-tricalcium phosphate porous scaffolds crosslinked with genipin. Materials Science and Engineering: C, 54, 76-83. | 2015 | 575 | 10.1016/j.msec.2015.05.005 | 2783 | ceramic/polymer | Chitosan-TCP (mixed) | water | 100 | 0.0 | 0 | 14.68 | 39.0 | 92 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 15 | 0 | 0 | cellular | green | 76.0 | 0.0 | 171.0 | 0.0 | 0.0 | 2.71 | 0.0 | 0.0 |
Siddiqui, N., Pramanik, K., & Jabbari, E. (2015). Osteogenic differentiation of human mesenchymal stem cells in freeze-gelled chitosan/nano ?-tricalcium phosphate porous scaffolds crosslinked with genipin. Materials Science and Engineering: C, 54, 76-83. | 2015 | 575 | 10.1016/j.msec.2015.05.005 | 2784 | ceramic/polymer | Chitosan-TCP (mixed) | water | 100 | 0.0 | 0 | 14.68 | 39.0 | 92 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 12 | 0 | 0 | cellular | green | 75.0 | 0.0 | 175.0 | 0.0 | 0.0 | 2.72 | 0.0 | 0.0 |
Siddiqui, N., Pramanik, K., & Jabbari, E. (2015). Osteogenic differentiation of human mesenchymal stem cells in freeze-gelled chitosan/nano ?-tricalcium phosphate porous scaffolds crosslinked with genipin. Materials Science and Engineering: C, 54, 76-83. | 2015 | 575 | 10.1016/j.msec.2015.05.005 | 2785 | ceramic/polymer | Chitosan-TCP (mixed) | water | 100 | 0.0 | 0 | 14.68 | 39.0 | 92 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 15 | 0 | 0 | cellular | green | 73.0 | 0.0 | 179.0 | 0.0 | 0.0 | 2.59 | 0.0 | 0.0 |
Siddiqui, N., Pramanik, K., & Jabbari, E. (2015). Osteogenic differentiation of human mesenchymal stem cells in freeze-gelled chitosan/nano ?-tricalcium phosphate porous scaffolds crosslinked with genipin. Materials Science and Engineering: C, 54, 76-83. | 2015 | 575 | 10.1016/j.msec.2015.05.005 | 2786 | ceramic/polymer | Chitosan-TCP (mixed) | water | 100 | 0.0 | 0 | 14.68 | 39.0 | 92 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 15 | 0 | 0 | cellular | green | 71.0 | 0.0 | 186.0 | 0.0 | 0.0 | 2.34 | 0.0 | 0.0 |
Siddiqui, N., Pramanik, K., & Jabbari, E. (2015). Osteogenic differentiation of human mesenchymal stem cells in freeze-gelled chitosan/nano ?-tricalcium phosphate porous scaffolds crosslinked with genipin. Materials Science and Engineering: C, 54, 76-83. | 2015 | 575 | 10.1016/j.msec.2015.05.005 | 2787 | ceramic/polymer | Chitosan-TCP (mixed) | water | 100 | 0.0 | 0 | 14.68 | 39.0 | 92 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 14 | 0 | 0 | cellular | green | 76.0 | 0.0 | 171.0 | 0.0 | 0.0 | 2.69 | 0.0 | 0.0 |
Siddiqui, N., Pramanik, K., & Jabbari, E. (2015). Osteogenic differentiation of human mesenchymal stem cells in freeze-gelled chitosan/nano ?-tricalcium phosphate porous scaffolds crosslinked with genipin. Materials Science and Engineering: C, 54, 76-83. | 2015 | 575 | 10.1016/j.msec.2015.05.005 | 2788 | ceramic/polymer | Chitosan-TCP (mixed) | water | 100 | 0.0 | 0 | 14.68 | 39.0 | 92 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 10 | 0 | 0 | cellular | green | 74.0 | 0.0 | 179.0 | 0.0 | 0.0 | 2.74 | 0.0 | 0.0 |
Siddiqui, N., Pramanik, K., & Jabbari, E. (2015). Osteogenic differentiation of human mesenchymal stem cells in freeze-gelled chitosan/nano ?-tricalcium phosphate porous scaffolds crosslinked with genipin. Materials Science and Engineering: C, 54, 76-83. | 2015 | 575 | 10.1016/j.msec.2015.05.005 | 2789 | ceramic/polymer | Chitosan-TCP (mixed) | water | 100 | 0.0 | 0 | 14.68 | 39.0 | 92 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 7 | 0 | 0 | cellular | green | 73.0 | 0.0 | 183.0 | 0.0 | 0.0 | 2.78 | 0.0 | 0.0 |
Siddiqui, N., Pramanik, K., & Jabbari, E. (2015). Osteogenic differentiation of human mesenchymal stem cells in freeze-gelled chitosan/nano ?-tricalcium phosphate porous scaffolds crosslinked with genipin. Materials Science and Engineering: C, 54, 76-83. | 2015 | 575 | 10.1016/j.msec.2015.05.005 | 2790 | ceramic/polymer | Chitosan-TCP (mixed) | water | 100 | 0.0 | 0 | 14.68 | 39.0 | 92 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 10 | 0 | 0 | cellular | green | 70.0 | 0.0 | 191.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Siddiqui, N., Pramanik, K., & Jabbari, E. (2015). Osteogenic differentiation of human mesenchymal stem cells in freeze-gelled chitosan/nano ?-tricalcium phosphate porous scaffolds crosslinked with genipin. Materials Science and Engineering: C, 54, 76-83. | 2015 | 575 | 10.1016/j.msec.2015.05.005 | 2791 | ceramic/polymer | Chitosan-TCP (mixed) | water | 100 | 0.0 | 0 | 14.68 | 39.0 | 92 | dissolved | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 11 | 0 | 0 | cellular | green | 68.0 | 0.0 | 199.0 | 0.0 | 0.0 | 2.49 | 0.0 | 0.0 |
Silva, A. M., Nunes, E. H., Souza, D. F., Martens, D. L., da Costa, J. C. D., Houmard, M., & Vasconcelos, W. L. (2015). Effect of titania addition on the properties of freeze-cast alumina samples. Ceramics International, 41(9), 10467-10475. | 2015 | 577 | 10.1016/j.cerarnint.2015.04.132 | 2799 | ceramic | Al2O3-1wt.% TiO2 | camphene | 100 | 0.0 | 0 | 25.0 | 1.0 | 99 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 17 | dendritic | sintered | 74.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Silva, A. M., Nunes, E. H., Souza, D. F., Martens, D. L., da Costa, J. C. D., Houmard, M., & Vasconcelos, W. L. (2015). Effect of titania addition on the properties of freeze-cast alumina samples. Ceramics International, 41(9), 10467-10475. | 2015 | 577 | 10.1016/j.cerarnint.2015.04.132 | 2805 | ceramic | Al2O3-1wt.% TiO2 | camphene | 100 | 0.0 | 0 | 25.0 | 1.0 | 99 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 14 | dendritic | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 19.0 | 0.0 |
Silva, A. M., Nunes, E. H., Souza, D. F., Martens, D. L., da Costa, J. C. D., Houmard, M., & Vasconcelos, W. L. (2015). Effect of titania addition on the properties of freeze-cast alumina samples. Ceramics International, 41(9), 10467-10475. | 2015 | 577 | 10.1016/j.cerarnint.2015.04.132 | 2811 | ceramic | Al2O3-1wt.% TiO2 | camphene | 100 | 0.0 | 0 | 25.0 | 1.0 | 99 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 3 | dendritic | sintered | 46.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 28.0 | 0.0 |
Silva, A. M., Nunes, E. H., Souza, D. F., Martens, D. L., da Costa, J. C. D., Houmard, M., & Vasconcelos, W. L. (2015). Effect of titania addition on the properties of freeze-cast alumina samples. Ceramics International, 41(9), 10467-10475. | 2015 | 577 | 10.1016/j.cerarnint.2015.04.132 | 2800 | ceramic | Al2O3-2wt.% TiO2 | camphene | 100 | 0.0 | 0 | 25.0 | 1.0 | 98 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 20 | dendritic | sintered | 73.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Silva, A. M., Nunes, E. H., Souza, D. F., Martens, D. L., da Costa, J. C. D., Houmard, M., & Vasconcelos, W. L. (2015). Effect of titania addition on the properties of freeze-cast alumina samples. Ceramics International, 41(9), 10467-10475. | 2015 | 577 | 10.1016/j.cerarnint.2015.04.132 | 2806 | ceramic | Al2O3-2wt.% TiO2 | camphene | 100 | 0.0 | 0 | 25.0 | 1.0 | 98 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 14 | dendritic | sintered | 58.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18.0 | 0.0 |
Silva, A. M., Nunes, E. H., Souza, D. F., Martens, D. L., da Costa, J. C. D., Houmard, M., & Vasconcelos, W. L. (2015). Effect of titania addition on the properties of freeze-cast alumina samples. Ceramics International, 41(9), 10467-10475. | 2015 | 577 | 10.1016/j.cerarnint.2015.04.132 | 2812 | ceramic | Al2O3-2wt.% TiO2 | camphene | 100 | 0.0 | 0 | 25.0 | 1.0 | 98 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 2 | dendritic | sintered | 48.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 32.0 | 0.0 |
Silva, A. M., Nunes, E. H., Souza, D. F., Martens, D. L., da Costa, J. C. D., Houmard, M., & Vasconcelos, W. L. (2015). Effect of titania addition on the properties of freeze-cast alumina samples. Ceramics International, 41(9), 10467-10475. | 2015 | 577 | 10.1016/j.cerarnint.2015.04.132 | 2801 | ceramic | Al2O3-4wt.% TiO2 | camphene | 100 | 0.0 | 0 | 25.0 | 1.0 | 95 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 20 | dendritic | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Silva, A. M., Nunes, E. H., Souza, D. F., Martens, D. L., da Costa, J. C. D., Houmard, M., & Vasconcelos, W. L. (2015). Effect of titania addition on the properties of freeze-cast alumina samples. Ceramics International, 41(9), 10467-10475. | 2015 | 577 | 10.1016/j.cerarnint.2015.04.132 | 2807 | ceramic | Al2O3-4wt.% TiO2 | camphene | 100 | 0.0 | 0 | 25.0 | 1.0 | 95 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 15 | dendritic | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 16.0 | 0.0 |
Silva, A. M., Nunes, E. H., Souza, D. F., Martens, D. L., da Costa, J. C. D., Houmard, M., & Vasconcelos, W. L. (2015). Effect of titania addition on the properties of freeze-cast alumina samples. Ceramics International, 41(9), 10467-10475. | 2015 | 577 | 10.1016/j.cerarnint.2015.04.132 | 2813 | ceramic | Al2O3-4wt.% TiO2 | camphene | 100 | 0.0 | 0 | 25.0 | 1.0 | 95 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 3 | dendritic | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 35.0 | 0.0 |
Silva, A. M., Nunes, E. H., Souza, D. F., Martens, D. L., da Costa, J. C. D., Houmard, M., & Vasconcelos, W. L. (2015). Effect of titania addition on the properties of freeze-cast alumina samples. Ceramics International, 41(9), 10467-10475. | 2015 | 577 | 10.1016/j.cerarnint.2015.04.132 | 2802 | ceramic | Al2O3-7wt.% TiO2 | camphene | 100 | 0.0 | 0 | 25.0 | 1.0 | 93 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 18 | dendritic | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Silva, A. M., Nunes, E. H., Souza, D. F., Martens, D. L., da Costa, J. C. D., Houmard, M., & Vasconcelos, W. L. (2015). Effect of titania addition on the properties of freeze-cast alumina samples. Ceramics International, 41(9), 10467-10475. | 2015 | 577 | 10.1016/j.cerarnint.2015.04.132 | 2808 | ceramic | Al2O3-7wt.% TiO2 | camphene | 100 | 0.0 | 0 | 25.0 | 1.0 | 93 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 15 | dendritic | sintered | 54.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 27.0 | 0.0 |
Silva, A. M., Nunes, E. H., Souza, D. F., Martens, D. L., da Costa, J. C. D., Houmard, M., & Vasconcelos, W. L. (2015). Effect of titania addition on the properties of freeze-cast alumina samples. Ceramics International, 41(9), 10467-10475. | 2015 | 577 | 10.1016/j.cerarnint.2015.04.132 | 2814 | ceramic | Al2O3-7wt.% TiO2 | camphene | 100 | 0.0 | 0 | 25.0 | 1.0 | 93 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 3 | dendritic | sintered | 45.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 27.0 | 0.0 |
Silva, A. M., Nunes, E. H., Souza, D. F., Martens, D. L., da Costa, J. C. D., Houmard, M., & Vasconcelos, W. L. (2015). Effect of titania addition on the properties of freeze-cast alumina samples. Ceramics International, 41(9), 10467-10475. | 2015 | 577 | 10.1016/j.cerarnint.2015.04.132 | 2803 | ceramic | Al2O3-14wt.% TiO2 | camphene | 100 | 0.0 | 0 | 25.0 | 1.0 | 86 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 18 | dendritic | sintered | 71.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.5 | 0.0 |
Silva, A. M., Nunes, E. H., Souza, D. F., Martens, D. L., da Costa, J. C. D., Houmard, M., & Vasconcelos, W. L. (2015). Effect of titania addition on the properties of freeze-cast alumina samples. Ceramics International, 41(9), 10467-10475. | 2015 | 577 | 10.1016/j.cerarnint.2015.04.132 | 2809 | ceramic | Al2O3-14wt.% TiO2 | camphene | 100 | 0.0 | 0 | 25.0 | 1.0 | 86 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 15 | dendritic | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 23.0 | 0.0 |
Silva, A. M., Nunes, E. H., Souza, D. F., Martens, D. L., da Costa, J. C. D., Houmard, M., & Vasconcelos, W. L. (2015). Effect of titania addition on the properties of freeze-cast alumina samples. Ceramics International, 41(9), 10467-10475. | 2015 | 577 | 10.1016/j.cerarnint.2015.04.132 | 2815 | ceramic | Al2O3-14wt.% TiO2 | camphene | 100 | 0.0 | 0 | 25.0 | 1.0 | 86 | 0 | 1.0 | 0 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 5 | dendritic | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 26.5 | 0.0 |
Sultana, N., & Wang, M. (2012). PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. Biofabrication, 4(1), 015003. | 2012 | 599 | 10.1088/1758-5082/4/1/015003 | 5346 | ceramic/polymer | PHVB-10wt.% HAP | water | 100 | 0.0 | 0 | 17.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 71.0 | 0.0 | 450.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Suwanchawalit, C., Patil, A. J., Kumar, R. K., Wongnawa, S., & Mann, S. (2009). Fabrication of ice-templated macroporous TiO 2?chitosan scaffolds for photocatalytic applications. Journal of Materials Chemistry, 19(44), 8478-8483. | 2009 | 600 | 10.1039/b912698h | 5339 | ceramic/polymer | chitosan-50wt.% TiO2 | 0.0 | 0 | 0.0 | 0 | 6.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Suwanchawalit, C., Patil, A. J., Kumar, R. K., Wongnawa, S., & Mann, S. (2009). Fabrication of ice-templated macroporous TiO 2?chitosan scaffolds for photocatalytic applications. Journal of Materials Chemistry, 19(44), 8478-8483. | 2009 | 600 | 10.1039/b912698h | 5340 | ceramic/polymer | chitosan-50wt.% TiO2 | water | 100 | 0.0 | 0 | 6.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Swain, S. K., & Sarkar, D. (2013). Preparation of nanohydroxyapatite?gelatin porous scaffold and mechanical properties at cryogenic environment. Materials Letters, 92, 252-254. | 2013 | 602 | 10.1016/j.matlet.2012.11.016 | 4561 | ceramic/polymer | HAP-gelatin (mixed) | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 76.0 | 0.0 | 150.0 | 0.0 | 0.0 | 5.7 | 0.0 | 0.0 |
Swain, S. K., & Sarkar, D. (2013). Preparation of nanohydroxyapatite?gelatin porous scaffold and mechanical properties at cryogenic environment. Materials Letters, 92, 252-254. | 2013 | 602 | 10.1016/j.matlet.2012.11.016 | 4562 | ceramic/polymer | HAP-gelatin (mixed) | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 78.0 | 0.0 | 150.0 | 0.0 | 0.0 | 4.5 | 0.0 | 0.0 |
Swain, S. K., & Sarkar, D. (2013). Preparation of nanohydroxyapatite?gelatin porous scaffold and mechanical properties at cryogenic environment. Materials Letters, 92, 252-254. | 2013 | 602 | 10.1016/j.matlet.2012.11.016 | 4563 | ceramic/polymer | HAP-gelatin (mixed) | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 82.0 | 0.0 | 150.0 | 0.0 | 0.0 | 4.1 | 0.0 | 0.0 |
Swain, S. K., & Sarkar, D. (2013). Preparation of nanohydroxyapatite?gelatin porous scaffold and mechanical properties at cryogenic environment. Materials Letters, 92, 252-254. | 2013 | 602 | 10.1016/j.matlet.2012.11.016 | 4564 | ceramic/polymer | HAP-gelatin (mixed) | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 84.0 | 0.0 | 150.0 | 0.0 | 0.0 | 3.5 | 0.0 | 0.0 |
Swain, S. K., & Sarkar, D. (2013). Preparation of nanohydroxyapatite?gelatin porous scaffold and mechanical properties at cryogenic environment. Materials Letters, 92, 252-254. | 2013 | 602 | 10.1016/j.matlet.2012.11.016 | 4565 | ceramic/polymer | HAP-gelatin (mixed) | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 86.0 | 0.0 | 150.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 |
Szepes, A., Feher, A., Szabó?Révész, P., & Ulrich, J. (2007). Influence of Freezing Temperature on Product Parameters of Solid Dosage Forms Prepared via the Freeze?Casting Technique. Chemical engineering & technology, 30(4), 511-516. | 2007 | 603 | 10.1002/ceat.200600339 | 2893 | pharmaceutical | potato starch | water | 100 | 0.0 | 0 | 37.0 | 73.0 | 93 | powder | 50.0 | 0 | 4 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 45.0 | 0.0 | 5.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Szepes, A., Feher, A., Szabó?Révész, P., & Ulrich, J. (2007). Influence of Freezing Temperature on Product Parameters of Solid Dosage Forms Prepared via the Freeze?Casting Technique. Chemical engineering & technology, 30(4), 511-516. | 2007 | 603 | 10.1002/ceat.200600339 | 2894 | pharmaceutical | potato starch | water | 100 | 0.0 | 0 | 37.0 | 73.0 | 93 | powder | 50.0 | 0 | 4 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 46.0 | 0.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Szepes, A., Feher, A., Szabó?Révész, P., & Ulrich, J. (2007). Influence of Freezing Temperature on Product Parameters of Solid Dosage Forms Prepared via the Freeze?Casting Technique. Chemical engineering & technology, 30(4), 511-516. | 2007 | 603 | 10.1002/ceat.200600339 | 2895 | pharmaceutical | potato starch | water | 100 | 0.0 | 0 | 37.0 | 73.0 | 93 | powder | 50.0 | 0 | 4 | 0 | 236.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 50.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Szepes, A., Feher, A., Szabó?Révész, P., & Ulrich, J. (2007). Influence of Freezing Temperature on Product Parameters of Solid Dosage Forms Prepared via the Freeze?Casting Technique. Chemical engineering & technology, 30(4), 511-516. | 2007 | 603 | 10.1002/ceat.200600339 | 2896 | pharmaceutical | potato starch | water | 100 | 0.0 | 0 | 34.0 | 73.0 | 93 | powder | 50.0 | 10 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 40.0 | 0.0 | 3.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Szepes, A., Feher, A., Szabó?Révész, P., & Ulrich, J. (2007). Influence of Freezing Temperature on Product Parameters of Solid Dosage Forms Prepared via the Freeze?Casting Technique. Chemical engineering & technology, 30(4), 511-516. | 2007 | 603 | 10.1002/ceat.200600339 | 2897 | pharmaceutical | potato starch | water | 100 | 0.0 | 0 | 34.0 | 73.0 | 93 | powder | 50.0 | 10 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 42.0 | 0.0 | 6.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Szepes, A., Feher, A., Szabó?Révész, P., & Ulrich, J. (2007). Influence of Freezing Temperature on Product Parameters of Solid Dosage Forms Prepared via the Freeze?Casting Technique. Chemical engineering & technology, 30(4), 511-516. | 2007 | 603 | 10.1002/ceat.200600339 | 2898 | pharmaceutical | potato starch | water | 100 | 0.0 | 0 | 34.0 | 73.0 | 93 | powder | 50.0 | 10 | 0 | 0 | 236.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 48.0 | 0.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Szepes, A., Ulrich, J., Farkas, Z., Kovács, J., & Szabó-Révész, P. (2007). Freeze-casting technique in the development of solid drug delivery systems. Chemical Engineering and Processing: Process Intensification, 46(3), 230-238. | 2007 | 604 | 10.1016/j.cep.2006.06.004 | 5335 | pharmaceutical | theophylline | water | 100 | 0.0 | 0 | 38.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | green | 46.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Szepes, A., Ulrich, J., Farkas, Z., Kovács, J., & Szabó-Révész, P. (2007). Freeze-casting technique in the development of solid drug delivery systems. Chemical Engineering and Processing: Process Intensification, 46(3), 230-238. | 2007 | 604 | 10.1016/j.cep.2006.06.004 | 5336 | pharmaceutical | theophylline | water | 100 | 0.0 | 0 | 43.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | green | 36.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Szepes, A., Ulrich, J., Farkas, Z., Kovács, J., & Szabó-Révész, P. (2007). Freeze-casting technique in the development of solid drug delivery systems. Chemical Engineering and Processing: Process Intensification, 46(3), 230-238. | 2007 | 604 | 10.1016/j.cep.2006.06.004 | 5337 | pharmaceutical | theophylline | water | 100 | 0.0 | 0 | 47.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | green | 23.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, J., Chen, Y. F., Sun, J. G., Wang, H., Liu, H. L., & Fan, Q. C. (2007). Properties and Application of Oriented Porous SiC as Transpiration Cooling Materials. In Key Engineering Materials (Vol. 336, pp. 1109-1112). Trans Tech Publications. | 2007 | 610 | 10.4028/www.scientific.net/KEM.336-338.1109 | 2918 | metal/ceramic | SiC-Si (impregnation) | water | 100 | 0.0 | 0 | 45.0 | 24.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 31.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, J., Chen, Y. F., Sun, J. G., Wang, H., Liu, H. L., & Fan, Q. C. (2007). Properties and Application of Oriented Porous SiC as Transpiration Cooling Materials. In Key Engineering Materials (Vol. 336, pp. 1109-1112). Trans Tech Publications. | 2007 | 610 | 10.4028/www.scientific.net/KEM.336-338.1109 | 2919 | metal/ceramic | SiC-Si (impregnation) | water | 100 | 0.0 | 0 | 45.0 | 24.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 13.6 | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, J., Chen, Y. F., Sun, J. G., Wang, H., Liu, H. L., & Fan, Q. C. (2007). Properties and Application of Oriented Porous SiC as Transpiration Cooling Materials. In Key Engineering Materials (Vol. 336, pp. 1109-1112). Trans Tech Publications. | 2007 | 610 | 10.4028/www.scientific.net/KEM.336-338.1109 | 2920 | metal/ceramic | SiC-Si (impregnation) | water | 100 | 0.0 | 0 | 45.0 | 24.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 10.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Tang, J., Chen, Y. F., Sun, J. G., Wang, H., Liu, H. L., & Fan, Q. C. (2007). Properties and Application of Oriented Porous SiC as Transpiration Cooling Materials. In Key Engineering Materials (Vol. 336, pp. 1109-1112). Trans Tech Publications. | 2007 | 610 | 10.4028/www.scientific.net/KEM.336-338.1109 | 2921 | metal/ceramic | SiC-Si (impregnation) | water | 100 | 0.0 | 0 | 47.0 | 24.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 10.2 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Um, J. H., Choi, M., Park, H., Cho, Y. H., Dunand, D. C., Choe, H., & Sung, Y. E. (2016). 3D macroporous electrode and high-performance in lithium-ion batteries using SnO2 coated on Cu foam. Scientific reports, 6, 18626. | 2016 | 628 | 10.1038/srep18626 | 5549 | metal | Cu-Sn (coated) | water | 100 | 0.0 | 0 | 15.47 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Villa, M. M., Wang, L., Huang, J., Rowe, D. W., & Wei, M. (2015). Bone tissue engineering with a collagen?hydroxyapatite scaffold and culture expanded bone marrow stromal cells. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 103(2), 243-253. | 2015 | 636 | 10.1002/jbm.b.33225 | 2999 | ceramic/polymer | Collagen-HAP (mixed) | water | 100 | 0.0 | 0 | 0.0 | 18.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.37 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 93.0 | 106.5 | 101.0 | 5.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Wamser, T., Scheler, S., Martin, B., & Krenkel, W. (2014). Novel oxide fiber composites by freeze casting. Journal of the European Ceramic Society, 34(15), 3827-3833. | 2014 | 640 | 10.1016/j.jeurceramsoc.2014.06.015 | 5327 | ceramic | YAG | water | 100 | 0.0 | 0 | 26.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 36.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wamser, T., Scheler, S., Martin, B., & Krenkel, W. (2014). Novel oxide fiber composites by freeze casting. Journal of the European Ceramic Society, 34(15), 3827-3833. | 2014 | 640 | 10.1016/j.jeurceramsoc.2014.06.015 | 5328 | ceramic | YAG | water | 100 | 0.0 | 0 | 26.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 34.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wamser, T., Scheler, S., Martin, B., & Krenkel, W. (2014). Novel oxide fiber composites by freeze casting. Journal of the European Ceramic Society, 34(15), 3827-3833. | 2014 | 640 | 10.1016/j.jeurceramsoc.2014.06.015 | 5329 | ceramic | YAG | water | 100 | 0.0 | 0 | 26.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 32.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wamser, T., Scheler, S., Martin, B., & Krenkel, W. (2014). Novel oxide fiber composites by freeze casting. Journal of the European Ceramic Society, 34(15), 3827-3833. | 2014 | 640 | 10.1016/j.jeurceramsoc.2014.06.015 | 5330 | ceramic | YAG | water | 100 | 0.0 | 0 | 26.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 30.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wamser, T., Scheler, S., Martin, B., & Krenkel, W. (2014). Novel oxide fiber composites by freeze casting. Journal of the European Ceramic Society, 34(15), 3827-3833. | 2014 | 640 | 10.1016/j.jeurceramsoc.2014.06.015 | 5331 | ceramic | YAG | water | 100 | 0.0 | 0 | 26.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wamser, T., Scheler, S., Martin, B., & Krenkel, W. (2014). Novel oxide fiber composites by freeze casting. Journal of the European Ceramic Society, 34(15), 3827-3833. | 2014 | 640 | 10.1016/j.jeurceramsoc.2014.06.015 | 5332 | ceramic | YAG | water | 100 | 0.0 | 0 | 26.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, Y., Gawryla, M. D., & Schiraldi, D. A. (2013). Effects of freezing conditions on the morphology and mechanical properties of clay and polymer/clay aerogels. Journal of Applied Polymer Science, 129(3), 1637-1641. | 2013 | 650 | 10.1002/app.39143 | 4538 | ceramic/polymer | PVA-50wt.% Na-MMT | water | 100 | 0.0 | 0 | 4.0 | 106.0 | 50 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 19.0 | 5.0 | 14.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, Y., Gawryla, M. D., & Schiraldi, D. A. (2013). Effects of freezing conditions on the morphology and mechanical properties of clay and polymer/clay aerogels. Journal of Applied Polymer Science, 129(3), 1637-1641. | 2013 | 650 | 10.1002/app.39143 | 4539 | ceramic/polymer | PVA-50wt.% Na-MMT | water | 100 | 0.0 | 0 | 4.0 | 106.0 | 50 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 17.0 | 5.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, Y., Gawryla, M. D., & Schiraldi, D. A. (2013). Effects of freezing conditions on the morphology and mechanical properties of clay and polymer/clay aerogels. Journal of Applied Polymer Science, 129(3), 1637-1641. | 2013 | 650 | 10.1002/app.39143 | 4540 | ceramic/polymer | PVA-50wt.% Na-MMT | water | 100 | 0.0 | 0 | 4.0 | 106.0 | 50 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 17.0 | 5.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, Y., Gawryla, M. D., & Schiraldi, D. A. (2013). Effects of freezing conditions on the morphology and mechanical properties of clay and polymer/clay aerogels. Journal of Applied Polymer Science, 129(3), 1637-1641. | 2013 | 650 | 10.1002/app.39143 | 4541 | ceramic/polymer | PVA-50wt.% Na-MMT | water | 100 | 0.0 | 0 | 4.0 | 106.0 | 50 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 20.0 | 5.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, Y., Gawryla, M. D., & Schiraldi, D. A. (2013). Effects of freezing conditions on the morphology and mechanical properties of clay and polymer/clay aerogels. Journal of Applied Polymer Science, 129(3), 1637-1641. | 2013 | 650 | 10.1002/app.39143 | 4542 | ceramic/polymer | PVA-50wt.% Na-MMT | water | 100 | 0.0 | 0 | 4.0 | 106.0 | 50 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 21.0 | 6.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, Y., Gawryla, M. D., & Schiraldi, D. A. (2013). Effects of freezing conditions on the morphology and mechanical properties of clay and polymer/clay aerogels. Journal of Applied Polymer Science, 129(3), 1637-1641. | 2013 | 650 | 10.1002/app.39143 | 4543 | ceramic/polymer | PVA-50wt.% Na-MMT | water | 100 | 0.0 | 0 | 4.0 | 106.0 | 50 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 75.0 | 25.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, Y., Gawryla, M. D., & Schiraldi, D. A. (2013). Effects of freezing conditions on the morphology and mechanical properties of clay and polymer/clay aerogels. Journal of Applied Polymer Science, 129(3), 1637-1641. | 2013 | 650 | 10.1002/app.39143 | 4544 | ceramic/polymer | PVA-50wt.% Na-MMT | water | 100 | 0.0 | 0 | 4.0 | 106.0 | 50 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 47.0 | 35.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, Y., Gawryla, M. D., & Schiraldi, D. A. (2013). Effects of freezing conditions on the morphology and mechanical properties of clay and polymer/clay aerogels. Journal of Applied Polymer Science, 129(3), 1637-1641. | 2013 | 650 | 10.1002/app.39143 | 4545 | ceramic/polymer | PVA-50wt.% Na-MMT | water | 100 | 0.0 | 0 | 4.0 | 106.0 | 50 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 10.0 | 5.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wei, P., Sofie, S., Zhang, Q., & Petric, A. (2011). Metal supported solid oxide fuel cell by freeze tape casting. ECS Transactions, 35(1), 379-383. | 2011 | 658 | 10.1149/1.3570012 | 2433 | ceramic | LSM-YSZ (layered) | water | 100 | 0.0 | 0 | 36.0 | 72.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 51 | lamellar | sintered | 38.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wei, P., Sofie, S., Zhang, Q., & Petric, A. (2011). Metal supported solid oxide fuel cell by freeze tape casting. ECS Transactions, 35(1), 379-383. | 2011 | 658 | 10.1149/1.3570012 | 2434 | ceramic | LSM-YSZ (layered) | water | 100 | 0.0 | 0 | 46.0 | 72.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 37 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wei, P., Sofie, S., Zhang, Q., & Petric, A. (2011). Metal supported solid oxide fuel cell by freeze tape casting. ECS Transactions, 35(1), 379-383. | 2011 | 658 | 10.1149/1.3570012 | 2435 | ceramic | LSM-YSZ (layered) | water | 100 | 0.0 | 0 | 56.0 | 72.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 37 | dendritic | sintered | 21.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wei, P., Sofie, S., Zhang, Q., & Petric, A. (2011). Metal supported solid oxide fuel cell by freeze tape casting. ECS Transactions, 35(1), 379-383. | 2011 | 658 | 10.1149/1.3570012 | 2436 | ceramic | LSM-YSZ (layered) | water | 100 | 0.0 | 0 | 36.0 | 72.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 51 | lamellar | sintered | 38.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wei, P., Sofie, S., Zhang, Q., & Petric, A. (2011). Metal supported solid oxide fuel cell by freeze tape casting. ECS Transactions, 35(1), 379-383. | 2011 | 658 | 10.1149/1.3570012 | 2437 | ceramic | LSM-YSZ (layered) | water | 100 | 0.0 | 0 | 46.0 | 72.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 37 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wei, P., Sofie, S., Zhang, Q., & Petric, A. (2011). Metal supported solid oxide fuel cell by freeze tape casting. ECS Transactions, 35(1), 379-383. | 2011 | 658 | 10.1149/1.3570012 | 2438 | ceramic | LSM-YSZ (layered) | water | 100 | 0.0 | 0 | 56.0 | 72.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 37 | dendritic | sintered | 21.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wei, P., Sofie, S., Zhang, Q., & Petric, A. (2011). Metal supported solid oxide fuel cell by freeze tape casting. ECS Transactions, 35(1), 379-383. | 2011 | 658 | 10.1149/1.3570012 | 2439 | ceramic | LSM-YSZ (layered) | water | 100 | 0.0 | 0 | 36.0 | 72.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 51 | lamellar | sintered | 38.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wei, P., Sofie, S., Zhang, Q., & Petric, A. (2011). Metal supported solid oxide fuel cell by freeze tape casting. ECS Transactions, 35(1), 379-383. | 2011 | 658 | 10.1149/1.3570012 | 2440 | ceramic | LSM-YSZ (layered) | water | 100 | 0.0 | 0 | 46.0 | 72.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 37 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wei, P., Sofie, S., Zhang, Q., & Petric, A. (2011). Metal supported solid oxide fuel cell by freeze tape casting. ECS Transactions, 35(1), 379-383. | 2011 | 658 | 10.1149/1.3570012 | 2441 | ceramic | LSM-YSZ (layered) | water | 100 | 0.0 | 0 | 56.0 | 72.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 37 | dendritic | sintered | 21.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wei, Y., Qian, L., Lu, L., & Fan, R. (2014). Fabrication of luminescent and macroporous Y 2 O 3: Eu 3+-coated silica monoliths via freeze drying. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 441, 481-488. | 2014 | 659 | 10.1016/j.colsurfa.2013.10.008 | 4802 | ceramic | Y2O3:Eu3+-coated silica | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wei, Y., Sun, B., Su, D., Zhu, J., & Wang, G. (2016). 3D Free?Standing NiCo2O4@ graphene Foam for High?Performance Supercapacitors. Energy Technology, 4(6), 737-743. | 2016 | 660 | 10.1002/ente.201500467 | 4560 | carbon/ceramic | NiCo2-graphene (mixed) | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wicklein, B., Kocjan, A., Salazar-Alvarez, G., Carosio, F., Camino, G., Antonietti, M., & Bergström, L. (2015). Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nature nanotechnology, 10(3), 277-283. | 2015 | 661 | 0 | 4926 | carbon/polymer | cellulose-graphene | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 99.5 | 0.0 | 22.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wildhack, S., & Aldinger, F. (2006). Freeze casting of aluminium nitride. In Advances in Science and Technology (Vol. 45, pp. 407-412). Trans Tech Publications. | 2006 | 663 | 10.4028/www.scientific.net/AST.45.407 | 2442 | ceramic | AlN | water | 100 | 0.0 | 0 | 47.0 | 2.0 | 100 | 0 | 1.5 | 0 | 2 | 0 | 233.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wildhack, S., & Aldinger, F. (2006). Freeze casting of aluminium nitride. In Advances in Science and Technology (Vol. 45, pp. 407-412). Trans Tech Publications. | 2006 | 663 | 10.4028/www.scientific.net/AST.45.407 | 2443 | ceramic | AlN | water | 100 | 0.0 | 0 | 49.0 | 2.0 | 100 | 0 | 1.5 | 0 | 2 | 0 | 233.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wildhack, S., & Aldinger, F. (2006). Freeze casting of aluminium nitride. In Advances in Science and Technology (Vol. 45, pp. 407-412). Trans Tech Publications. | 2006 | 663 | 10.4028/www.scientific.net/AST.45.407 | 2444 | ceramic | AlN | water | 100 | 0.0 | 0 | 51.0 | 2.0 | 100 | 0 | 1.5 | 0 | 2 | 0 | 233.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wildhack, S., & Aldinger, F. (2006). Freeze casting of aluminium nitride. In Advances in Science and Technology (Vol. 45, pp. 407-412). Trans Tech Publications. | 2006 | 663 | 10.4028/www.scientific.net/AST.45.407 | 2445 | ceramic | AlN | water | 100 | 0.0 | 0 | 53.0 | 2.0 | 100 | 0 | 1.5 | 0 | 2 | 0 | 233.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Witte, A., & Ulrich, J. (2010). An alternative technology to form tablets. Chemical Engineering & Technology, 33(5), 757-761. | 2010 | 664 | 10.1002/ceat.200900576 | 4558 | pharmaceutical | Ibuprofen | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Witte, A., & Ulrich, J. (2010). An alternative technology to form tablets. Chemical Engineering & Technology, 33(5), 757-761. | 2010 | 664 | 10.1002/ceat.200900576 | 4559 | pharmaceutical | lactose | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wu, J., & Meredith, J. C. (2014). Assembly of chitin nanofibers into porous biomimetic structures via freeze drying. ACS Macro Letters, 3(2), 185-190. | 2014 | 665 | 10.1021/mz400543f | 2446 | polymer | chitin | water | 100 | 0.0 | 0 | 0.35 | 38.0 | 100 | 0 | 0.02 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 98.5 | 0.0 | 3.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wu, J., & Meredith, J. C. (2014). Assembly of chitin nanofibers into porous biomimetic structures via freeze drying. ACS Macro Letters, 3(2), 185-190. | 2014 | 665 | 10.1021/mz400543f | 2447 | polymer | chitin | water | 100 | 0.0 | 0 | 0.35 | 38.0 | 100 | 0 | 0.02 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 99.5 | 0.0 | 96.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wu, J., & Meredith, J. C. (2014). Assembly of chitin nanofibers into porous biomimetic structures via freeze drying. ACS Macro Letters, 3(2), 185-190. | 2014 | 665 | 10.1021/mz400543f | 2448 | polymer | chitin | water | 100 | 0.0 | 0 | 0.35 | 38.0 | 100 | 0 | 0.02 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 99.5 | 0.0 | 59.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wu, J., & Meredith, J. C. (2014). Assembly of chitin nanofibers into porous biomimetic structures via freeze drying. ACS Macro Letters, 3(2), 185-190. | 2014 | 665 | 10.1021/mz400543f | 2449 | polymer | chitin | water | 100 | 0.0 | 0 | 0.35 | 38.0 | 100 | 0 | 0.02 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 99.6 | 0.0 | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wu, T., Yan, J., & Liu, M. (2013, December). Porous CNTs/chitosan composite with lamellar structure prepared by ice-templating. In SPIE Micro+ Nano Materials, Devices, and Applications (pp. 89233A-89233A). International Society for Optics and Photonics. | 2013 | 667 | 10.1117/12.2035311 | 4528 | carbon/polymer | Chitosan-66wt.% CNTs (mixed) | water | 100 | 0.0 | 0 | 0.4 | 39.0 | 80 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 100.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 97.3 | 20.1 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wu, T., Yan, J., & Liu, M. (2013, December). Porous CNTs/chitosan composite with lamellar structure prepared by ice-templating. In SPIE Micro+ Nano Materials, Devices, and Applications (pp. 89233A-89233A). International Society for Optics and Photonics. | 2013 | 667 | 10.1117/12.2035311 | 4529 | carbon/polymer | Chitosan-66wt.% CNTs (mixed) | water | 100 | 0.0 | 0 | 0.4 | 39.0 | 80 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 100.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 97.3 | 0.0 | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Z., & Wei, M. (2014, April). Biomimetic fabrication and freeze-casting of collagen-apatite hydrogels for bone tissue engineering. In Bioengineering Conference (NEBEC), 2014 40th Annual Northeast (pp. 1-2). IEEE. | 2014 | 674 | 0 | 4524 | ceramic/polymer | collagen-apatite (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Z., & Wei, M. (2014, April). Biomimetic fabrication and freeze-casting of collagen-apatite hydrogels for bone tissue engineering. In Bioengineering Conference (NEBEC), 2014 40th Annual Northeast (pp. 1-2). IEEE. | 2014 | 674 | 0 | 4525 | ceramic/polymer | collagen-apatite (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 6.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Z., & Wei, M. (2014, April). Biomimetic fabrication and freeze-casting of collagen-apatite hydrogels for bone tissue engineering. In Bioengineering Conference (NEBEC), 2014 40th Annual Northeast (pp. 1-2). IEEE. | 2014 | 674 | 0 | 4526 | ceramic/polymer | collagen-apatite (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 6.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Z., & Wei, M. (2014, April). Biomimetic fabrication and freeze-casting of collagen-apatite hydrogels for bone tissue engineering. In Bioengineering Conference (NEBEC), 2014 40th Annual Northeast (pp. 1-2). IEEE. | 2014 | 674 | 0 | 4527 | ceramic/polymer | collagen-apatite (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 1.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Z., Yu, X., Jiang, X., Brody, H. D., Rowe, D. W., & Wei, M. (2013). Fabrication and characterization of biomimetic collagen?apatite scaffolds with tunable structures for bone tissue engineering. Acta biomaterialia, 9(7), 7308-7319. | 2013 | 676 | 10.1016/j.actbio.2013.03.038 | 2495 | ceramic/polymer | collagen-apatite (mixed) | water | 100 | 0.0 | 0 | 2.0 | 41.0 | 69 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 93.2 | 0.0 | 106.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Z., Yu, X., Jiang, X., Brody, H. D., Rowe, D. W., & Wei, M. (2013). Fabrication and characterization of biomimetic collagen?apatite scaffolds with tunable structures for bone tissue engineering. Acta biomaterialia, 9(7), 7308-7319. | 2013 | 676 | 10.1016/j.actbio.2013.03.038 | 2496 | ceramic/polymer | collagen-apatite (mixed) | water | 100 | 0.0 | 0 | 2.0 | 41.0 | 60 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 92.2 | 0.0 | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Z., Yu, X., Jiang, X., Brody, H. D., Rowe, D. W., & Wei, M. (2013). Fabrication and characterization of biomimetic collagen?apatite scaffolds with tunable structures for bone tissue engineering. Acta biomaterialia, 9(7), 7308-7319. | 2013 | 676 | 10.1016/j.actbio.2013.03.038 | 2497 | ceramic/polymer | collagen-apatite (mixed) | water | 100 | 0.0 | 0 | 2.0 | 41.0 | 30 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 91.5 | 0.0 | 69.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Z., Yu, X., Jiang, X., Brody, H. D., Rowe, D. W., & Wei, M. (2013). Fabrication and characterization of biomimetic collagen?apatite scaffolds with tunable structures for bone tissue engineering. Acta biomaterialia, 9(7), 7308-7319. | 2013 | 676 | 10.1016/j.actbio.2013.03.038 | 5945 | ceramic/polymer | collagen-apatite (mixed) | water | 100 | 0.0 | 0 | 2.0 | 41.0 | 60 | dissolved | 0.0 | 0 | 0 | 0 | 263.0 | 0.4 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 87.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Z., Yu, X., Jiang, X., Brody, H. D., Rowe, D. W., & Wei, M. (2013). Fabrication and characterization of biomimetic collagen?apatite scaffolds with tunable structures for bone tissue engineering. Acta biomaterialia, 9(7), 7308-7319. | 2013 | 676 | 10.1016/j.actbio.2013.03.038 | 5946 | ceramic/polymer | collagen-apatite (mixed) | water | 100 | 0.0 | 0 | 2.0 | 41.0 | 60 | dissolved | 0.0 | 0 | 0 | 0 | 248.0 | 0.4 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 82.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Z., Yu, X., Jiang, X., Brody, H. D., Rowe, D. W., & Wei, M. (2013). Fabrication and characterization of biomimetic collagen?apatite scaffolds with tunable structures for bone tissue engineering. Acta biomaterialia, 9(7), 7308-7319. | 2013 | 676 | 10.1016/j.actbio.2013.03.038 | 5947 | ceramic/polymer | collagen-apatite (mixed) | water | 100 | 0.0 | 0 | 2.0 | 41.0 | 60 | dissolved | 0.0 | 0 | 0 | 0 | 233.0 | 0.4 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 80.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Z., Villa, M. M., & Wei, M. (2014). A biomimetic collagen?apatite scaffold with a multi-level lamellar structure for bone tissue engineering. Journal of Materials Chemistry B, 2(14), 1998-2007. | 2014 | 675 | 10.1039/c3tb21595d | 4592 | ceramic/polymer | Collagen-5wt.% apatite | water | 100 | 0.0 | 0 | 1.3 | 112.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 248.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 347.6 | 344.0 | 3.6 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Z., Villa, M. M., & Wei, M. (2014). A biomimetic collagen?apatite scaffold with a multi-level lamellar structure for bone tissue engineering. Journal of Materials Chemistry B, 2(14), 1998-2007. | 2014 | 675 | 10.1039/c3tb21595d | 4593 | ceramic/polymer | Collagen-20wt.% apatite | water | 100 | 0.0 | 0 | 1.3 | 112.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 248.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 180.8 | 173.0 | 7.8 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Z., Villa, M. M., & Wei, M. (2014). A biomimetic collagen?apatite scaffold with a multi-level lamellar structure for bone tissue engineering. Journal of Materials Chemistry B, 2(14), 1998-2007. | 2014 | 675 | 10.1039/c3tb21595d | 4595 | ceramic/polymer | Collagen-20wt.% apatite | water | 100 | 0.0 | 0 | 1.3 | 112.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 180.8 | 173.0 | 7.8 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Z., Villa, M. M., & Wei, M. (2014). A biomimetic collagen?apatite scaffold with a multi-level lamellar structure for bone tissue engineering. Journal of Materials Chemistry B, 2(14), 1998-2007. | 2014 | 675 | 10.1039/c3tb21595d | 4596 | ceramic/polymer | Collagen-20wt.% apatite | water | 100 | 0.0 | 0 | 1.3 | 112.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 193.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 152.2 | 146.0 | 8.2 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Z., Villa, M. M., & Wei, M. (2014). A biomimetic collagen?apatite scaffold with a multi-level lamellar structure for bone tissue engineering. Journal of Materials Chemistry B, 2(14), 1998-2007. | 2014 | 675 | 10.1039/c3tb21595d | 4597 | ceramic/polymer | Collagen-20wt.% apatite | water | 100 | 0.0 | 0 | 1.3 | 112.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 70.2 | 63.8 | 6.4 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Z., Villa, M. M., & Wei, M. (2014). A biomimetic collagen?apatite scaffold with a multi-level lamellar structure for bone tissue engineering. Journal of Materials Chemistry B, 2(14), 1998-2007. | 2014 | 675 | 10.1039/c3tb21595d | 4598 | ceramic/polymer | Collagen-20wt.% apatite | water | 100 | 0.0 | 0 | 1.3 | 112.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 149.2 | 142.0 | 7.2 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Z., Villa, M. M., & Wei, M. (2014). A biomimetic collagen?apatite scaffold with a multi-level lamellar structure for bone tissue engineering. Journal of Materials Chemistry B, 2(14), 1998-2007. | 2014 | 675 | 10.1039/c3tb21595d | 4594 | ceramic/polymer | Collagen-45wt.% apatite | water | 100 | 0.0 | 0 | 1.3 | 112.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 248.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 166.0 | 143.0 | 23.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xia, Z., Villa, M. M., & Wei, M. (2014). A biomimetic collagen?apatite scaffold with a multi-level lamellar structure for bone tissue engineering. Journal of Materials Chemistry B, 2(14), 1998-2007. | 2014 | 675 | 10.1039/c3tb21595d | 4599 | ceramic/polymer | Collagen-35wt.% apatite | water | 100 | 0.0 | 0 | 1.3 | 112.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 248.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 94.0 | 0.0 | 173.0 | 0.0 | 0.0 | 2.5 | 0.0 | 0.0 |
Xia, Z., Villa, M. M., & Wei, M. (2014). A biomimetic collagen?apatite scaffold with a multi-level lamellar structure for bone tissue engineering. Journal of Materials Chemistry B, 2(14), 1998-2007. | 2014 | 675 | 10.1039/c3tb21595d | 4600 | ceramic/polymer | Collagen-35wt.% apatite | water | 100 | 0.0 | 0 | 1.3 | 112.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 248.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 92.0 | 0.0 | 82.0 | 0.0 | 0.0 | 1.5 | 0.0 | 0.0 |
Xiaohui, M., Xiaoxia, H., Haiyan, D., & Hanyu, L. (2016). An unoriented three dimension framework (network) of fibrous porous ceramics prepared by freeze casting. Journal of the European Ceramic Society, 36(3), 797-803. | 2016 | 677 | 10.1016/j.jeurceramsoc.2015.10.048 | 2498 | ceramic | Mullite-2wt.% SiO2 | water | 100 | 0.0 | 0 | 1.0 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 3 | 3 | cellular | sintered | 80.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9 | 0.0 | 0.0 |
Xiaohui, M., Xiaoxia, H., Haiyan, D., & Hanyu, L. (2016). An unoriented three dimension framework (network) of fibrous porous ceramics prepared by freeze casting. Journal of the European Ceramic Society, 36(3), 797-803. | 2016 | 677 | 10.1016/j.jeurceramsoc.2015.10.048 | 2502 | ceramic | Mullite-2wt.% SiO2 | water | 100 | 0.0 | 0 | 4.0 | 25.0 | 50 | 0 | 0.0 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 3 | 3 | cellular | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.1 | 0.0 | 0.0 |
Xiaohui, M., Xiaoxia, H., Haiyan, D., & Hanyu, L. (2016). An unoriented three dimension framework (network) of fibrous porous ceramics prepared by freeze casting. Journal of the European Ceramic Society, 36(3), 797-803. | 2016 | 677 | 10.1016/j.jeurceramsoc.2015.10.048 | 2499 | ceramic | Mullite-5wt.% SiO2 | water | 100 | 0.0 | 0 | 2.0 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 3 | 3 | cellular | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
Xiaohui, M., Xiaoxia, H., Haiyan, D., & Hanyu, L. (2016). An unoriented three dimension framework (network) of fibrous porous ceramics prepared by freeze casting. Journal of the European Ceramic Society, 36(3), 797-803. | 2016 | 677 | 10.1016/j.jeurceramsoc.2015.10.048 | 2503 | ceramic | Mullite-5wt.% SiO2 | water | 100 | 0.0 | 0 | 7.0 | 25.0 | 30 | 0 | 0.0 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 3 | 3 | cellular | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.4 | 0.0 | 0.0 |
Xiaohui, M., Xiaoxia, H., Haiyan, D., & Hanyu, L. (2016). An unoriented three dimension framework (network) of fibrous porous ceramics prepared by freeze casting. Journal of the European Ceramic Society, 36(3), 797-803. | 2016 | 677 | 10.1016/j.jeurceramsoc.2015.10.048 | 2500 | ceramic | Mullite-10wt.% SiO2 | water | 100 | 0.0 | 0 | 4.0 | 25.0 | 100 | 0 | 0.0 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 3 | 3 | cellular | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.8 | 0.0 | 0.0 |
Xiaohui, M., Xiaoxia, H., Haiyan, D., & Hanyu, L. (2016). An unoriented three dimension framework (network) of fibrous porous ceramics prepared by freeze casting. Journal of the European Ceramic Society, 36(3), 797-803. | 2016 | 677 | 10.1016/j.jeurceramsoc.2015.10.048 | 2504 | ceramic | Mullite-10wt.% SiO2 | water | 100 | 0.0 | 0 | 12.0 | 25.0 | 17 | 0 | 0.0 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 3 | 3 | cellular | sintered | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.7 | 0.0 | 0.0 |
Xu, J., Wang, W., & Wang, A. (2013). A novel approach for dispersion palygorskite aggregates into nanorods via adding freezing process into extrusion and homogenization treatment. Powder technology, 249, 157-162. | 2013 | 689 | 10.1016/j.powtec.2013.08.002 | 4918 | ceramic | palygorskite | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 33.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, J., Wang, W., & Wang, A. (2013). A novel approach for dispersion palygorskite aggregates into nanorods via adding freezing process into extrusion and homogenization treatment. Powder technology, 249, 157-162. | 2013 | 689 | 10.1016/j.powtec.2013.08.002 | 4919 | ceramic | palygorskite | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 28.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, J., Wang, W., & Wang, A. (2013). A novel approach for dispersion palygorskite aggregates into nanorods via adding freezing process into extrusion and homogenization treatment. Powder technology, 249, 157-162. | 2013 | 689 | 10.1016/j.powtec.2013.08.002 | 4920 | ceramic | palygorskite | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, J., Wang, W., & Wang, A. (2013). A novel approach for dispersion palygorskite aggregates into nanorods via adding freezing process into extrusion and homogenization treatment. Powder technology, 249, 157-162. | 2013 | 689 | 10.1016/j.powtec.2013.08.002 | 4921 | ceramic | palygorskite | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 41.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, J., Wang, W., & Wang, A. (2013). A novel approach for dispersion palygorskite aggregates into nanorods via adding freezing process into extrusion and homogenization treatment. Powder technology, 249, 157-162. | 2013 | 689 | 10.1016/j.powtec.2013.08.002 | 4922 | ceramic | palygorskite | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, J., Wang, W., & Wang, A. (2013). A novel approach for dispersion palygorskite aggregates into nanorods via adding freezing process into extrusion and homogenization treatment. Powder technology, 249, 157-162. | 2013 | 689 | 10.1016/j.powtec.2013.08.002 | 4923 | ceramic | palygorskite | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, J., Wang, W., & Wang, A. (2013). A novel approach for dispersion palygorskite aggregates into nanorods via adding freezing process into extrusion and homogenization treatment. Powder technology, 249, 157-162. | 2013 | 689 | 10.1016/j.powtec.2013.08.002 | 4924 | ceramic | palygorskite | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 41.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, T., & Wang, C. A. (2014). Piezoelectric properties of a pioneering 3?1 type PZT/epoxy composites based on freeze?casting processing. Journal of the American Ceramic Society, 97(5), 1511-1516. | 2014 | 695 | 10.1111/jace.12793 | 2580 | ceramic/polymer | PZT-epoxy (impregnation) | water | 3 | TBA | 95 | 20.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 72.0 | 0.0 | 0.0 |
Xu, T., & Wang, C. A. (2014). Piezoelectric properties of a pioneering 3?1 type PZT/epoxy composites based on freeze?casting processing. Journal of the American Ceramic Society, 97(5), 1511-1516. | 2014 | 695 | 10.1111/jace.12793 | 2581 | ceramic/polymer | PZT-epoxy (impregnation) | water | 3 | TBA | 95 | 25.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 140.0 | 0.0 | 0.0 |
Xu, T., & Wang, C. A. (2014). Piezoelectric properties of a pioneering 3?1 type PZT/epoxy composites based on freeze?casting processing. Journal of the American Ceramic Society, 97(5), 1511-1516. | 2014 | 695 | 10.1111/jace.12793 | 2582 | ceramic/polymer | PZT-epoxy (impregnation) | water | 3 | TBA | 95 | 30.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 150.0 | 0.0 | 0.0 |
Xu, T., & Wang, C. A. (2014). Piezoelectric properties of a pioneering 3?1 type PZT/epoxy composites based on freeze?casting processing. Journal of the American Ceramic Society, 97(5), 1511-1516. | 2014 | 695 | 10.1111/jace.12793 | 2583 | ceramic/polymer | PZT-epoxy (impregnation) | water | 3 | TBA | 95 | 35.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 44.0 | 0.0 | 0.0 | 0.0 | 0.0 | 140.0 | 0.0 | 0.0 |
Xu, T., & Wang, C. A. (2014). Piezoelectric properties of a pioneering 3?1 type PZT/epoxy composites based on freeze?casting processing. Journal of the American Ceramic Society, 97(5), 1511-1516. | 2014 | 695 | 10.1111/jace.12793 | 2584 | ceramic/polymer | PZT-epoxy (impregnation) | water | 3 | TBA | 95 | 40.0 | 69.0 | 100 | 0 | 1.8 | 1 | 1 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | sintered | 32.0 | 0.0 | 0.0 | 0.0 | 0.0 | 82.0 | 0.0 | 0.0 |
Xu, X., He, H., Zhang, Y., Zhang, D., & Yang, Z. (2014). Influence of Position on the Microstructure of Carbon Black/Polyvinyl Alcohol Composite Obtained by the Directional Freeze-drying Process. Journal of Macromolecular Science, Part B, 53(4), 568-574. | 2014 | 696 | 10.1080/00222348.2013.852060 | 4917 | carbon/polymer | carbon black-PVA | water | 100 | 0.0 | 0 | 11.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 10.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, Z., Sun, Q., Huang, F., Pu, Y., Pan, S., & Ragauskas, A. J. (2014). Preparation and characteristics of cellulose nanowhisker reinforced acrylic foams synthesized by freeze-casting. RSC Advances, 4(24), 12148-12153. | 2014 | 697 | 10.1039/c3ra47621a | 4912 | polymer | Latex-1wt.% cellulose (mixed) | water | 100 | 0.0 | 0 | 11.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 41 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, Z., Sun, Q., Huang, F., Pu, Y., Pan, S., & Ragauskas, A. J. (2014). Preparation and characteristics of cellulose nanowhisker reinforced acrylic foams synthesized by freeze-casting. RSC Advances, 4(24), 12148-12153. | 2014 | 697 | 10.1039/c3ra47621a | 4913 | polymer | Latex-2.5wt.% cellulose (mixed) | water | 100 | 0.0 | 0 | 11.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 25 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, Z., Sun, Q., Huang, F., Pu, Y., Pan, S., & Ragauskas, A. J. (2014). Preparation and characteristics of cellulose nanowhisker reinforced acrylic foams synthesized by freeze-casting. RSC Advances, 4(24), 12148-12153. | 2014 | 697 | 10.1039/c3ra47621a | 4914 | polymer | Latex-5wt.% cellulose (mixed) | water | 100 | 0.0 | 0 | 11.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 18 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, Z., Sun, Q., Huang, F., Pu, Y., Pan, S., & Ragauskas, A. J. (2014). Preparation and characteristics of cellulose nanowhisker reinforced acrylic foams synthesized by freeze-casting. RSC Advances, 4(24), 12148-12153. | 2014 | 697 | 10.1039/c3ra47621a | 4916 | polymer | Latex-5wt.% cellulose (mixed) | water | 100 | 0.0 | 0 | 11.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, Z., Sun, Q., Huang, F., Pu, Y., Pan, S., & Ragauskas, A. J. (2014). Preparation and characteristics of cellulose nanowhisker reinforced acrylic foams synthesized by freeze-casting. RSC Advances, 4(24), 12148-12153. | 2014 | 697 | 10.1039/c3ra47621a | 4915 | polymer | Latex-8wt.% cellulose (mixed) | water | 100 | 0.0 | 0 | 11.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 11 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yan, J., Wang, H., Wu, T., Li, X., & Ding, Z. (2014). Elastic and electrically conductive carbon nanotubes/chitosan composites with lamellar structure. Composites Part A: Applied Science and Manufacturing, 67, 1-7. | 2014 | 700 | 10.1016/j.compositesa.2014.08.005 | 2591 | carbon/polymer | chitosan-CNT (mixed) | water | 100 | 0.0 | 0 | 0.0 | 14.0 | 0 | nanotube | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 100.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yan, J., Wang, H., Wu, T., Li, X., & Ding, Z. (2014). Elastic and electrically conductive carbon nanotubes/chitosan composites with lamellar structure. Composites Part A: Applied Science and Manufacturing, 67, 1-7. | 2014 | 700 | 10.1016/j.compositesa.2014.08.005 | 2592 | carbon/polymer | chitosan-CNT (mixed) | water | 100 | 0.0 | 0 | 0.0 | 14.0 | 0 | nanotube | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 100.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yan, J., Wang, H., Wu, T., Li, X., & Ding, Z. (2014). Elastic and electrically conductive carbon nanotubes/chitosan composites with lamellar structure. Composites Part A: Applied Science and Manufacturing, 67, 1-7. | 2014 | 700 | 10.1016/j.compositesa.2014.08.005 | 2593 | carbon/polymer | chitosan-CNT (mixed) | water | 100 | 0.0 | 0 | 0.0 | 14.0 | 0 | nanotube | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 100.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yan, J., Wang, H., Wu, T., Li, X., & Ding, Z. (2014). Elastic and electrically conductive carbon nanotubes/chitosan composites with lamellar structure. Composites Part A: Applied Science and Manufacturing, 67, 1-7. | 2014 | 700 | 10.1016/j.compositesa.2014.08.005 | 2594 | carbon/polymer | chitosan-CNT (mixed) | water | 100 | 0.0 | 0 | 0.0 | 14.0 | 0 | nanotube | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 100.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yan, J., Wang, H., Wu, T., Li, X., & Ding, Z. (2014). Elastic and electrically conductive carbon nanotubes/chitosan composites with lamellar structure. Composites Part A: Applied Science and Manufacturing, 67, 1-7. | 2014 | 700 | 10.1016/j.compositesa.2014.08.005 | 2595 | carbon/polymer | chitosan-CNT (mixed) | water | 100 | 0.0 | 0 | 0.0 | 14.0 | 0 | nanotube | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 100.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yan, J., Wang, H., Wu, T., Li, X., & Ding, Z. (2014). Elastic and electrically conductive carbon nanotubes/chitosan composites with lamellar structure. Composites Part A: Applied Science and Manufacturing, 67, 1-7. | 2014 | 700 | 10.1016/j.compositesa.2014.08.005 | 2596 | carbon/polymer | chitosan-CNT (mixed) | water | 100 | 0.0 | 0 | 0.0 | 14.0 | 0 | nanotube | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 100.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, J., Shi, X., Zhan, Y., Qiu, X., Du, Y., & Deng, H. (2017). Construction of horizontal stratum landform-like composite foams and their methyl orange adsorption capacity. Applied Surface Science, 397, 133-143. | 2017 | 834 | 10.1016/j.apsusc.2016.10.211 | 4832 | carbon/polymer | chitosan-CNT (mixed) | water | 100 | 0.0 | 0 | 2.02 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 181.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, J., Shi, X., Zhan, Y., Qiu, X., Du, Y., & Deng, H. (2017). Construction of horizontal stratum landform-like composite foams and their methyl orange adsorption capacity. Applied Surface Science, 397, 133-143. | 2017 | 834 | 10.1016/j.apsusc.2016.10.211 | 4833 | carbon/polymer | chitosan-CNT (mixed) | water | 100 | 0.0 | 0 | 2.02 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, J., Shi, X., Zhan, Y., Qiu, X., Du, Y., & Deng, H. (2017). Construction of horizontal stratum landform-like composite foams and their methyl orange adsorption capacity. Applied Surface Science, 397, 133-143. | 2017 | 834 | 10.1016/j.apsusc.2016.10.211 | 4834 | carbon/polymer | chitosan-CNT (mixed) | water | 100 | 0.0 | 0 | 2.02 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, J., Shi, X., Zhan, Y., Qiu, X., Du, Y., & Deng, H. (2017). Construction of horizontal stratum landform-like composite foams and their methyl orange adsorption capacity. Applied Surface Science, 397, 133-143. | 2017 | 834 | 10.1016/j.apsusc.2016.10.211 | 4835 | carbon/polymer | chitosan-CNT (mixed) | water | 100 | 0.0 | 0 | 2.02 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, J., Shi, X., Zhan, Y., Qiu, X., Du, Y., & Deng, H. (2017). Construction of horizontal stratum landform-like composite foams and their methyl orange adsorption capacity. Applied Surface Science, 397, 133-143. | 2017 | 834 | 10.1016/j.apsusc.2016.10.211 | 4836 | carbon/polymer | chitosan-CNT (mixed) | water | 100 | 0.0 | 0 | 2.02 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, J., Shi, X., Zhan, Y., Qiu, X., Du, Y., & Deng, H. (2017). Construction of horizontal stratum landform-like composite foams and their methyl orange adsorption capacity. Applied Surface Science, 397, 133-143. | 2017 | 834 | 10.1016/j.apsusc.2016.10.211 | 4837 | carbon/polymer | chitosan-CNT (mixed) | water | 100 | 0.0 | 0 | 2.02 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chen, J., Shi, X., Zhan, Y., Qiu, X., Du, Y., & Deng, H. (2017). Construction of horizontal stratum landform-like composite foams and their methyl orange adsorption capacity. Applied Surface Science, 397, 133-143. | 2017 | 834 | 10.1016/j.apsusc.2016.10.211 | 4838 | carbon/polymer | chitosan-CNT (mixed) | water | 100 | 0.0 | 0 | 2.02 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, H., Ye, F., Liu, Q., Liu, S., Gao, Y., & Liu, L. (2015). A novel silica aerogel/porous Si 3 N 4 composite prepared by freeze casting and sol-gel impregnation with high-performance thermal insulation and wave-transparent. Materials Letters, 138, 135-138. | 2015 | 703 | 10.1016/j.matlet.2014.10.012 | 2610 | ceramic/polymer | Si3N4-SiO2aerogel (impregnate) | water | 100 | 0.0 | 0 | 0.0 | 23.0 | 89 | 0 | 0.5 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 80.5 | 0.0 | 0.0 | 0.0 | 0.0 | 4.22 | 0.0 | 0.0 |
Yang, K., Yang, C. H., & Li, Z. (2011). Synthesis and characterization of PVA/MMT porous nanocomposite prepared by directional freeze-drying method. In Advanced Materials Research (Vol. 197, pp. 253-260). Trans Tech Publications. | 2011 | 707 | 10.4028/www.scientific.net/AMR.197-198.253 | 4619 | ceramic/polymer | PVA-MMT | 0.0 | 0 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Lyu, S. W., Park, Y. M., Yoon, S. Y., Stevens, R., & Park, H. C. (2007). Microstructure and Mechanical Properties of Freeze Cast Alumina/Silicon Carbide Layered Composites. In Key Engineering Materials (Vol. 336, pp. 2583-2585). Trans Tech Publications. | 2007 | 708 | 10.4028/www.scientific.net/KEM.336-338.2583 | 2617 | ceramic | Al2O3-SiC (mixed) | water | 100 | 0.0 | 0 | 55.0 | 1.0 | 94 | spherical | 0.56 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Lyu, S. W., Park, Y. M., Yoon, S. Y., Stevens, R., & Park, H. C. (2007). Microstructure and Mechanical Properties of Freeze Cast Alumina/Silicon Carbide Layered Composites. In Key Engineering Materials (Vol. 336, pp. 2583-2585). Trans Tech Publications. | 2007 | 708 | 10.4028/www.scientific.net/KEM.336-338.2583 | 2618 | ceramic | Al2O3-SiC (mixed) | water | 100 | 0.0 | 0 | 55.0 | 1.0 | 89 | spherical | 0.56 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 7.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Lyu, S. W., Park, Y. M., Yoon, S. Y., Stevens, R., & Park, H. C. (2007). Microstructure and Mechanical Properties of Freeze Cast Alumina/Silicon Carbide Layered Composites. In Key Engineering Materials (Vol. 336, pp. 2583-2585). Trans Tech Publications. | 2007 | 708 | 10.4028/www.scientific.net/KEM.336-338.2583 | 2621 | ceramic | Al2O3-SiC (mixed) | water | 100 | 0.0 | 0 | 55.0 | 1.0 | 94 | spherical | 0.56 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Lyu, S. W., Park, Y. M., Yoon, S. Y., Stevens, R., & Park, H. C. (2007). Microstructure and Mechanical Properties of Freeze Cast Alumina/Silicon Carbide Layered Composites. In Key Engineering Materials (Vol. 336, pp. 2583-2585). Trans Tech Publications. | 2007 | 708 | 10.4028/www.scientific.net/KEM.336-338.2583 | 2622 | ceramic | Al2O3-SiC (mixed) | water | 100 | 0.0 | 0 | 55.0 | 1.0 | 89 | spherical | 0.56 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 5.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Lyu, S. W., Park, Y. M., Yoon, S. Y., Stevens, R., & Park, H. C. (2007). Microstructure and Mechanical Properties of Freeze Cast Alumina/Silicon Carbide Layered Composites. In Key Engineering Materials (Vol. 336, pp. 2583-2585). Trans Tech Publications. | 2007 | 708 | 10.4028/www.scientific.net/KEM.336-338.2583 | 2625 | ceramic | Al2O3-SiC (mixed) | water | 100 | 0.0 | 0 | 55.0 | 1.0 | 94 | spherical | 0.56 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Lyu, S. W., Park, Y. M., Yoon, S. Y., Stevens, R., & Park, H. C. (2007). Microstructure and Mechanical Properties of Freeze Cast Alumina/Silicon Carbide Layered Composites. In Key Engineering Materials (Vol. 336, pp. 2583-2585). Trans Tech Publications. | 2007 | 708 | 10.4028/www.scientific.net/KEM.336-338.2583 | 2626 | ceramic | Al2O3-SiC (mixed) | water | 100 | 0.0 | 0 | 55.0 | 1.0 | 89 | spherical | 0.56 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Lyu, S. W., Park, Y. M., Yoon, S. Y., Stevens, R., & Park, H. C. (2007). Microstructure and Mechanical Properties of Freeze Cast Alumina/Silicon Carbide Layered Composites. In Key Engineering Materials (Vol. 336, pp. 2583-2585). Trans Tech Publications. | 2007 | 708 | 10.4028/www.scientific.net/KEM.336-338.2583 | 2619 | ceramic | Al2O3-SiC (layered) | water | 100 | 0.0 | 0 | 55.0 | 1.0 | 89 | spherical | 0.56 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 9.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Lyu, S. W., Park, Y. M., Yoon, S. Y., Stevens, R., & Park, H. C. (2007). Microstructure and Mechanical Properties of Freeze Cast Alumina/Silicon Carbide Layered Composites. In Key Engineering Materials (Vol. 336, pp. 2583-2585). Trans Tech Publications. | 2007 | 708 | 10.4028/www.scientific.net/KEM.336-338.2583 | 2620 | ceramic | Al2O3-SiC (layered) | water | 100 | 0.0 | 0 | 55.0 | 1.0 | 89 | spherical | 0.56 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 9.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Lyu, S. W., Park, Y. M., Yoon, S. Y., Stevens, R., & Park, H. C. (2007). Microstructure and Mechanical Properties of Freeze Cast Alumina/Silicon Carbide Layered Composites. In Key Engineering Materials (Vol. 336, pp. 2583-2585). Trans Tech Publications. | 2007 | 708 | 10.4028/www.scientific.net/KEM.336-338.2583 | 2623 | ceramic | Al2O3-SiC (layered) | water | 100 | 0.0 | 0 | 55.0 | 1.0 | 89 | spherical | 0.56 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 7.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Lyu, S. W., Park, Y. M., Yoon, S. Y., Stevens, R., & Park, H. C. (2007). Microstructure and Mechanical Properties of Freeze Cast Alumina/Silicon Carbide Layered Composites. In Key Engineering Materials (Vol. 336, pp. 2583-2585). Trans Tech Publications. | 2007 | 708 | 10.4028/www.scientific.net/KEM.336-338.2583 | 2624 | ceramic | Al2O3-SiC (layered) | water | 100 | 0.0 | 0 | 55.0 | 1.0 | 89 | spherical | 0.56 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Lyu, S. W., Park, Y. M., Yoon, S. Y., Stevens, R., & Park, H. C. (2007). Microstructure and Mechanical Properties of Freeze Cast Alumina/Silicon Carbide Layered Composites. In Key Engineering Materials (Vol. 336, pp. 2583-2585). Trans Tech Publications. | 2007 | 708 | 10.4028/www.scientific.net/KEM.336-338.2583 | 2627 | ceramic | Al2O3-SiC (layered) | water | 100 | 0.0 | 0 | 55.0 | 1.0 | 89 | spherical | 0.56 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 5.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, T. Y., Lyu, S. W., Park, Y. M., Yoon, S. Y., Stevens, R., & Park, H. C. (2007). Microstructure and Mechanical Properties of Freeze Cast Alumina/Silicon Carbide Layered Composites. In Key Engineering Materials (Vol. 336, pp. 2583-2585). Trans Tech Publications. | 2007 | 708 | 10.4028/www.scientific.net/KEM.336-338.2583 | 2628 | ceramic | Al2O3-SiC (layered) | water | 100 | 0.0 | 0 | 55.0 | 1.0 | 89 | spherical | 0.56 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yu, J., Li, S., Lv, Y., Zhao, Y., & Pei, Y. (2015). Preparation of silicon nitride?barium aluminum silicate composites by freeze gelation. Materials Letters, 147, 128-130. | 2015 | 739 | 10.1016/j.matlet.2015.01.124 | 2108 | ceramic/polymer | Si3N4-BAS (impregnate) | water | 100 | 0.0 | 0 | 41.0 | 23.0 | 100 | powder | 0.53 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yuan, N. Y., Tsai, R. Y., Ho, M. H., Wang, D. M., Lai, J. Y., & Hsieh, H. J. (2008). Fabrication and characterization of chondroitin sulfate-modified chitosan membranes for biomedical applications. Desalination, 234(1), 166-174. | 2008 | 744 | 10.1016/j.desal.2007.09.083 | 5741 | polymer | Chitosan-5wt.% Chondroitin sulfate | water | 100 | 0.0 | 0 | 4.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 96.53 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yuan, N. Y., Tsai, R. Y., Ho, M. H., Wang, D. M., Lai, J. Y., & Hsieh, H. J. (2008). Fabrication and characterization of chondroitin sulfate-modified chitosan membranes for biomedical applications. Desalination, 234(1), 166-174. | 2008 | 744 | 10.1016/j.desal.2007.09.083 | 5742 | polymer | Chitosan-10wt.% Chondroitin sulfate | water | 100 | 0.0 | 0 | 4.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 96.61 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yuan, N. Y., Tsai, R. Y., Ho, M. H., Wang, D. M., Lai, J. Y., & Hsieh, H. J. (2008). Fabrication and characterization of chondroitin sulfate-modified chitosan membranes for biomedical applications. Desalination, 234(1), 166-174. | 2008 | 744 | 10.1016/j.desal.2007.09.083 | 5743 | polymer | Chitosan-12.5wt.% Chondroitin sulfate | water | 100 | 0.0 | 0 | 4.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 96.94 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yuan, N. Y., Tsai, R. Y., Ho, M. H., Wang, D. M., Lai, J. Y., & Hsieh, H. J. (2008). Fabrication and characterization of chondroitin sulfate-modified chitosan membranes for biomedical applications. Desalination, 234(1), 166-174. | 2008 | 744 | 10.1016/j.desal.2007.09.083 | 5744 | polymer | Chitosan-15wt.% Chondroitin sulfate | water | 100 | 0.0 | 0 | 4.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 96.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yuan, N. Y., Tsai, R. Y., Ho, M. H., Wang, D. M., Lai, J. Y., & Hsieh, H. J. (2008). Fabrication and characterization of chondroitin sulfate-modified chitosan membranes for biomedical applications. Desalination, 234(1), 166-174. | 2008 | 744 | 10.1016/j.desal.2007.09.083 | 5745 | polymer | Chitosan-20wt.% Chondroitin sulfate | water | 100 | 0.0 | 0 | 4.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 96.25 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yuan, N. Y., Tsai, R. Y., Ho, M. H., Wang, D. M., Lai, J. Y., & Hsieh, H. J. (2008). Fabrication and characterization of chondroitin sulfate-modified chitosan membranes for biomedical applications. Desalination, 234(1), 166-174. | 2008 | 744 | 10.1016/j.desal.2007.09.083 | 5746 | polymer | Chitosan-30wt.% Chondroitin sulfate | water | 100 | 0.0 | 0 | 4.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yunoki, S., Ikoma, T., Monkawa, A., Ohta, K., Kikuchi, M., Sotome, S., ... & Tanaka, J. (2006). Control of pore structure and mechanical property in hydroxyapatite/collagen composite using unidirectional ice growth. Materials letters, 60(8), 999-1002. | 2006 | 746 | 10.1016/j.matlet.2005.10.064 | 2125 | ceramic/polymer | HAP-20wt.% collagen (mixed) | water | 100 | 0.0 | 0 | 4.0 | 18.0 | 63 | powder | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 95.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.0 | 300.0 |
Yunoki, S., Ikoma, T., Monkawa, A., Ohta, K., Kikuchi, M., Sotome, S., ... & Tanaka, J. (2006). Control of pore structure and mechanical property in hydroxyapatite/collagen composite using unidirectional ice growth. Materials letters, 60(8), 999-1002. | 2006 | 746 | 10.1016/j.matlet.2005.10.064 | 2126 | ceramic/polymer | HAP-20wt.% collagen (mixed) | water | 100 | 0.0 | 0 | 4.0 | 18.0 | 63 | powder | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 95.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.06 | 0.0 | 300.0 |
Yunoki, S., Ikoma, T., Monkawa, A., Ohta, K., Kikuchi, M., Sotome, S., ... & Tanaka, J. (2006). Control of pore structure and mechanical property in hydroxyapatite/collagen composite using unidirectional ice growth. Materials letters, 60(8), 999-1002. | 2006 | 746 | 10.1016/j.matlet.2005.10.064 | 2127 | ceramic/polymer | HAP-20wt.% collagen (mixed) | water | 100 | 0.0 | 0 | 4.0 | 18.0 | 63 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 95.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.04 | 0.0 | 150.0 |
Yunoki, S., Ikoma, T., Tsuchiya, A., Monkawa, A., Ohta, K., Sotome, S., ... & Tanaka, J. (2007). Fabrication and mechanical and tissue ingrowth properties of unidirectionally porous hydroxyapatite/collagen composite. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 80(1), 166-173. | 2007 | 747 | 10.1002/jbm.b.30581 | 2128 | ceramic/polymer | HAP-20wt.% collagen (mixed) | water | 100 | 0.0 | 0 | 4.0 | 18.0 | 63 | powder | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 95.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.03 | 0.0 | 0.0 |
Yunoki, S., Ikoma, T., Tsuchiya, A., Monkawa, A., Ohta, K., Sotome, S., ... & Tanaka, J. (2007). Fabrication and mechanical and tissue ingrowth properties of unidirectionally porous hydroxyapatite/collagen composite. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 80(1), 166-173. | 2007 | 747 | 10.1002/jbm.b.30581 | 2129 | ceramic/polymer | HAP-20wt.% collagen (mixed) | water | 100 | 0.0 | 0 | 4.0 | 18.0 | 63 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 95.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.02 | 0.0 | 0.0 |
Zamanian, A., Ghorbani, F., & Nojehdehian, H. (2014). Morphological comparison of PLGA/Gelatin Scaffolds produced by freeze casting and freeze drying methods. In Applied Mechanics and Materials (Vol. 467, pp. 108-111). Trans Tech Publications. | 2014 | 751 | 10.4028/www.scientific.net/AMM.467.108 | 2170 | polymer | PLLA-20wt.% gelatin (mixed) | acetic acid | 100 | 0.0 | 0 | 0.0 | 67.0 | 80 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 95.0 | 0.0 | 0.0 | 0.0 | 0.0 | 3.2 | 0.0 | 0.0 |
Zamanian, A., Ghorbani, F., & Nojehdehian, H. (2014). Morphological comparison of PLGA/Gelatin Scaffolds produced by freeze casting and freeze drying methods. In Applied Mechanics and Materials (Vol. 467, pp. 108-111). Trans Tech Publications. | 2014 | 751 | 10.4028/www.scientific.net/AMM.467.108 | 2171 | polymer | PLLA-20wt.% gelatin (mixed) | acetic acid | 100 | 0.0 | 0 | 0.0 | 67.0 | 80 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | equiaxed | green | 95.0 | 0.0 | 0.0 | 0.0 | 0.0 | 2.1 | 0.0 | 0.0 |
Zhang, B., Ye, F., Gao, Y., Liu, Q., Liu, S., & Liu, L. (2015). Dielectric properties of BADCy/Ni 0.5 Ti 0.5 NbO 4 composites with novel structure fabricated by freeze casting combined with vacuum assisted infiltration process. Composites Science and Technology, 119, 75-84. | 2015 | 754 | 10.1016/j.compscitech.2015.09.017 | 2177 | ceramic/polymer | Ni0.5Ti0.5NbO4-BADCy (impregnate) | water | 100 | 0.0 | 0 | 20.0 | 64.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 88.2 | 0.0 |
Zhang, B., Ye, F., Gao, Y., Liu, Q., Liu, S., & Liu, L. (2015). Dielectric properties of BADCy/Ni 0.5 Ti 0.5 NbO 4 composites with novel structure fabricated by freeze casting combined with vacuum assisted infiltration process. Composites Science and Technology, 119, 75-84. | 2015 | 754 | 10.1016/j.compscitech.2015.09.017 | 2178 | ceramic/polymer | Ni0.5Ti0.5NbO4-BADCy (impregnate) | water | 100 | 0.0 | 0 | 25.0 | 64.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 96.7 | 0.0 |
Zhang, B., Ye, F., Gao, Y., Liu, Q., Liu, S., & Liu, L. (2015). Dielectric properties of BADCy/Ni 0.5 Ti 0.5 NbO 4 composites with novel structure fabricated by freeze casting combined with vacuum assisted infiltration process. Composites Science and Technology, 119, 75-84. | 2015 | 754 | 10.1016/j.compscitech.2015.09.017 | 2179 | ceramic/polymer | Ni0.5Ti0.5NbO4-BADCy (impregnate) | water | 100 | 0.0 | 0 | 30.0 | 64.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 105.1 | 0.0 |
Zhang, B., Ye, F., Gao, Y., Liu, Q., Liu, S., & Liu, L. (2015). Dielectric properties of BADCy/Ni 0.5 Ti 0.5 NbO 4 composites with novel structure fabricated by freeze casting combined with vacuum assisted infiltration process. Composites Science and Technology, 119, 75-84. | 2015 | 754 | 10.1016/j.compscitech.2015.09.017 | 2180 | ceramic/polymer | Ni0.5Ti0.5NbO4-BADCy (impregnate) | water | 100 | 0.0 | 0 | 35.0 | 64.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 113.5 | 0.0 |
Zhang, B., Ye, F., Gao, Y., Liu, Q., Liu, S., & Liu, L. (2015). Dielectric properties of BADCy/Ni 0.5 Ti 0.5 NbO 4 composites with novel structure fabricated by freeze casting combined with vacuum assisted infiltration process. Composites Science and Technology, 119, 75-84. | 2015 | 754 | 10.1016/j.compscitech.2015.09.017 | 2181 | ceramic | Ni0.5Ti0.5NbO4 | water | 100 | 0.0 | 0 | 20.0 | 64.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 74.99 | 0.0 | 2.6 | 0.0 | 0.0 | 0.0 | 154.8 | 0.0 |
Zhang, B., Ye, F., Gao, Y., Liu, Q., Liu, S., & Liu, L. (2015). Dielectric properties of BADCy/Ni 0.5 Ti 0.5 NbO 4 composites with novel structure fabricated by freeze casting combined with vacuum assisted infiltration process. Composites Science and Technology, 119, 75-84. | 2015 | 754 | 10.1016/j.compscitech.2015.09.017 | 2182 | ceramic | Ni0.5Ti0.5NbO4 | water | 100 | 0.0 | 0 | 25.0 | 64.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 68.66 | 0.0 | 2.0 | 0.0 | 0.0 | 0.0 | 157.0 | 0.0 |
Zhang, B., Ye, F., Gao, Y., Liu, Q., Liu, S., & Liu, L. (2015). Dielectric properties of BADCy/Ni 0.5 Ti 0.5 NbO 4 composites with novel structure fabricated by freeze casting combined with vacuum assisted infiltration process. Composites Science and Technology, 119, 75-84. | 2015 | 754 | 10.1016/j.compscitech.2015.09.017 | 2183 | ceramic | Ni0.5Ti0.5NbO4 | water | 100 | 0.0 | 0 | 30.0 | 64.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 62.36 | 0.0 | 1.47 | 0.0 | 0.0 | 0.0 | 167.4 | 0.0 |
Zhang, B., Ye, F., Gao, Y., Liu, Q., Liu, S., & Liu, L. (2015). Dielectric properties of BADCy/Ni 0.5 Ti 0.5 NbO 4 composites with novel structure fabricated by freeze casting combined with vacuum assisted infiltration process. Composites Science and Technology, 119, 75-84. | 2015 | 754 | 10.1016/j.compscitech.2015.09.017 | 2184 | ceramic | Ni0.5Ti0.5NbO4 | water | 100 | 0.0 | 0 | 35.0 | 64.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 56.21 | 0.0 | 1.16 | 0.0 | 0.0 | 0.0 | 185.1 | 0.0 |
Zhang, B., Ye, F., Gao, Y., Liu, Q., Liu, S., & Liu, L. (2015). Dielectric properties of BADCy/Ni 0.5 Ti 0.5 NbO 4 composites with novel structure fabricated by freeze casting combined with vacuum assisted infiltration process. Composites Science and Technology, 119, 75-84. | 2015 | 754 | 10.1016/j.compscitech.2015.09.017 | 2185 | ceramic | Ni0.5Ti0.5NbO4 | water | 100 | 0.0 | 0 | 20.0 | 64.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 74.99 | 0.0 | 2.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, B., Ye, F., Gao, Y., Liu, Q., Liu, S., & Liu, L. (2015). Dielectric properties of BADCy/Ni 0.5 Ti 0.5 NbO 4 composites with novel structure fabricated by freeze casting combined with vacuum assisted infiltration process. Composites Science and Technology, 119, 75-84. | 2015 | 754 | 10.1016/j.compscitech.2015.09.017 | 2186 | ceramic | Ni0.5Ti0.5NbO4 | water | 100 | 0.0 | 0 | 25.0 | 64.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 68.66 | 0.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, B., Ye, F., Gao, Y., Liu, Q., Liu, S., & Liu, L. (2015). Dielectric properties of BADCy/Ni 0.5 Ti 0.5 NbO 4 composites with novel structure fabricated by freeze casting combined with vacuum assisted infiltration process. Composites Science and Technology, 119, 75-84. | 2015 | 754 | 10.1016/j.compscitech.2015.09.017 | 2187 | ceramic | Ni0.5Ti0.5NbO4 | water | 100 | 0.0 | 0 | 30.0 | 64.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 62.36 | 0.0 | 1.47 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, B., Ye, F., Gao, Y., Liu, Q., Liu, S., & Liu, L. (2015). Dielectric properties of BADCy/Ni 0.5 Ti 0.5 NbO 4 composites with novel structure fabricated by freeze casting combined with vacuum assisted infiltration process. Composites Science and Technology, 119, 75-84. | 2015 | 754 | 10.1016/j.compscitech.2015.09.017 | 2188 | ceramic | Ni0.5Ti0.5NbO4 | water | 100 | 0.0 | 0 | 35.0 | 64.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 56.21 | 0.0 | 1.16 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, J., Zhou, A., Deng, A., Yang, Y., Gao, L., Zhong, Z., & Yang, S. (2015). Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)?chitosan scaffolds. Materials Science and Engineering: C, 49, 174-182. | 2015 | 761 | 10.1016/j.msec.2014.12.076 | 2224 | polymer | Collagen-PVA (mixed) | acetic acid | 100 | 0.0 | 0 | 11.0 | 41.0 | 50 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 120.18 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, J., Zhou, A., Deng, A., Yang, Y., Gao, L., Zhong, Z., & Yang, S. (2015). Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)?chitosan scaffolds. Materials Science and Engineering: C, 49, 174-182. | 2015 | 761 | 10.1016/j.msec.2014.12.076 | 2225 | polymer | Collagen-PVA (mixed) | acetic acid | 100 | 0.0 | 0 | 11.0 | 41.0 | 50 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 116.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, J., Zhou, A., Deng, A., Yang, Y., Gao, L., Zhong, Z., & Yang, S. (2015). Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)?chitosan scaffolds. Materials Science and Engineering: C, 49, 174-182. | 2015 | 761 | 10.1016/j.msec.2014.12.076 | 2226 | polymer | Collagen-PVA (mixed) | acetic acid | 100 | 0.0 | 0 | 11.0 | 41.0 | 50 | 0 | 0.0 | 0 | 0 | 0 | 213.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 110.69 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, J., Zhou, A., Deng, A., Yang, Y., Gao, L., Zhong, Z., & Yang, S. (2015). Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)?chitosan scaffolds. Materials Science and Engineering: C, 49, 174-182. | 2015 | 761 | 10.1016/j.msec.2014.12.076 | 2227 | polymer | Collagen-PVA (mixed) | acetic acid | 100 | 0.0 | 0 | 11.0 | 41.0 | 50 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 112.88 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, J., Zhou, A., Deng, A., Yang, Y., Gao, L., Zhong, Z., & Yang, S. (2015). Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)?chitosan scaffolds. Materials Science and Engineering: C, 49, 174-182. | 2015 | 761 | 10.1016/j.msec.2014.12.076 | 2228 | polymer | Collagen-PVA (mixed) | acetic acid | 100 | 0.0 | 0 | 11.0 | 41.0 | 50 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 110.96 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, J., Zhou, A., Deng, A., Yang, Y., Gao, L., Zhong, Z., & Yang, S. (2015). Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)?chitosan scaffolds. Materials Science and Engineering: C, 49, 174-182. | 2015 | 761 | 10.1016/j.msec.2014.12.076 | 2229 | polymer | Collagen-PVA (mixed) | acetic acid | 100 | 0.0 | 0 | 11.0 | 41.0 | 50 | 0 | 0.0 | 0 | 0 | 0 | 213.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 105.16 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, J., Zhou, A., Deng, A., Yang, Y., Gao, L., Zhong, Z., & Yang, S. (2015). Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)?chitosan scaffolds. Materials Science and Engineering: C, 49, 174-182. | 2015 | 761 | 10.1016/j.msec.2014.12.076 | 2230 | polymer | Collagen-PVA (mixed) | acetic acid | 100 | 0.0 | 0 | 7.0 | 41.0 | 50 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 115.57 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, J., Zhou, A., Deng, A., Yang, Y., Gao, L., Zhong, Z., & Yang, S. (2015). Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)?chitosan scaffolds. Materials Science and Engineering: C, 49, 174-182. | 2015 | 761 | 10.1016/j.msec.2014.12.076 | 2231 | polymer | Collagen-PVA (mixed) | acetic acid | 100 | 0.0 | 0 | 14.0 | 41.0 | 50 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 105.62 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, J., Zhou, A., Deng, A., Yang, Y., Gao, L., Zhong, Z., & Yang, S. (2015). Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)?chitosan scaffolds. Materials Science and Engineering: C, 49, 174-182. | 2015 | 761 | 10.1016/j.msec.2014.12.076 | 2232 | polymer | Collagen-PVA (mixed) | acetic acid | 100 | 0.0 | 0 | 11.0 | 41.0 | 50 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 107.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, J., Zhou, A., Deng, A., Yang, Y., Gao, L., Zhong, Z., & Yang, S. (2015). Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)?chitosan scaffolds. Materials Science and Engineering: C, 49, 174-182. | 2015 | 761 | 10.1016/j.msec.2014.12.076 | 2233 | polymer | Collagen-PVA (mixed) | acetic acid | 100 | 0.0 | 0 | 11.0 | 41.0 | 50 | 0 | 0.0 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 112.08 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, R., Qu, Q., Han, B., & Wang, B. (2016). A novel silica aerogel/porous Y 2 SiO 5 ceramics with low thermal conductivity and enhanced mechanical properties prepared by freeze casting and impregnation. Materials Letters, 175, 219-222. | 2016 | 766 | 10.1016/j.matlet.2016.04.051 | 2248 | ceramic/polymer | Y2SiO5-aerogel (impregnation) | water | 100 | 0.0 | 0 | 10.0 | 53.0 | 100 | 0 | 1.0 | 0 | 0 | 10 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 86.4 | 0.0 | 11.0 | 0.0 | 0.0 | 0.9 | 0.0 | 0.0 |
Zhang, R., Qu, Q., Han, B., & Wang, B. (2016). A novel silica aerogel/porous Y 2 SiO 5 ceramics with low thermal conductivity and enhanced mechanical properties prepared by freeze casting and impregnation. Materials Letters, 175, 219-222. | 2016 | 766 | 10.1016/j.matlet.2016.04.051 | 2249 | ceramic/polymer | Y2SiO5-aerogel (impregnation) | water | 100 | 0.0 | 0 | 15.0 | 53.0 | 100 | 0 | 1.0 | 0 | 0 | 10 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 81.7 | 0.0 | 11.0 | 0.0 | 0.0 | 2.4 | 0.0 | 0.0 |
Zhang, R., Qu, Q., Han, B., & Wang, B. (2016). A novel silica aerogel/porous Y 2 SiO 5 ceramics with low thermal conductivity and enhanced mechanical properties prepared by freeze casting and impregnation. Materials Letters, 175, 219-222. | 2016 | 766 | 10.1016/j.matlet.2016.04.051 | 2250 | ceramic/polymer | Y2SiO5-aerogel (impregnation) | water | 100 | 0.0 | 0 | 20.0 | 53.0 | 100 | 0 | 1.0 | 0 | 0 | 10 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 77.7 | 0.0 | 10.25 | 0.0 | 0.0 | 3.2 | 0.0 | 0.0 |
Zhang, R., Qu, Q., Han, B., & Wang, B. (2016). A novel silica aerogel/porous Y 2 SiO 5 ceramics with low thermal conductivity and enhanced mechanical properties prepared by freeze casting and impregnation. Materials Letters, 175, 219-222. | 2016 | 766 | 10.1016/j.matlet.2016.04.051 | 2251 | ceramic/polymer | Y2SiO5-aerogel (impregnation) | water | 100 | 0.0 | 0 | 25.0 | 53.0 | 100 | 0 | 1.0 | 0 | 0 | 10 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 71.1 | 0.0 | 10.5 | 0.0 | 0.0 | 9.3 | 0.0 | 0.0 |
Zhang, X., Zhang, Y., Ma, G., Yang, D., & Nie, J. (2015). The effect of the prefrozen process on properties of a chitosan/hydroxyapatite/poly (methyl methacrylate) composite prepared by freeze drying method used for bone tissue engineering. RSC Advances, 5(97), 79679-79686. | 2015 | 770 | 10.1039/c5ra14549j | 2262 | ceramic/polymer | chitosan/HAP (mixed) | water | 100 | 0.0 | 0 | 9.0 | 39.0 | 37 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 62.1 | 0.0 | 0.0 | 0.0 | 0.0 | 355.0 | 0.0 | 0.0 |
Zhang, X., Zhang, Y., Ma, G., Yang, D., & Nie, J. (2015). The effect of the prefrozen process on properties of a chitosan/hydroxyapatite/poly (methyl methacrylate) composite prepared by freeze drying method used for bone tissue engineering. RSC Advances, 5(97), 79679-79686. | 2015 | 770 | 10.1039/c5ra14549j | 2263 | ceramic/polymer | chitosan/HAP (mixed) | water | 100 | 0.0 | 0 | 9.0 | 39.0 | 37 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 55.3 | 0.0 | 0.0 | 0.0 | 0.0 | 420.0 | 0.0 | 0.0 |
Zhang, X., Zhang, Y., Ma, G., Yang, D., & Nie, J. (2015). The effect of the prefrozen process on properties of a chitosan/hydroxyapatite/poly (methyl methacrylate) composite prepared by freeze drying method used for bone tissue engineering. RSC Advances, 5(97), 79679-79686. | 2015 | 770 | 10.1039/c5ra14549j | 2264 | ceramic/polymer | chitosan/HAP (mixed) | water | 100 | 0.0 | 0 | 9.0 | 39.0 | 37 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 50.3 | 0.0 | 0.0 | 0.0 | 0.0 | 490.0 | 0.0 | 0.0 |
Zhang, X., Zhang, Y., Ma, G., Yang, D., & Nie, J. (2015). The effect of the prefrozen process on properties of a chitosan/hydroxyapatite/poly (methyl methacrylate) composite prepared by freeze drying method used for bone tissue engineering. RSC Advances, 5(97), 79679-79686. | 2015 | 770 | 10.1039/c5ra14549j | 2265 | ceramic/polymer | chitosan/HAP (mixed) | water | 100 | 0.0 | 0 | 9.0 | 39.0 | 37 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 47.0 | 0.0 | 0.0 | 0.0 | 0.0 | 590.0 | 0.0 | 0.0 |
Zhang, X., Zhang, Y., Ma, G., Yang, D., & Nie, J. (2015). The effect of the prefrozen process on properties of a chitosan/hydroxyapatite/poly (methyl methacrylate) composite prepared by freeze drying method used for bone tissue engineering. RSC Advances, 5(97), 79679-79686. | 2015 | 770 | 10.1039/c5ra14549j | 2266 | ceramic/polymer | chitosan/HAP (mixed) | water | 100 | 0.0 | 0 | 9.0 | 39.0 | 37 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 51.7 | 0.0 | 0.0 | 0.0 | 0.0 | 390.0 | 0.0 | 0.0 |
Zhang, X., Zhang, Y., Ma, G., Yang, D., & Nie, J. (2015). The effect of the prefrozen process on properties of a chitosan/hydroxyapatite/poly (methyl methacrylate) composite prepared by freeze drying method used for bone tissue engineering. RSC Advances, 5(97), 79679-79686. | 2015 | 770 | 10.1039/c5ra14549j | 2267 | ceramic/polymer | chitosan/HAP (mixed) | water | 100 | 0.0 | 0 | 9.0 | 39.0 | 37 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 47.0 | 0.0 | 0.0 | 0.0 | 0.0 | 490.0 | 0.0 | 0.0 |
Zhang, X., Zhang, Y., Ma, G., Yang, D., & Nie, J. (2015). The effect of the prefrozen process on properties of a chitosan/hydroxyapatite/poly (methyl methacrylate) composite prepared by freeze drying method used for bone tissue engineering. RSC Advances, 5(97), 79679-79686. | 2015 | 770 | 10.1039/c5ra14549j | 2268 | ceramic/polymer | chitosan/HAP (mixed) | water | 100 | 0.0 | 0 | 9.0 | 39.0 | 37 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 45.8 | 0.0 | 0.0 | 0.0 | 0.0 | 550.0 | 0.0 | 0.0 |
Zhang, X., Zhang, Y., Ma, G., Yang, D., & Nie, J. (2015). The effect of the prefrozen process on properties of a chitosan/hydroxyapatite/poly (methyl methacrylate) composite prepared by freeze drying method used for bone tissue engineering. RSC Advances, 5(97), 79679-79686. | 2015 | 770 | 10.1039/c5ra14549j | 2269 | ceramic/polymer | chitosan/HAP (mixed) | water | 100 | 0.0 | 0 | 9.0 | 39.0 | 37 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 33.8 | 0.0 | 0.0 | 0.0 | 0.0 | 600.0 | 0.0 | 0.0 |
Zhang, Y., Bao, Y. X., Zhou, K. C., & Zhang, D. (2014). Fabrication of Barium Titanate/Hydroxyapatite with Aligned Pore Channels by Freeze Gelcasting. In Applied Mechanics and Materials (Vol. 692, pp. 341-346). Trans Tech Publications. | 2014 | 773 | 10.4028/www.scientific.net/AMM.692.341 | 2284 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 10.0 | 18.0 | 69 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 11.0 | 0.0 | 0.0 |
Zhang, Y., Bao, Y. X., Zhou, K. C., & Zhang, D. (2014). Fabrication of Barium Titanate/Hydroxyapatite with Aligned Pore Channels by Freeze Gelcasting. In Applied Mechanics and Materials (Vol. 692, pp. 341-346). Trans Tech Publications. | 2014 | 773 | 10.4028/www.scientific.net/AMM.692.341 | 2285 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 69 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 54.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14.0 | 0.0 | 0.0 |
Zhang, Y., Bao, Y. X., Zhou, K. C., & Zhang, D. (2014). Fabrication of Barium Titanate/Hydroxyapatite with Aligned Pore Channels by Freeze Gelcasting. In Applied Mechanics and Materials (Vol. 692, pp. 341-346). Trans Tech Publications. | 2014 | 773 | 10.4028/www.scientific.net/AMM.692.341 | 2286 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 30.0 | 18.0 | 69 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 48.0 | 0.0 | 0.0 | 0.0 | 0.0 | 16.0 | 0.0 | 0.0 |
Zhang, Y., Bao, Y. X., Zhou, K. C., & Zhang, D. (2014). Fabrication of Barium Titanate/Hydroxyapatite with Aligned Pore Channels by Freeze Gelcasting. In Applied Mechanics and Materials (Vol. 692, pp. 341-346). Trans Tech Publications. | 2014 | 773 | 10.4028/www.scientific.net/AMM.692.341 | 2287 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 40.0 | 18.0 | 69 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 38.0 | 0.0 | 0.0 | 0.0 | 0.0 | 19.0 | 0.0 | 0.0 |
Zhang, Y., Bao, Y. X., Zhou, K. C., & Zhang, D. (2014). Fabrication of Barium Titanate/Hydroxyapatite with Aligned Pore Channels by Freeze Gelcasting. In Applied Mechanics and Materials (Vol. 692, pp. 341-346). Trans Tech Publications. | 2014 | 773 | 10.4028/www.scientific.net/AMM.692.341 | 2288 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 10.0 | 18.0 | 69 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 4.0 | 0.0 | 0.0 |
Zhang, Y., Bao, Y. X., Zhou, K. C., & Zhang, D. (2014). Fabrication of Barium Titanate/Hydroxyapatite with Aligned Pore Channels by Freeze Gelcasting. In Applied Mechanics and Materials (Vol. 692, pp. 341-346). Trans Tech Publications. | 2014 | 773 | 10.4028/www.scientific.net/AMM.692.341 | 2289 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 69 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 |
Zhang, Y., Bao, Y. X., Zhou, K. C., & Zhang, D. (2014). Fabrication of Barium Titanate/Hydroxyapatite with Aligned Pore Channels by Freeze Gelcasting. In Applied Mechanics and Materials (Vol. 692, pp. 341-346). Trans Tech Publications. | 2014 | 773 | 10.4028/www.scientific.net/AMM.692.341 | 2290 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 30.0 | 18.0 | 69 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 5.5 | 0.0 | 0.0 |
Zhang, Y., Bao, Y. X., Zhou, K. C., & Zhang, D. (2014). Fabrication of Barium Titanate/Hydroxyapatite with Aligned Pore Channels by Freeze Gelcasting. In Applied Mechanics and Materials (Vol. 692, pp. 341-346). Trans Tech Publications. | 2014 | 773 | 10.4028/www.scientific.net/AMM.692.341 | 2291 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 40.0 | 18.0 | 69 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 6.0 | 0.0 | 0.0 |
Zhang, Y., Bao, Y. X., Zhou, K. C., & Zhang, D. (2014). Fabrication of Barium Titanate/Hydroxyapatite with Aligned Pore Channels by Freeze Gelcasting. In Applied Mechanics and Materials (Vol. 692, pp. 341-346). Trans Tech Publications. | 2014 | 773 | 10.4028/www.scientific.net/AMM.692.341 | 2292 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 10.0 | 18.0 | 69 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 68.0 | 0.0 | 0.0 | 0.0 | 0.0 | 24.0 | 0.0 | 0.0 |
Zhang, Y., Bao, Y. X., Zhou, K. C., & Zhang, D. (2014). Fabrication of Barium Titanate/Hydroxyapatite with Aligned Pore Channels by Freeze Gelcasting. In Applied Mechanics and Materials (Vol. 692, pp. 341-346). Trans Tech Publications. | 2014 | 773 | 10.4028/www.scientific.net/AMM.692.341 | 2293 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 69 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 59.0 | 0.0 | 0.0 | 0.0 | 0.0 | 28.0 | 0.0 | 0.0 |
Zhang, Y., Bao, Y. X., Zhou, K. C., & Zhang, D. (2014). Fabrication of Barium Titanate/Hydroxyapatite with Aligned Pore Channels by Freeze Gelcasting. In Applied Mechanics and Materials (Vol. 692, pp. 341-346). Trans Tech Publications. | 2014 | 773 | 10.4028/www.scientific.net/AMM.692.341 | 2294 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 30.0 | 18.0 | 69 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 32.0 | 0.0 | 0.0 |
Zhang, Y., Bao, Y. X., Zhou, K. C., & Zhang, D. (2014). Fabrication of Barium Titanate/Hydroxyapatite with Aligned Pore Channels by Freeze Gelcasting. In Applied Mechanics and Materials (Vol. 692, pp. 341-346). Trans Tech Publications. | 2014 | 773 | 10.4028/www.scientific.net/AMM.692.341 | 2295 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 40.0 | 18.0 | 69 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 42.0 | 0.0 | 0.0 | 0.0 | 0.0 | 40.0 | 0.0 | 0.0 |
Zhang, Y., Bao, Y. X., Zhou, K. C., & Zhang, D. (2014). Fabrication of Barium Titanate/Hydroxyapatite with Aligned Pore Channels by Freeze Gelcasting. In Applied Mechanics and Materials (Vol. 692, pp. 341-346). Trans Tech Publications. | 2014 | 773 | 10.4028/www.scientific.net/AMM.692.341 | 2296 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 10.0 | 18.0 | 69 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14.0 | 0.0 | 0.0 |
Zhang, Y., Bao, Y. X., Zhou, K. C., & Zhang, D. (2014). Fabrication of Barium Titanate/Hydroxyapatite with Aligned Pore Channels by Freeze Gelcasting. In Applied Mechanics and Materials (Vol. 692, pp. 341-346). Trans Tech Publications. | 2014 | 773 | 10.4028/www.scientific.net/AMM.692.341 | 2297 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 69 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 |
Zhang, Y., Bao, Y. X., Zhou, K. C., & Zhang, D. (2014). Fabrication of Barium Titanate/Hydroxyapatite with Aligned Pore Channels by Freeze Gelcasting. In Applied Mechanics and Materials (Vol. 692, pp. 341-346). Trans Tech Publications. | 2014 | 773 | 10.4028/www.scientific.net/AMM.692.341 | 2298 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 30.0 | 18.0 | 69 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 18.0 | 0.0 | 0.0 |
Zhang, Y., Bao, Y. X., Zhou, K. C., & Zhang, D. (2014). Fabrication of Barium Titanate/Hydroxyapatite with Aligned Pore Channels by Freeze Gelcasting. In Applied Mechanics and Materials (Vol. 692, pp. 341-346). Trans Tech Publications. | 2014 | 773 | 10.4028/www.scientific.net/AMM.692.341 | 2299 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 40.0 | 18.0 | 69 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 |
Zhang, Y., Bao, Y. X., Zhou, K. C., & Zhang, D. (2014). Fabrication of Barium Titanate/Hydroxyapatite with Aligned Pore Channels by Freeze Gelcasting. In Applied Mechanics and Materials (Vol. 692, pp. 341-346). Trans Tech Publications. | 2014 | 773 | 10.4028/www.scientific.net/AMM.692.341 | 2300 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 69 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 15.0 | 0.0 | 0.0 |
Zhang, Y., Bao, Y. X., Zhou, K. C., & Zhang, D. (2014). Fabrication of Barium Titanate/Hydroxyapatite with Aligned Pore Channels by Freeze Gelcasting. In Applied Mechanics and Materials (Vol. 692, pp. 341-346). Trans Tech Publications. | 2014 | 773 | 10.4028/www.scientific.net/AMM.692.341 | 2301 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 69 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 22.0 | 0.0 | 0.0 |
Zhang, Y., Bao, Y. X., Zhou, K. C., & Zhang, D. (2014). Fabrication of Barium Titanate/Hydroxyapatite with Aligned Pore Channels by Freeze Gelcasting. In Applied Mechanics and Materials (Vol. 692, pp. 341-346). Trans Tech Publications. | 2014 | 773 | 10.4028/www.scientific.net/AMM.692.341 | 2302 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 69 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 27.0 | 0.0 | 0.0 |
Zhang, Y., Bao, Y. X., Zhou, K. C., & Zhang, D. (2014). Fabrication of Barium Titanate/Hydroxyapatite with Aligned Pore Channels by Freeze Gelcasting. In Applied Mechanics and Materials (Vol. 692, pp. 341-346). Trans Tech Publications. | 2014 | 773 | 10.4028/www.scientific.net/AMM.692.341 | 2303 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 69 | 0 | 1.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 45.0 | 0.0 | 0.0 |
Zhang, Y., Chen, L., Zeng, J., Zhou, K., & Zhang, D. (2014). Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering. Materials Science and Engineering: C, 39, 143-149. | 2014 | 775 | 10.1016/j.msec.2014.02.022 | 2304 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 10.0 | 18.0 | 50 | 0 | 1.0 | 0 | 0 | 0 | 173.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Chen, L., Zeng, J., Zhou, K., & Zhang, D. (2014). Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering. Materials Science and Engineering: C, 39, 143-149. | 2014 | 775 | 10.1016/j.msec.2014.02.022 | 2305 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 10.0 | 18.0 | 30 | 0 | 1.0 | 0 | 0 | 0 | 173.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Chen, L., Zeng, J., Zhou, K., & Zhang, D. (2014). Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering. Materials Science and Engineering: C, 39, 143-149. | 2014 | 775 | 10.1016/j.msec.2014.02.022 | 2306 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 10.0 | 18.0 | 10 | 0 | 1.0 | 0 | 0 | 0 | 173.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 66.0 | 0.0 | 20.0 | 0.0 | 0.0 | 11.0 | 0.0 | 0.0 |
Zhang, Y., Chen, L., Zeng, J., Zhou, K., & Zhang, D. (2014). Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering. Materials Science and Engineering: C, 39, 143-149. | 2014 | 775 | 10.1016/j.msec.2014.02.022 | 2310 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 30.0 | 18.0 | 50 | 0 | 1.0 | 0 | 0 | 0 | 173.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Chen, L., Zeng, J., Zhou, K., & Zhang, D. (2014). Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering. Materials Science and Engineering: C, 39, 143-149. | 2014 | 775 | 10.1016/j.msec.2014.02.022 | 2311 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 30.0 | 18.0 | 30 | 0 | 1.0 | 0 | 0 | 0 | 173.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Chen, L., Zeng, J., Zhou, K., & Zhang, D. (2014). Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering. Materials Science and Engineering: C, 39, 143-149. | 2014 | 775 | 10.1016/j.msec.2014.02.022 | 2312 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 30.0 | 18.0 | 10 | 0 | 1.0 | 0 | 0 | 0 | 173.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 57.4 | 183.0 | 160.0 | 23.0 | 0.0 | 13.7 | 0.0 | 0.0 |
Zhang, Y., Chen, L., Zeng, J., Zhou, K., & Zhang, D. (2014). Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering. Materials Science and Engineering: C, 39, 143-149. | 2014 | 775 | 10.1016/j.msec.2014.02.022 | 2313 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 40.0 | 18.0 | 50 | 0 | 1.0 | 0 | 0 | 0 | 173.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Chen, L., Zeng, J., Zhou, K., & Zhang, D. (2014). Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering. Materials Science and Engineering: C, 39, 143-149. | 2014 | 775 | 10.1016/j.msec.2014.02.022 | 2314 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 40.0 | 18.0 | 30 | 0 | 1.0 | 0 | 0 | 0 | 173.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, Y., Chen, L., Zeng, J., Zhou, K., & Zhang, D. (2014). Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering. Materials Science and Engineering: C, 39, 143-149. | 2014 | 775 | 10.1016/j.msec.2014.02.022 | 2315 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 40.0 | 18.0 | 10 | 0 | 1.0 | 0 | 0 | 0 | 173.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 40.0 | 0.0 | 0.0 | 12.0 | 0.0 | 14.5 | 0.0 | 0.0 |
Zhang, Y., Chen, L., Zeng, J., Zhou, K., & Zhang, D. (2014). Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering. Materials Science and Engineering: C, 39, 143-149. | 2014 | 775 | 10.1016/j.msec.2014.02.022 | 2316 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 10 | 0 | 1.0 | 0 | 0 | 0 | 173.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 8.0 | 0.0 | 0.0 |
Zhang, Y., Chen, L., Zeng, J., Zhou, K., & Zhang, D. (2014). Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering. Materials Science and Engineering: C, 39, 143-149. | 2014 | 775 | 10.1016/j.msec.2014.02.022 | 2317 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 10 | 0 | 1.0 | 0 | 0 | 0 | 173.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 57.0 | 0.0 | 0.0 | 0.0 | 0.0 | 14.0 | 0.0 | 0.0 |
Zhang, Y., Chen, L., Zeng, J., Zhou, K., & Zhang, D. (2014). Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering. Materials Science and Engineering: C, 39, 143-149. | 2014 | 775 | 10.1016/j.msec.2014.02.022 | 2318 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 10 | 0 | 1.0 | 0 | 0 | 0 | 173.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 16.0 | 0.0 | 0.0 |
Zhang, Y., Chen, L., Zeng, J., Zhou, K., & Zhang, D. (2014). Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering. Materials Science and Engineering: C, 39, 143-149. | 2014 | 775 | 10.1016/j.msec.2014.02.022 | 2319 | ceramic | BT-HAP (mixed) | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 10 | 0 | 1.0 | 0 | 0 | 0 | 173.0 | 20.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 22.5 | 0.0 | 0.0 |
Zhang, Y., Chen, L., Zeng, J., Zhou, K., & Zhang, D. (2014). Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering. Materials Science and Engineering: C, 39, 143-149. | 2014 | 775 | 10.1016/j.msec.2014.02.022 | 2307 | ceramic | BaTiO3-50wt.% HAP (mixed) | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 50 | 0 | 1.0 | 0 | 0 | 0 | 173.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 60.6 | 41.0 | 32.0 | 9.0 | 0.0 | 13.5 | 0.0 | 0.0 |
Zhang, Y., Chen, L., Zeng, J., Zhou, K., & Zhang, D. (2014). Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering. Materials Science and Engineering: C, 39, 143-149. | 2014 | 775 | 10.1016/j.msec.2014.02.022 | 2308 | ceramic | BaTiO3-30wt.%HAP (mixed) | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 30 | 0 | 1.0 | 0 | 0 | 0 | 173.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 58.9 | 40.0 | 32.0 | 8.0 | 0.0 | 13.8 | 0.0 | 0.0 |
Zhang, Y., Chen, L., Zeng, J., Zhou, K., & Zhang, D. (2014). Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering. Materials Science and Engineering: C, 39, 143-149. | 2014 | 775 | 10.1016/j.msec.2014.02.022 | 2309 | ceramic | BaTiO3-10wt.%HAP (mixed) | water | 100 | 0.0 | 0 | 20.0 | 18.0 | 10 | 0 | 1.0 | 0 | 0 | 0 | 173.0 | 5.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 57.4 | 41.0 | 32.0 | 9.0 | 0.0 | 14.5 | 0.0 | 0.0 |
Zhao, H., Yue, Y., Guo, L., Wu, J., Zhang, Y., Li, X., ... & Han, X. (2016). Cloning Nacre's 3D Interlocking Skeleton in Engineering Composites to Achieve Exceptional Mechanical Properties. Advanced materials, 28(25), 5099-5105. | 2016 | 782 | 10.1002/adma.201600839 | 5183 | ceramic/polymer | Al2O3-4wt.%cyanate ester | 0.0 | 0 | 0.0 | 0 | 25.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhao, H., Yue, Y., Guo, L., Wu, J., Zhang, Y., Li, X., ... & Han, X. (2016). Cloning Nacre's 3D Interlocking Skeleton in Engineering Composites to Achieve Exceptional Mechanical Properties. Advanced materials, 28(25), 5099-5105. | 2016 | 782 | 10.1002/adma.201600839 | 5184 | ceramic/polymer | Al2O3-5wt.%cyanate ester | 0.0 | 0 | 0.0 | 0 | 25.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhao, H., Yue, Y., Guo, L., Wu, J., Zhang, Y., Li, X., ... & Han, X. (2016). Cloning Nacre's 3D Interlocking Skeleton in Engineering Composites to Achieve Exceptional Mechanical Properties. Advanced materials, 28(25), 5099-5105. | 2016 | 782 | 10.1002/adma.201600839 | 5185 | ceramic/polymer | Al2O3-7wt.%cyanate ester | 0.0 | 0 | 0.0 | 0 | 25.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhao, H., Yue, Y., Guo, L., Wu, J., Zhang, Y., Li, X., ... & Han, X. (2016). Cloning Nacre's 3D Interlocking Skeleton in Engineering Composites to Achieve Exceptional Mechanical Properties. Advanced materials, 28(25), 5099-5105. | 2016 | 782 | 10.1002/adma.201600839 | 5186 | ceramic/polymer | Al2O3-9wt.%cyanate ester | 0.0 | 0 | 0.0 | 0 | 25.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhu, Y., Zhang, R., Zhang, S., Chu, Y., & Chen, J. (2016). Macroporous polymers with aligned microporous walls from pickering high internal phase emulsions. Langmuir, 32(24), 6083-6088. | 2016 | 796 | 0 | 5821 | polymer | PU | water | 100 | 0.0 | 0 | 16.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 94.0 | 52.2 | 49.0 | 3.2 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhu, Y., Zhang, R., Zhang, S., Chu, Y., & Chen, J. (2016). Macroporous polymers with aligned microporous walls from pickering high internal phase emulsions. Langmuir, 32(24), 6083-6088. | 2016 | 796 | 0 | 5822 | polymer | PU | water | 100 | 0.0 | 0 | 16.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 91.0 | 48.6 | 46.0 | 2.6 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhu, Y., Zhang, R., Zhang, S., Chu, Y., & Chen, J. (2016). Macroporous polymers with aligned microporous walls from pickering high internal phase emulsions. Langmuir, 32(24), 6083-6088. | 2016 | 796 | 0 | 5823 | polymer | PU | water | 100 | 0.0 | 0 | 16.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 96.0 | 106.2 | 99.0 | 7.2 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhu, Y., Zhang, R., Zhang, S., Chu, Y., & Chen, J. (2016). Macroporous polymers with aligned microporous walls from pickering high internal phase emulsions. Langmuir, 32(24), 6083-6088. | 2016 | 796 | 0 | 5824 | polymer | PU | water | 100 | 0.0 | 0 | 10.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 96.0 | 192.0 | 181.0 | 11.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhu, Y., Zhang, R., Zhang, S., Chu, Y., & Chen, J. (2016). Macroporous polymers with aligned microporous walls from pickering high internal phase emulsions. Langmuir, 32(24), 6083-6088. | 2016 | 796 | 0 | 5825 | polymer | PU | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 93.0 | 0.0 | 34.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
An, S., Kim, B., & Lee, J. (2017). Incomparable hardness and modulus of biomimetic porous polyurethane films prepared by directional melt crystallization of a solvent. Journal of Crystal Growth, 469, 106-113. | 2016 | 813 | dx.doi.org/10.1016/j.jcrysgro.2016.08.057 | 2062 | polymer | PU | dioxane | 100 | 0.0 | 0 | 5.0 | 88.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | doctor-blade | 0 | 200.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 89.0 | 0.0 | 12.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
An, S., Kim, B., & Lee, J. (2017). Incomparable hardness and modulus of biomimetic porous polyurethane films prepared by directional melt crystallization of a solvent. Journal of Crystal Growth, 469, 106-113. | 2016 | 813 | dx.doi.org/10.1016/j.jcrysgro.2016.08.057 | 2063 | polymer | PU | dioxane | 100 | 0.0 | 0 | 9.0 | 88.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | doctor-blade | 0 | 200.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 84.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
An, S., Kim, B., & Lee, J. (2017). Incomparable hardness and modulus of biomimetic porous polyurethane films prepared by directional melt crystallization of a solvent. Journal of Crystal Growth, 469, 106-113. | 2016 | 813 | dx.doi.org/10.1016/j.jcrysgro.2016.08.057 | 2064 | polymer | PU | dioxane | 100 | 0.0 | 0 | 13.0 | 88.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | doctor-blade | 0 | 200.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 77.0 | 0.0 | 3.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
An, S., Kim, B., & Lee, J. (2017). Incomparable hardness and modulus of biomimetic porous polyurethane films prepared by directional melt crystallization of a solvent. Journal of Crystal Growth, 469, 106-113. | 2016 | 813 | dx.doi.org/10.1016/j.jcrysgro.2016.08.057 | 2065 | polymer | PU | dioxane | 100 | 0.0 | 0 | 9.0 | 88.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | doctor-blade | 0 | 200.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 83.0 | 0.0 | 7.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., Kopera, B. A. F., Machado, V. R., Tehrani, S. M., Winnik, M. A., Kumacheva, E., & Retsch, M. (2017). Reversible transition between isotropic and anisotropic thermal transport in elastic polyurethane foams. Materials Horizons, 4(2), 236-241. | 2016 | 839 | 10.1039/C6MH00495D | 4828 | polymer | PU | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 27.5 | 20.0 | 7.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., Kopera, B. A. F., Machado, V. R., Tehrani, S. M., Winnik, M. A., Kumacheva, E., & Retsch, M. (2017). Reversible transition between isotropic and anisotropic thermal transport in elastic polyurethane foams. Materials Horizons, 4(2), 236-241. | 2016 | 839 | 10.1039/C6MH00495D | 4829 | polymer | PU | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., Kopera, B. A. F., Machado, V. R., Tehrani, S. M., Winnik, M. A., Kumacheva, E., & Retsch, M. (2017). Reversible transition between isotropic and anisotropic thermal transport in elastic polyurethane foams. Materials Horizons, 4(2), 236-241. | 2016 | 839 | 10.1039/C6MH00495D | 4830 | polymer | PU | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Chau, M., Kopera, B. A. F., Machado, V. R., Tehrani, S. M., Winnik, M. A., Kumacheva, E., & Retsch, M. (2017). Reversible transition between isotropic and anisotropic thermal transport in elastic polyurethane foams. Materials Horizons, 4(2), 236-241. | 2016 | 839 | 10.1039/C6MH00495D | 4831 | polymer | PU | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jenei, P., Choi, H., Toth, A., Choe, H., & Gubicza, J. (2016). Mechanical behavior and microstructure of compressed Ti foams synthesized via freeze casting. journal of the mechanical behavior of biomedical materials, 63, 407-416. | 2016 | 809 | 10.1016/j.hmbbm.2016.07.012 | 1828 | metal | Ti-5wtW | water | 100 | 0.0 | 0 | 0.0 | 29.0 | 94 | powder | 44.0 | 0 | 0 | 0 | 0.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 32.0 | 0.0 | 0.0 | 16.0 | 0.0 | 235.0 | 0.0 | 23000.0 |
Lee, H., Jang, T. S., Song, J., Kim, H. E., & Jung, H. D. (2016). Multi-scale porous Ti6Al4V scaffolds with enhanced strength and biocompatibility formed via dynamic freeze-casting coupled with micro-arc oxidation. Materials Letters, 185, 21-24. | 2016 | 810 | http://dx.doi.org/10.1016/j.matlet.2016.08.075 | 1049 | metal | Ti6Al4V | camphene | 100 | 0.0 | 0 | 15.0 | 87.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 293.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 71.0 | 0.0 | 0.0 | 0.0 | 0.0 | 70.0 | 0.0 | 4000.0 |
Lee, H., Jang, T. S., Song, J., Kim, H. E., & Jung, H. D. (2016). Multi-scale porous Ti6Al4V scaffolds with enhanced strength and biocompatibility formed via dynamic freeze-casting coupled with micro-arc oxidation. Materials Letters, 185, 21-24. | 2016 | 810 | http://dx.doi.org/10.1016/j.matlet.2016.08.075 | 1050 | metal | Ti6Al4V | camphene | 100 | 0.0 | 0 | 20.0 | 87.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 293.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 61.0 | 0.0 | 0.0 | 0.0 | 0.0 | 130.0 | 0.0 | 12000.0 |
Lee, H., Jang, T. S., Song, J., Kim, H. E., & Jung, H. D. (2016). Multi-scale porous Ti6Al4V scaffolds with enhanced strength and biocompatibility formed via dynamic freeze-casting coupled with micro-arc oxidation. Materials Letters, 185, 21-24. | 2016 | 810 | http://dx.doi.org/10.1016/j.matlet.2016.08.075 | 1051 | metal | Ti6Al4V | camphene | 100 | 0.0 | 0 | 25.0 | 87.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 293.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | sintered | 51.0 | 0.0 | 0.0 | 0.0 | 0.0 | 225.0 | 0.0 | 17000.0 |
Zhang, L., Le Coz-Botrel, R., Beddoes, C., Sjöström, T., & Su, B. (2017). Gelatin freeze casting of biomimetic titanium alloy with anisotropic and gradient pore structure. Biomedical Materials, 12(1), 015014. | 2017 | 923 | 10.1088/1748-605X/aa50a1 | 4330 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 15.0 | 87.0 | 100 | powder | 25.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 21.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 75.0 | 0.0 | 45.0 | 0.0 | 0.0 | 45.0 | 0.0 | 0.0 |
Zhang, L., Le Coz-Botrel, R., Beddoes, C., Sjöström, T., & Su, B. (2017). Gelatin freeze casting of biomimetic titanium alloy with anisotropic and gradient pore structure. Biomedical Materials, 12(1), 015014. | 2017 | 923 | 10.1088/1748-605X/aa50a1 | 4331 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 15.0 | 87.0 | 100 | powder | 25.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 17.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 73.0 | 0.0 | 130.0 | 0.0 | 0.0 | 110.7 | 0.0 | 0.0 |
Zhang, L., Le Coz-Botrel, R., Beddoes, C., Sjöström, T., & Su, B. (2017). Gelatin freeze casting of biomimetic titanium alloy with anisotropic and gradient pore structure. Biomedical Materials, 12(1), 015014. | 2017 | 923 | 10.1088/1748-605X/aa50a1 | 4332 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 15.0 | 87.0 | 100 | powder | 25.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 14.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 58.0 | 0.0 | 290.0 | 0.0 | 0.0 | 243.5 | 0.0 | 0.0 |
Zhang, L., Le Coz-Botrel, R., Beddoes, C., Sjöström, T., & Su, B. (2017). Gelatin freeze casting of biomimetic titanium alloy with anisotropic and gradient pore structure. Biomedical Materials, 12(1), 015014. | 2017 | 923 | 10.1088/1748-605X/aa50a1 | 4333 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 15.0 | 87.0 | 100 | powder | 25.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 59.0 | 0.0 | 0.0 | 0.0 | 0.0 | 226.0 | 0.0 | 0.0 |
Zhang, L., Le Coz-Botrel, R., Beddoes, C., Sjöström, T., & Su, B. (2017). Gelatin freeze casting of biomimetic titanium alloy with anisotropic and gradient pore structure. Biomedical Materials, 12(1), 015014. | 2017 | 923 | 10.1088/1748-605X/aa50a1 | 4334 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 15.0 | 87.0 | 100 | powder | 25.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 166.0 | 0.0 | 0.0 |
Zhang, L., Le Coz-Botrel, R., Beddoes, C., Sjöström, T., & Su, B. (2017). Gelatin freeze casting of biomimetic titanium alloy with anisotropic and gradient pore structure. Biomedical Materials, 12(1), 015014. | 2017 | 923 | 10.1088/1748-605X/aa50a1 | 4335 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 15.0 | 87.0 | 100 | powder | 25.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 74.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 |
Zhang, L., Le Coz-Botrel, R., Beddoes, C., Sjöström, T., & Su, B. (2017). Gelatin freeze casting of biomimetic titanium alloy with anisotropic and gradient pore structure. Biomedical Materials, 12(1), 015014. | 2017 | 923 | 10.1088/1748-605X/aa50a1 | 4336 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 15.0 | 87.0 | 100 | powder | 25.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 78.0 | 0.0 | 150.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, L., Le Coz-Botrel, R., Beddoes, C., Sjöström, T., & Su, B. (2017). Gelatin freeze casting of biomimetic titanium alloy with anisotropic and gradient pore structure. Biomedical Materials, 12(1), 015014. | 2017 | 923 | 10.1088/1748-605X/aa50a1 | 4337 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 15.0 | 87.0 | 100 | powder | 25.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 58.6 | 0.0 | 160.0 | 0.0 | 0.0 | 185.9 | 0.0 | 0.0 |
Zhang, L., Le Coz-Botrel, R., Beddoes, C., Sjöström, T., & Su, B. (2017). Gelatin freeze casting of biomimetic titanium alloy with anisotropic and gradient pore structure. Biomedical Materials, 12(1), 015014. | 2017 | 923 | 10.1088/1748-605X/aa50a1 | 4338 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 15.0 | 87.0 | 100 | powder | 25.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 66.3 | 0.0 | 120.0 | 0.0 | 0.0 | 139.6 | 0.0 | 0.0 |
Zhang, L., Le Coz-Botrel, R., Beddoes, C., Sjöström, T., & Su, B. (2017). Gelatin freeze casting of biomimetic titanium alloy with anisotropic and gradient pore structure. Biomedical Materials, 12(1), 015014. | 2017 | 923 | 10.1088/1748-605X/aa50a1 | 4339 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 15.0 | 87.0 | 100 | powder | 25.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 69.7 | 0.0 | 100.0 | 0.0 | 0.0 | 121.2 | 0.0 | 0.0 |
Zhang, L., Le Coz-Botrel, R., Beddoes, C., Sjöström, T., & Su, B. (2017). Gelatin freeze casting of biomimetic titanium alloy with anisotropic and gradient pore structure. Biomedical Materials, 12(1), 015014. | 2017 | 923 | 10.1088/1748-605X/aa50a1 | 4340 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 15.0 | 87.0 | 100 | powder | 25.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 70.2 | 0.0 | 60.0 | 0.0 | 0.0 | 101.6 | 0.0 | 0.0 |
Zhang, L., Le Coz-Botrel, R., Beddoes, C., Sjöström, T., & Su, B. (2017). Gelatin freeze casting of biomimetic titanium alloy with anisotropic and gradient pore structure. Biomedical Materials, 12(1), 015014. | 2017 | 923 | 10.1088/1748-605X/aa50a1 | 4341 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 15.0 | 87.0 | 100 | powder | 25.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 74.6 | 0.0 | 40.0 | 0.0 | 0.0 | 73.8 | 0.0 | 0.0 |
Zhang, L., Le Coz-Botrel, R., Beddoes, C., Sjöström, T., & Su, B. (2017). Gelatin freeze casting of biomimetic titanium alloy with anisotropic and gradient pore structure. Biomedical Materials, 12(1), 015014. | 2017 | 923 | 10.1088/1748-605X/aa50a1 | 4342 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 15.0 | 87.0 | 100 | powder | 25.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 49.2 | 0.0 | 70.0 | 0.0 | 0.0 | 426.7 | 0.0 | 0.0 |
Zhang, L., Le Coz-Botrel, R., Beddoes, C., Sjöström, T., & Su, B. (2017). Gelatin freeze casting of biomimetic titanium alloy with anisotropic and gradient pore structure. Biomedical Materials, 12(1), 015014. | 2017 | 923 | 10.1088/1748-605X/aa50a1 | 4343 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 15.0 | 87.0 | 100 | powder | 25.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 52.3 | 0.0 | 0.0 | 0.0 | 0.0 | 442.8 | 0.0 | 0.0 |
Zhang, L., Le Coz-Botrel, R., Beddoes, C., Sjöström, T., & Su, B. (2017). Gelatin freeze casting of biomimetic titanium alloy with anisotropic and gradient pore structure. Biomedical Materials, 12(1), 015014. | 2017 | 923 | 10.1088/1748-605X/aa50a1 | 4344 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 15.0 | 87.0 | 100 | powder | 25.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 56.2 | 0.0 | 0.0 | 0.0 | 0.0 | 273.5 | 0.0 | 0.0 |
Zhang, L., Le Coz-Botrel, R., Beddoes, C., Sjöström, T., & Su, B. (2017). Gelatin freeze casting of biomimetic titanium alloy with anisotropic and gradient pore structure. Biomedical Materials, 12(1), 015014. | 2017 | 923 | 10.1088/1748-605X/aa50a1 | 4345 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 15.0 | 87.0 | 100 | powder | 25.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.4 | 0.0 | 0.0 | 0.0 | 0.0 | 177.7 | 0.0 | 0.0 |
Zhang, L., Le Coz-Botrel, R., Beddoes, C., Sjöström, T., & Su, B. (2017). Gelatin freeze casting of biomimetic titanium alloy with anisotropic and gradient pore structure. Biomedical Materials, 12(1), 015014. | 2017 | 923 | 10.1088/1748-605X/aa50a1 | 4346 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 15.0 | 87.0 | 100 | powder | 25.0 | 1 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 67.3 | 0.0 | 10.0 | 0.0 | 0.0 | 185.7 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5588 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 5.0 | 87.0 | 100 | powder | 10.0 | 10 | 5 | 0 | 123.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5589 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 5.0 | 87.0 | 100 | powder | 10.0 | 10 | 5 | 0 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5590 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 5.0 | 87.0 | 100 | powder | 10.0 | 10 | 5 | 0 | 123.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5591 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 10.0 | 87.0 | 100 | powder | 10.0 | 5 | 3 | 0 | 123.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5592 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 10.0 | 87.0 | 100 | powder | 10.0 | 5 | 3 | 0 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5593 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 10.0 | 87.0 | 100 | powder | 10.0 | 5 | 3 | 0 | 123.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 81 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5594 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 20.0 | 87.0 | 100 | powder | 10.0 | 1 | 1 | 0 | 123.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5595 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 20.0 | 87.0 | 100 | powder | 10.0 | 1 | 1 | 0 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5596 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 20.0 | 87.0 | 100 | powder | 10.0 | 1 | 1 | 0 | 123.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 61 | 0 | 0 | lamellar | sintered | 36.0 | 0.0 | 0.0 | 0.0 | 5.4 | 314.0 | 0.0 | 24200.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5597 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 30.0 | 87.0 | 100 | powder | 10.0 | 1 | 1 | 0 | 123.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5598 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 30.0 | 87.0 | 100 | powder | 10.0 | 1 | 1 | 0 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5599 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 30.0 | 87.0 | 100 | powder | 10.0 | 1 | 1 | 0 | 123.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 56 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5600 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 40.0 | 87.0 | 100 | powder | 10.0 | 0 | 0 | 0 | 123.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5601 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 40.0 | 87.0 | 100 | powder | 10.0 | 0 | 0 | 0 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5602 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 40.0 | 87.0 | 100 | powder | 10.0 | 0 | 0 | 0 | 123.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 50 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5603 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 5.0 | 87.0 | 100 | powder | 10.0 | 3 | 5 | 0 | 123.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5604 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 5.0 | 87.0 | 100 | powder | 10.0 | 3 | 5 | 0 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5605 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 5.0 | 87.0 | 100 | powder | 10.0 | 3 | 5 | 0 | 123.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5606 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 10.0 | 87.0 | 100 | powder | 10.0 | 1 | 3 | 0 | 123.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5607 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 10.0 | 87.0 | 100 | powder | 10.0 | 1 | 3 | 0 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5608 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 10.0 | 87.0 | 100 | powder | 10.0 | 1 | 3 | 0 | 123.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 76 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5609 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 20.0 | 87.0 | 100 | powder | 10.0 | 0 | 1 | 0 | 123.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 50 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5610 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 20.0 | 87.0 | 100 | powder | 10.0 | 0 | 1 | 0 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5611 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 20.0 | 87.0 | 100 | powder | 10.0 | 0 | 1 | 0 | 123.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 55 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5612 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 30.0 | 87.0 | 100 | powder | 10.0 | 0 | 1 | 0 | 123.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 40 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5613 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 30.0 | 87.0 | 100 | powder | 10.0 | 0 | 1 | 0 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5614 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 30.0 | 87.0 | 100 | powder | 10.0 | 0 | 1 | 0 | 123.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 47 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5615 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 40.0 | 87.0 | 100 | powder | 10.0 | 0 | 0 | 0 | 123.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5616 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 40.0 | 87.0 | 100 | powder | 10.0 | 0 | 0 | 0 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5617 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 40.0 | 87.0 | 100 | powder | 10.0 | 0 | 0 | 0 | 123.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 41 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 5.4 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5618 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 5.0 | 87.0 | 100 | powder | 10.0 | 10 | 5 | 25 | 123.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5619 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 5.0 | 87.0 | 100 | powder | 10.0 | 10 | 5 | 25 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5620 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 5.0 | 87.0 | 100 | powder | 10.0 | 10 | 5 | 25 | 123.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5621 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 10.0 | 87.0 | 100 | powder | 10.0 | 5 | 3 | 15 | 123.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5622 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 10.0 | 87.0 | 100 | powder | 10.0 | 5 | 3 | 15 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5623 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 10.0 | 87.0 | 100 | powder | 10.0 | 5 | 3 | 15 | 123.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5624 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 20.0 | 87.0 | 100 | powder | 10.0 | 1 | 1 | 11 | 123.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5625 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 20.0 | 87.0 | 100 | powder | 10.0 | 1 | 1 | 11 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5626 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 20.0 | 87.0 | 100 | powder | 10.0 | 1 | 1 | 11 | 123.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 47.0 | 0.0 | 0.0 | 0.0 | 2.2 | 248.0 | 0.0 | 19400.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5627 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 30.0 | 87.0 | 100 | powder | 10.0 | 1 | 1 | 10 | 123.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5628 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 30.0 | 87.0 | 100 | powder | 10.0 | 1 | 1 | 10 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5629 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 30.0 | 87.0 | 100 | powder | 10.0 | 1 | 1 | 10 | 123.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 34.0 | 0.0 | 0.0 | 0.0 | 2.2 | 412.0 | 0.0 | 28900.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5630 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 40.0 | 87.0 | 100 | powder | 10.0 | 7 | 0 | 7 | 123.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5631 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 40.0 | 87.0 | 100 | powder | 10.0 | 7 | 0 | 7 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5632 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 40.0 | 87.0 | 100 | powder | 10.0 | 7 | 0 | 7 | 123.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5633 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 5.0 | 87.0 | 100 | powder | 10.0 | 3 | 5 | 25 | 123.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5634 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 5.0 | 87.0 | 100 | powder | 10.0 | 3 | 5 | 25 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5635 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 5.0 | 87.0 | 100 | powder | 10.0 | 3 | 5 | 25 | 123.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5636 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 10.0 | 87.0 | 100 | powder | 10.0 | 1 | 3 | 15 | 123.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5637 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 10.0 | 87.0 | 100 | powder | 10.0 | 1 | 3 | 15 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5638 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 10.0 | 87.0 | 100 | powder | 10.0 | 1 | 3 | 15 | 123.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5639 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 20.0 | 87.0 | 100 | powder | 10.0 | 0 | 1 | 11 | 123.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 64.0 | 0.0 | 0.0 | 0.0 | 2.2 | 83.0 | 0.0 | 7400.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5640 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 20.0 | 87.0 | 100 | powder | 10.0 | 0 | 1 | 11 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5641 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 20.0 | 87.0 | 100 | powder | 10.0 | 0 | 1 | 11 | 123.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5642 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 30.0 | 87.0 | 100 | powder | 10.0 | 0 | 1 | 10 | 123.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5643 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 30.0 | 87.0 | 100 | powder | 10.0 | 0 | 1 | 10 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5644 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 30.0 | 87.0 | 100 | powder | 10.0 | 0 | 1 | 10 | 123.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5645 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 40.0 | 87.0 | 100 | powder | 10.0 | 0 | 0 | 7 | 123.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5646 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 40.0 | 87.0 | 100 | powder | 10.0 | 0 | 0 | 7 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5647 | metal | Ti6Al4V | water | 100 | 0.0 | 0 | 40.0 | 87.0 | 100 | powder | 10.0 | 0 | 0 | 7 | 123.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 | 0.0 | 0.0 | 0.0 |
Zhang, H., Shen, P., Shaga, A., Guo, R., & Jiang, Q. (2016). Preparation of nacre-like composites by reactive infiltration of a magnesium alloy into porous silicon carbide derived from ice template. Materials Letters, 183, 299-302. | 2016 | 815 | http://dx.doi.org/10.1016/j.matlet.2016.07.126 | 2069 | metal/ceramic | SiC-AZ91 (impregnation) | water | 100 | 0.0 | 0 | 30.0 | 24.0 | 100 | powder | 5.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 743.0 | 599.0 | 0.0 |
Mao, L. B., Gao, H. L., Yao, H. B., Liu, L., Cölfen, H., Liu, G., ... & Yu, S. H. (2016). Synthetic nacre by predesigned matrix-directed mineralization. Science, 354(6308), 107-110. | 2016 | 816 | 10.1126/science.aaf8991 | 2071 | polymer | chitosan-Ca(HCO3)2-PAA (impregnate) | water | 100 | 0.0 | 0 | 13.4 | 39.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 198.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 57.2 | 64000.0 |
Mao, L. B., Gao, H. L., Yao, H. B., Liu, L., Cölfen, H., Liu, G., ... & Yu, S. H. (2016). Synthetic nacre by predesigned matrix-directed mineralization. Science, 354(6308), 107-110. | 2016 | 816 | 10.1126/science.aaf8991 | 2072 | polymer | chitosan-Ca(HCO3)2-PAA (impregnate) | water | 100 | 0.0 | 0 | 13.4 | 39.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 198.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9.2 | 7100.0 |
Mao, L. B., Gao, H. L., Yao, H. B., Liu, L., Cölfen, H., Liu, G., ... & Yu, S. H. (2016). Synthetic nacre by predesigned matrix-directed mineralization. Science, 354(6308), 107-110. | 2016 | 816 | 10.1126/science.aaf8991 | 2073 | polymer | chitosan-Ca(HCO3)2-PAA (impregnate) | water | 100 | 0.0 | 0 | 13.4 | 39.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 198.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 49.7 | 23600.0 |
Mao, L. B., Gao, H. L., Yao, H. B., Liu, L., Cölfen, H., Liu, G., ... & Yu, S. H. (2016). Synthetic nacre by predesigned matrix-directed mineralization. Science, 354(6308), 107-110. | 2016 | 816 | 10.1126/science.aaf8991 | 2074 | polymer | chitosan-Ca(HCO3)2-PAA (impregnate) | water | 100 | 0.0 | 0 | 13.4 | 39.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 198.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 38.2 | 13200.0 |
Mao, L. B., Gao, H. L., Yao, H. B., Liu, L., Cölfen, H., Liu, G., ... & Yu, S. H. (2016). Synthetic nacre by predesigned matrix-directed mineralization. Science, 354(6308), 107-110. | 2016 | 816 | 10.1126/science.aaf8991 | 2075 | polymer | chitosan-Ca(HCO3)2-PAA (impregnate) | water | 100 | 0.0 | 0 | 13.4 | 39.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 198.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 124.2 | 42000.0 |
Mao, L. B., Gao, H. L., Yao, H. B., Liu, L., Cölfen, H., Liu, G., ... & Yu, S. H. (2016). Synthetic nacre by predesigned matrix-directed mineralization. Science, 354(6308), 107-110. | 2016 | 816 | 10.1126/science.aaf8991 | 2076 | polymer | chitosan-Ca(HCO3)2-PAA (impregnate) | water | 100 | 0.0 | 0 | 13.4 | 39.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 198.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 63.8 | 18300.0 |
Mao, L. B., Gao, H. L., Yao, H. B., Liu, L., Cölfen, H., Liu, G., ... & Yu, S. H. (2016). Synthetic nacre by predesigned matrix-directed mineralization. Science, 354(6308), 107-110. | 2016 | 816 | 10.1126/science.aaf8991 | 2077 | polymer | chitosan-Ca(HCO3)2-PAA (impregnate) | water | 100 | 0.0 | 0 | 13.4 | 39.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 198.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7.22 | 3100.0 |
Aliramaji, S., Zamanian, A., & Mozafari, M. (2017). Super-paramagnetic responsive silk fibroin/chitosan/magnetite scaffolds with tunable pore structures for bone tissue engineering applications. Materials Science and Engineering: C, 70, 736-744. | 2017 | 818 | 10.1016/j.msec.2016.09.039 | 4739 | polymer | silk fibroin-3wt.% chitosan (mixed) | water | 100 | 0.0 | 0 | 0.0 | 93.0 | 97 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 56.0 | 0.0 | 5.3 | 0.0 | 0.0 | 0.0 |
Aliramaji, S., Zamanian, A., & Mozafari, M. (2017). Super-paramagnetic responsive silk fibroin/chitosan/magnetite scaffolds with tunable pore structures for bone tissue engineering applications. Materials Science and Engineering: C, 70, 736-744. | 2017 | 818 | 10.1016/j.msec.2016.09.039 | 4740 | ceramic/polymer | silk fibroin-3wt.% chitosan-0.5wt.% Fe2O3 (mixed) | water | 100 | 0.0 | 0 | 0.0 | 93.0 | 96 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | magnetic | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 56.0 | 0.0 | 5.3 | 0.0 | 0.0 | 0.0 |
Aliramaji, S., Zamanian, A., & Mozafari, M. (2017). Super-paramagnetic responsive silk fibroin/chitosan/magnetite scaffolds with tunable pore structures for bone tissue engineering applications. Materials Science and Engineering: C, 70, 736-744. | 2017 | 818 | 10.1016/j.msec.2016.09.039 | 4741 | ceramic/polymer | silk fibroin-3wt.% chitosan-1wt.% Fe2O3 (mixed) | water | 100 | 0.0 | 0 | 0.0 | 93.0 | 95 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | magnetic | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 56.0 | 0.0 | 5.3 | 0.0 | 0.0 | 0.0 |
Aliramaji, S., Zamanian, A., & Mozafari, M. (2017). Super-paramagnetic responsive silk fibroin/chitosan/magnetite scaffolds with tunable pore structures for bone tissue engineering applications. Materials Science and Engineering: C, 70, 736-744. | 2017 | 818 | 10.1016/j.msec.2016.09.039 | 4742 | ceramic/polymer | silk fibroin-3wt.% chitosan-2wt.% Fe2O3 (mixed) | water | 100 | 0.0 | 0 | 0.0 | 93.0 | 94 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | magnetic | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 56.0 | 0.0 | 5.3 | 0.0 | 0.0 | 0.0 |
Tang, Y., Qiu, S., Li, M., & Zhao, K. (2017). Fabrication of alumina/copper heat dissipation substrates by freeze tape casting and melt infiltration for high-power LED. Journal of Alloys and Compounds, 690, 469-477. | 2017 | 826 | 10.1016/j.jallcom.2016.08.149 | 2402 | ceramic/metal | Al2O3-Cu (infiltration) | water | 100 | 0.0 | 0 | 0.0 | 1.0 | 100 | powder | 4.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Park, H., Um, J. H., Choi, H., Yoon, W. S., Sung, Y. E., & Choe, H. (2017). Hierarchical micro-lamella-structured 3D porous copper current collector coated with tin for advanced lithium-ion batteries. Applied Surface Science, 399, 132-138. | 2017 | 827 | 10.1016/j.apsusc.2016.12.043 | 2409 | metal | Sn-Cu (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 38.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Cheng, J., Gu, G., Guan, Q., Razal, J. M., Wang, Z., Li, X., & Wang, B. (2016). Synthesis of a porous sheet-like V 2 O 5?CNT nanocomposite using an ice-templating ?bricks-and-mortar?assembly approach as a high-capacity, long cyclelife cathode material for lithium-ion batteries. Journal of Materials Chemistry A, 4(7), 2729-2737. | 2006 | 828 | 10.1016/j.matchemphys.2005.08.068 | 4554 | ceramic | V2O5 | water | 55 | hydrogen peroxide | 44 | 0.0 | 107.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Knöller, A., Run?evski, T., Dinnebier, R. E., Bill, J., & Burghard, Z. (2017). Cuttlebone-like V2O5 Nanofibre Scaffolds?Advances in Structuring Cellular Solids. Scientific Reports, 7, 42951. | 2017 | 945 | 10.1038/srep42951 | 5793 | ceramic | V2O5 | water | 100 | 0.0 | 0 | 1.0 | 107.0 | 100 | fiber | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | isotropic | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 99.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Knöller, A., Run?evski, T., Dinnebier, R. E., Bill, J., & Burghard, Z. (2017). Cuttlebone-like V2O5 Nanofibre Scaffolds?Advances in Structuring Cellular Solids. Scientific Reports, 7, 42951. | 2017 | 945 | 10.1038/srep42951 | 5794 | ceramic | V2O5 | water | 100 | 0.0 | 0 | 1.0 | 107.0 | 100 | fiber | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 375.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 99.8 | 5.36 | 5.3 | 0.06 | 0.0 | 0.0 | 0.0 | 0.01 |
Knöller, A., Run?evski, T., Dinnebier, R. E., Bill, J., & Burghard, Z. (2017). Cuttlebone-like V2O5 Nanofibre Scaffolds?Advances in Structuring Cellular Solids. Scientific Reports, 7, 42951. | 2017 | 945 | 10.1038/srep42951 | 5795 | ceramic | V2O5 | water | 100 | 0.0 | 0 | 3.0 | 107.0 | 100 | fiber | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 375.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 99.7 | 5.18 | 5.1 | 0.08 | 0.0 | 0.0 | 0.0 | 0.03 |
Knöller, A., Run?evski, T., Dinnebier, R. E., Bill, J., & Burghard, Z. (2017). Cuttlebone-like V2O5 Nanofibre Scaffolds?Advances in Structuring Cellular Solids. Scientific Reports, 7, 42951. | 2017 | 945 | 10.1038/srep42951 | 5796 | ceramic | V2O5 | water | 100 | 0.0 | 0 | 5.0 | 107.0 | 100 | fiber | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 375.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 99.5 | 5.62 | 5.5 | 0.12 | 0.0 | 0.01 | 0.0 | 0.1 |
Huang, Y., Wu, D., Dianat, A., Bobeth, M., Huang, T., Mai, Y., ... & Feng, X. (2017). Bipolar nitrogen-doped graphene frameworks as high-performance cathodes for lithium ion batteries. Journal of Materials Chemistry A, 5(4), 1588-1594. | 2017 | 835 | 10.1039/C6TA09161J | 2419 | carbon/polymer | chitosan-graphene (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 13.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4350 | ceramic | Al2O3-19wt.% ZrO2 (mixed) | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 86 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 22.0 | 0.0 | 0.0 | 0.0 | 0.0 | 140.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4354 | ceramic | Al2O3-19wt.% ZrO2 (mixed) | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 86 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 22.0 | 0.0 | 0.0 | 0.0 | 0.0 | 140.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4358 | ceramic | Al2O3-19wt.% ZrO2 (mixed) | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 86 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 22.0 | 0.0 | 0.0 | 0.0 | 0.0 | 140.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4362 | ceramic | Al2O3-19wt.% ZrO2 (mixed) | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 86 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 22.0 | 0.0 | 0.0 | 0.0 | 0.0 | 140.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4351 | ceramic | Al2O3-19wt.%ZrO2-10wt.%SiC (mixed) | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 74 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 142.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4352 | ceramic | Al2O3-19wt.%ZrO2-8wt.%SiO2 (mixed) | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 74 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 141.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4353 | carbon/ceramic | Al2O3-19wt.%ZrO2-7wt.%CNT (mixed) | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 74 | powder | 2.7 | 0 | 10 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 140.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4355 | ceramic | Al2O3-19wt.%ZrO2-20wt.%SiC (mixed) | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 56 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 19.0 | 0.0 | 0.0 | 0.0 | 0.0 | 150.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4356 | ceramic | Al2O3-19wt.%ZrO2-21wt.% SiO2 (mixed) | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 56 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 19.0 | 0.0 | 0.0 | 0.0 | 0.0 | 151.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4357 | carbon/ceramic | Al2O3-19wt.%ZrO2-18wt.%CNT (mixed) | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 56 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 19.0 | 0.0 | 0.0 | 0.0 | 0.0 | 142.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4359 | ceramic | Al2O3-19wt.%ZrO2-40wt.%SiC (mixed) | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 37 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 17.0 | 0.0 | 0.0 | 0.0 | 0.0 | 155.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4360 | ceramic | Al2O3-19wt.%ZrO2-36wt.%SiO2 (mixed) | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 37 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 17.0 | 0.0 | 0.0 | 0.0 | 0.0 | 156.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4361 | carbon/ceramic | Al2O3-19wt.%ZrO2-32wt.%CNT (mixed) | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 37 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 17.0 | 0.0 | 0.0 | 0.0 | 0.0 | 147.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4363 | ceramic | Al2O3-19wt.%ZrO2-52wt.%SiC (mixed) | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 25 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 | 160.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4364 | ceramic | Al2O3-19wt.%ZrO2-47wt.%SiO2 (mixed) | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 25 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 | 158.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4365 | carbon/ceramic | Al2O3-19wt.%ZrO2-43wt.%CNT (mixed) | water | 100 | 0.0 | 0 | 25.0 | 1.0 | 25 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 15.0 | 0.0 | 0.0 | 0.0 | 0.0 | 148.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4366 | ceramic | Al2O3-18wt.%ZrO2 (mixed) | water | 100 | 0.0 | 0 | 21.0 | 1.0 | 87 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 38.0 | 0.0 | 0.0 | 0.0 | 0.0 | 120.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4370 | ceramic | Al2O3-18wt.%ZrO2 (mixed) | water | 100 | 0.0 | 0 | 21.0 | 1.0 | 87 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 38.0 | 0.0 | 0.0 | 0.0 | 0.0 | 122.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4374 | ceramic | Al2O3-18wt.%ZrO2 (mixed) | water | 100 | 0.0 | 0 | 21.0 | 1.0 | 87 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 38.0 | 0.0 | 0.0 | 0.0 | 0.0 | 122.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4378 | ceramic | Al2O3-18wt.%ZrO2 (mixed) | water | 100 | 0.0 | 0 | 21.0 | 1.0 | 87 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 38.0 | 0.0 | 0.0 | 0.0 | 0.0 | 122.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4382 | ceramic | Al2O3-18wt.%ZrO2 (mixed) | water | 100 | 0.0 | 0 | 14.0 | 1.0 | 87 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 118.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4386 | ceramic | Al2O3-18wt.%ZrO2 (mixed) | water | 100 | 0.0 | 0 | 14.0 | 1.0 | 87 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 118.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4390 | ceramic | Al2O3-18wt.%ZrO2 (mixed) | water | 100 | 0.0 | 0 | 14.0 | 1.0 | 87 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 118.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4394 | ceramic | Al2O3-18wt.%ZrO2 (mixed) | water | 100 | 0.0 | 0 | 14.0 | 1.0 | 87 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 118.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4398 | ceramic | Al2O3-18wt.%ZrO2 (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 87 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 85.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4402 | ceramic | Al2O3-18wt.%ZrO2 (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 87 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 85.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4406 | ceramic | Al2O3-18wt.%ZrO2 (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 87 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 85.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4410 | ceramic | Al2O3-18wt.%ZrO2 (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 87 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 86.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4414 | ceramic | Al2O3-18wt.%ZrO2 (mixed) | water | 100 | 0.0 | 0 | 4.0 | 1.0 | 87 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 62.0 | 0.0 | 0.0 | 0.0 | 0.0 | 38.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4418 | ceramic | Al2O3-18wt.%ZrO2 (mixed) | water | 100 | 0.0 | 0 | 4.0 | 1.0 | 87 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 70.0 | 0.0 | 0.0 | 0.0 | 0.0 | 38.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4422 | ceramic | Al2O3-18wt.%ZrO2 (mixed) | water | 100 | 0.0 | 0 | 4.0 | 1.0 | 87 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 61.0 | 0.0 | 0.0 | 0.0 | 0.0 | 38.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4426 | ceramic | Al2O3-18wt.%ZrO2 (mixed) | water | 100 | 0.0 | 0 | 4.0 | 1.0 | 87 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 61.0 | 0.0 | 0.0 | 0.0 | 0.0 | 38.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4367 | ceramic | Al2O3-18wt.%ZrO2-9wt.%SiC (mixed) | water | 100 | 0.0 | 0 | 21.0 | 1.0 | 75 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 36.0 | 0.0 | 0.0 | 0.0 | 0.0 | 140.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4383 | ceramic | Al2O3-18wt.%ZrO2-9wt.%SiC (mixed) | water | 100 | 0.0 | 0 | 14.0 | 1.0 | 75 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 119.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4399 | ceramic | Al2O3-18wt.%ZrO2-9wt.%SiC (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 75 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 59.0 | 0.0 | 0.0 | 0.0 | 0.0 | 90.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4415 | ceramic | Al2O3-18wt.%ZrO2-9wt.%SiC (mixed) | water | 100 | 0.0 | 0 | 4.0 | 1.0 | 75 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 68.0 | 0.0 | 0.0 | 0.0 | 0.0 | 40.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4368 | ceramic | Al2O3-18wt.%ZrO2-7wt.%SiO2 (mixed) | water | 100 | 0.0 | 0 | 21.0 | 1.0 | 75 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 31.0 | 0.0 | 0.0 | 0.0 | 0.0 | 122.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4384 | ceramic | Al2O3-18wt.%ZrO2-7wt.%SiO2 (mixed) | water | 100 | 0.0 | 0 | 14.0 | 1.0 | 75 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 118.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4400 | ceramic | Al2O3-18wt.%ZrO2-7wt.%SiO2 (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 75 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 48.0 | 0.0 | 0.0 | 0.0 | 0.0 | 82.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4416 | ceramic | Al2O3-18wt.%ZrO2-7wt.%SiO2 (mixed) | water | 100 | 0.0 | 0 | 4.0 | 1.0 | 75 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 58.0 | 0.0 | 0.0 | 0.0 | 0.0 | 38.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4369 | carbon/ceramic | Al2O3-18wt.%ZrO2-6wt.%CNT (mixed) | water | 100 | 0.0 | 0 | 21.0 | 1.0 | 75 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 32.0 | 0.0 | 0.0 | 0.0 | 0.0 | 122.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4385 | carbon/ceramic | Al2O3-18wt.%ZrO2-6wt.%CNT (mixed) | water | 100 | 0.0 | 0 | 14.0 | 1.0 | 75 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 41.0 | 0.0 | 0.0 | 0.0 | 0.0 | 118.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4401 | carbon/ceramic | Al2O3-18wt.%ZrO2-6wt.%CNT (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 75 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 47.0 | 0.0 | 0.0 | 0.0 | 0.0 | 85.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4417 | carbon/ceramic | Al2O3-18wt.%ZrO2-6wt.%CNT (mixed) | water | 100 | 0.0 | 0 | 4.0 | 1.0 | 75 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 57.0 | 0.0 | 0.0 | 0.0 | 0.0 | 38.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4371 | ceramic | Al2O3-18wt.%ZrO2-24wt.%SiC (mixed) | water | 100 | 0.0 | 0 | 21.0 | 1.0 | 57 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 32.0 | 0.0 | 0.0 | 0.0 | 0.0 | 139.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4387 | ceramic | Al2O3-18wt.%ZrO2-24wt.%SiC (mixed) | water | 100 | 0.0 | 0 | 14.0 | 1.0 | 57 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 49.0 | 0.0 | 0.0 | 0.0 | 0.0 | 125.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4403 | ceramic | Al2O3-18wt.%ZrO2-24wt.%SiC (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 57 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 57.0 | 0.0 | 0.0 | 0.0 | 0.0 | 98.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4419 | ceramic | Al2O3-18wt.%ZrO2-24wt.%SiC (mixed) | water | 100 | 0.0 | 0 | 4.0 | 1.0 | 57 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 42.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4372 | ceramic | Al2O3-18wt.%ZrO2-21wt.%SiO2 (mixed) | water | 100 | 0.0 | 0 | 21.0 | 1.0 | 57 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 123.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4388 | ceramic | Al2O3-18wt.%ZrO2-21wt.%SiO2 (mixed) | water | 100 | 0.0 | 0 | 14.0 | 1.0 | 57 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 39.0 | 0.0 | 0.0 | 0.0 | 0.0 | 119.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4404 | ceramic | Al2O3-18wt.%ZrO2-21wt.%SiO2 (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 57 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 47.0 | 0.0 | 0.0 | 0.0 | 0.0 | 85.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4420 | ceramic | Al2O3-18wt.%ZrO2-21wt.%SiO2 (mixed) | water | 100 | 0.0 | 0 | 4.0 | 1.0 | 57 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 57.0 | 0.0 | 0.0 | 0.0 | 0.0 | 39.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4373 | carbon/ceramic | Al2O3-18wt.%ZrO2-18wt.%CNT (mixed) | water | 100 | 0.0 | 0 | 21.0 | 1.0 | 57 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 29.0 | 0.0 | 0.0 | 0.0 | 0.0 | 123.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4389 | carbon/ceramic | Al2O3-18wt.%ZrO2-18wt.%CNT (mixed) | water | 100 | 0.0 | 0 | 14.0 | 1.0 | 57 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 40.0 | 0.0 | 0.0 | 0.0 | 0.0 | 119.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4405 | carbon/ceramic | Al2O3-18wt.%ZrO2-18wt.%CNT (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 57 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 46.0 | 0.0 | 0.0 | 0.0 | 0.0 | 85.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4421 | carbon/ceramic | Al2O3-18wt.%ZrO2-18wt.%CNT (mixed) | water | 100 | 0.0 | 0 | 4.0 | 1.0 | 57 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 56.0 | 0.0 | 0.0 | 0.0 | 0.0 | 38.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4375 | ceramic | Al2O3-18wt.%ZrO2-39wt.%SiC (mixed) | water | 100 | 0.0 | 0 | 21.0 | 1.0 | 40 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 138.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4391 | ceramic | Al2O3-18wt.%ZrO2-39wt.%SiC (mixed) | water | 100 | 0.0 | 0 | 14.0 | 1.0 | 40 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 45.0 | 0.0 | 0.0 | 0.0 | 0.0 | 135.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4407 | ceramic | Al2O3-18wt.%ZrO2-39wt.%SiC (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 40 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 53.0 | 0.0 | 0.0 | 0.0 | 0.0 | 102.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4423 | ceramic | Al2O3-18wt.%ZrO2-39wt.%SiC (mixed) | water | 100 | 0.0 | 0 | 4.0 | 1.0 | 40 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 65.0 | 0.0 | 0.0 | 0.0 | 0.0 | 44.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4376 | ceramic | Al2O3-18wt.%ZrO2-34wt.%SiO2 (mixed) | water | 100 | 0.0 | 0 | 21.0 | 1.0 | 40 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 29.0 | 0.0 | 0.0 | 0.0 | 0.0 | 135.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4392 | ceramic | Al2O3-18wt.%ZrO2-34wt.%SiO2 (mixed) | water | 100 | 0.0 | 0 | 14.0 | 1.0 | 40 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 38.0 | 0.0 | 0.0 | 0.0 | 0.0 | 121.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4408 | ceramic | Al2O3-18wt.%ZrO2-34wt.%SiO2 (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 40 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 46.0 | 0.0 | 0.0 | 0.0 | 0.0 | 90.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4424 | ceramic | Al2O3-18wt.%ZrO2-34wt.%SiO2 (mixed) | water | 100 | 0.0 | 0 | 4.0 | 1.0 | 40 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 56.0 | 0.0 | 0.0 | 0.0 | 0.0 | 40.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4377 | carbon/ceramic | Al2O3-18wt.%ZrO2-31w.%tCNT (mixed) | water | 100 | 0.0 | 0 | 21.0 | 1.0 | 40 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 28.0 | 0.0 | 0.0 | 0.0 | 0.0 | 124.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4393 | carbon/ceramic | Al2O3-18wt.%ZrO2-31w.%tCNT (mixed) | water | 100 | 0.0 | 0 | 14.0 | 1.0 | 40 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 39.0 | 0.0 | 0.0 | 0.0 | 0.0 | 119.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4409 | carbon/ceramic | Al2O3-18wt.%ZrO2-31w.%tCNT (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 40 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 45.0 | 0.0 | 0.0 | 0.0 | 0.0 | 85.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4425 | carbon/ceramic | Al2O3-18wt.%ZrO2-31w.%tCNT (mixed) | water | 100 | 0.0 | 0 | 4.0 | 1.0 | 40 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 53.0 | 0.0 | 0.0 | 0.0 | 0.0 | 38.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4379 | ceramic | Al2O3-18wt.%ZrO2-50wt.%SiC (mixed) | water | 100 | 0.0 | 0 | 21.0 | 1.0 | 28 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 28.0 | 0.0 | 0.0 | 0.0 | 0.0 | 123.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4395 | ceramic | Al2O3-18wt.%ZrO2-50wt.%SiC (mixed) | water | 100 | 0.0 | 0 | 14.0 | 1.0 | 28 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 42.0 | 0.0 | 0.0 | 0.0 | 0.0 | 138.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4411 | ceramic | Al2O3-18wt.%ZrO2-50wt.%SiC (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 28 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 105.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4427 | ceramic | Al2O3-18wt.%ZrO2-50wt.%SiC (mixed) | water | 100 | 0.0 | 0 | 4.0 | 1.0 | 28 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 63.0 | 0.0 | 0.0 | 0.0 | 0.0 | 45.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4380 | ceramic | Al2O3-18wt.%ZrO2-45wt.%SiO2 (mixed) | water | 100 | 0.0 | 0 | 21.0 | 1.0 | 28 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 28.0 | 0.0 | 0.0 | 0.0 | 0.0 | 138.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4396 | ceramic | Al2O3-18wt.%ZrO2-45wt.%SiO2 (mixed) | water | 100 | 0.0 | 0 | 14.0 | 1.0 | 28 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 37.0 | 0.0 | 0.0 | 0.0 | 0.0 | 122.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4412 | ceramic | Al2O3-18wt.%ZrO2-45wt.%SiO2 (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 28 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 45.0 | 0.0 | 0.0 | 0.0 | 0.0 | 97.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4428 | ceramic | Al2O3-18wt.%ZrO2-45wt.%SiO2 (mixed) | water | 100 | 0.0 | 0 | 4.0 | 1.0 | 28 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 41.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4381 | carbon/ceramic | Al2O3-18wt.%ZrO2-41wt.%CNT (mixed) | water | 100 | 0.0 | 0 | 21.0 | 1.0 | 28 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 26.0 | 0.0 | 0.0 | 0.0 | 0.0 | 125.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4397 | carbon/ceramic | Al2O3-18wt.%ZrO2-41wt.%CNT (mixed) | water | 100 | 0.0 | 0 | 14.0 | 1.0 | 28 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 38.0 | 0.0 | 0.0 | 0.0 | 0.0 | 120.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4413 | carbon/ceramic | Al2O3-18wt.%ZrO2-41wt.%CNT (mixed) | water | 100 | 0.0 | 0 | 7.0 | 1.0 | 28 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 43.0 | 0.0 | 0.0 | 0.0 | 0.0 | 88.0 | 0.0 | 0.0 |
Al-Attar, A. A., Zaeem, M. A., Ajeel, S. A., & Latiff, N. E. A. (2017). Effects of SiC, SiO 2 and CNTs nanoadditives on the properties of porous alumina-zirconia ceramics produced by a hybrid freeze casting-space holder method. Journal of the European Ceramic Society, 37(4), 1635-1642. | 2016 | 837 | 10.1016/j.jeurceramsoc.2016.10.035 | 4429 | carbon/ceramic | Al2O3-18wt.%ZrO2-41wt.%CNT (mixed) | water | 100 | 0.0 | 0 | 4.0 | 1.0 | 28 | powder | 2.7 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | space-holder | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 52.0 | 0.0 | 0.0 | 0.0 | 0.0 | 38.0 | 0.0 | 0.0 |
An, Y., Han, J., Zhang, X., Han, W., Cheng, Y., Hu, P., & Zhao, G. (2016). Bioinspired high toughness graphene/ZrB 2 hybrid composites with hierarchical architectures spanning several length scales. Carbon, 107, 209-216. | 2016 | 838 | 10.1016/j.carbon.2016.05.074 | 5735 | ceramic/carbon | ZrB2-graphene | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
An, Y., Han, J., Zhang, X., Han, W., Cheng, Y., Hu, P., & Zhao, G. (2016). Bioinspired high toughness graphene/ZrB 2 hybrid composites with hierarchical architectures spanning several length scales. Carbon, 107, 209-216. | 2016 | 838 | 10.1016/j.carbon.2016.05.074 | 5736 | ceramic/carbon | ZrB2-graphene | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
An, Y., Han, J., Zhang, X., Han, W., Cheng, Y., Hu, P., & Zhao, G. (2016). Bioinspired high toughness graphene/ZrB 2 hybrid composites with hierarchical architectures spanning several length scales. Carbon, 107, 209-216. | 2016 | 838 | 10.1016/j.carbon.2016.05.074 | 5737 | ceramic/carbon | ZrB2-graphene | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
An, Y., Han, J., Zhang, X., Han, W., Cheng, Y., Hu, P., & Zhao, G. (2016). Bioinspired high toughness graphene/ZrB 2 hybrid composites with hierarchical architectures spanning several length scales. Carbon, 107, 209-216. | 2016 | 838 | 10.1016/j.carbon.2016.05.074 | 5738 | ceramic/carbon | ZrB2-graphene | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gaudillere, C., Navarrete, L., & Serra, J. M. (2017). CO 2 hydrogenation on Ru/Ce based catalysts dispersed on highly ordered micro-channelled 3YSZ monoliths fabricated by freeze-casting. International Journal of Hydrogen Energy, 42(2), 895-905. | 2016 | 846 | 10.1016/j.ijhydene.2016.09.213 | 4747 | metal/ceramic | YSZ-30wt.% Ce (impregnation) | water | 100 | 0.0 | 0 | 15.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gaudillere, C., Navarrete, L., & Serra, J. M. (2017). CO 2 hydrogenation on Ru/Ce based catalysts dispersed on highly ordered micro-channelled 3YSZ monoliths fabricated by freeze-casting. International Journal of Hydrogen Energy, 42(2), 895-905. | 2016 | 846 | 10.1016/j.ijhydene.2016.09.213 | 4748 | metal/ceramic | YSZ-2.5wt.% Ru (impregnation) | water | 100 | 0.0 | 0 | 15.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gaudillere, C., Navarrete, L., & Serra, J. M. (2017). CO 2 hydrogenation on Ru/Ce based catalysts dispersed on highly ordered micro-channelled 3YSZ monoliths fabricated by freeze-casting. International Journal of Hydrogen Energy, 42(2), 895-905. | 2016 | 846 | 10.1016/j.ijhydene.2016.09.213 | 4749 | metal/ceramic | YSZ-5wt.% Ru (impregnation) | water | 100 | 0.0 | 0 | 15.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Gaudillere, C., Navarrete, L., & Serra, J. M. (2017). CO 2 hydrogenation on Ru/Ce based catalysts dispersed on highly ordered micro-channelled 3YSZ monoliths fabricated by freeze-casting. International Journal of Hydrogen Energy, 42(2), 895-905. | 2016 | 846 | 10.1016/j.ijhydene.2016.09.213 | 4750 | metal/ceramic | YSZ-7.5wt.% Ru (impregnation) | water | 100 | 0.0 | 0 | 15.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Marcellini, M., Noirjean, C., Dedovets, D., Maria, J., & Deville, S. (2016). Time-Lapse, in Situ Imaging of Ice Crystal Growth Using Confocal Microscopy. ACS omega, 1(5), 1019-1026. | 2016 | 853 | 10.1021/acsomega.6b00217 | 5884 | solution | ZRA | water | 100 | 0.0 | 0 | 16.35 | 119.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.1 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Marcellini, M., Noirjean, C., Dedovets, D., Maria, J., & Deville, S. (2016). Time-Lapse, in Situ Imaging of Ice Crystal Growth Using Confocal Microscopy. ACS omega, 1(5), 1019-1026. | 2016 | 853 | 10.1021/acsomega.6b00217 | 5885 | solution | ZRA | water | 100 | 0.0 | 0 | 16.35 | 119.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.1 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Marcellini, M., Noirjean, C., Dedovets, D., Maria, J., & Deville, S. (2016). Time-Lapse, in Situ Imaging of Ice Crystal Growth Using Confocal Microscopy. ACS omega, 1(5), 1019-1026. | 2016 | 853 | 10.1021/acsomega.6b00217 | 5886 | solution | ZRA | water | 100 | 0.0 | 0 | 16.35 | 119.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 2.5 | 0.0 | one-sided | linear | 0.1 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Marcellini, M., Noirjean, C., Dedovets, D., Maria, J., & Deville, S. (2016). Time-Lapse, in Situ Imaging of Ice Crystal Growth Using Confocal Microscopy. ACS omega, 1(5), 1019-1026. | 2016 | 853 | 10.1021/acsomega.6b00217 | 5887 | solution | ZRA | water | 100 | 0.0 | 0 | 16.35 | 119.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 2.5 | 0.0 | one-sided | linear | 0.07 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Marcellini, M., Noirjean, C., Dedovets, D., Maria, J., & Deville, S. (2016). Time-Lapse, in Situ Imaging of Ice Crystal Growth Using Confocal Microscopy. ACS omega, 1(5), 1019-1026. | 2016 | 853 | 10.1021/acsomega.6b00217 | 5888 | solution | ZRA | water | 100 | 0.0 | 0 | 16.35 | 119.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.9 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Marcellini, M., Noirjean, C., Dedovets, D., Maria, J., & Deville, S. (2016). Time-Lapse, in Situ Imaging of Ice Crystal Growth Using Confocal Microscopy. ACS omega, 1(5), 1019-1026. | 2016 | 853 | 10.1021/acsomega.6b00217 | 5889 | solution | ZRA | water | 100 | 0.0 | 0 | 16.35 | 119.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 2.5 | 0.0 | one-sided | linear | 2.4 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Marcellini, M., Noirjean, C., Dedovets, D., Maria, J., & Deville, S. (2016). Time-Lapse, in Situ Imaging of Ice Crystal Growth Using Confocal Microscopy. ACS omega, 1(5), 1019-1026. | 2016 | 853 | 10.1021/acsomega.6b00217 | 5890 | solution | ZRA | water | 100 | 0.0 | 0 | 16.35 | 119.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 1.0 | 0.0 | one-sided | linear | 0.9 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Marcellini, M., Noirjean, C., Dedovets, D., Maria, J., & Deville, S. (2016). Time-Lapse, in Situ Imaging of Ice Crystal Growth Using Confocal Microscopy. ACS omega, 1(5), 1019-1026. | 2016 | 853 | 10.1021/acsomega.6b00217 | 5891 | solution | ZRA | water | 100 | 0.0 | 0 | 16.35 | 119.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 2.5 | 0.0 | one-sided | linear | 2.4 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
He, H., Liu, M., Wei, J., Chen, P., Wang, S., & Wang, Q. (2016). Hydrogel with Aligned and Tunable Pore Via ?Hot Ice? Template Applies as Bioscaffold. Advanced healthcare materials, 5(6), 648-652. | 2016 | 856 | 10.1002/adhm.201500707 | 4956 | polymer | NaAc-gelatin-agar (mixed) | water | 100 | 0.0 | 0 | 0.3 | 41.0 | 100 | dissolved | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 225.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
He, H., Liu, M., Wei, J., Chen, P., Wang, S., & Wang, Q. (2016). Hydrogel with Aligned and Tunable Pore Via ?Hot Ice? Template Applies as Bioscaffold. Advanced healthcare materials, 5(6), 648-652. | 2016 | 856 | 10.1002/adhm.201500707 | 4957 | polymer | NaAc-gelatin-agar (mixed) | water | 100 | 0.0 | 0 | 0.3 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 175.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
He, H., Liu, M., Wei, J., Chen, P., Wang, S., & Wang, Q. (2016). Hydrogel with Aligned and Tunable Pore Via ?Hot Ice? Template Applies as Bioscaffold. Advanced healthcare materials, 5(6), 648-652. | 2016 | 856 | 10.1002/adhm.201500707 | 4958 | polymer | NaAc-gelatin-agar (mixed) | water | 100 | 0.0 | 0 | 0.3 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 125.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
He, H., Liu, M., Wei, J., Chen, P., Wang, S., & Wang, Q. (2016). Hydrogel with Aligned and Tunable Pore Via ?Hot Ice? Template Applies as Bioscaffold. Advanced healthcare materials, 5(6), 648-652. | 2016 | 856 | 10.1002/adhm.201500707 | 4959 | polymer | NaAc-gelatin-agar (mixed) | water | 100 | 0.0 | 0 | 0.3 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
He, H., Liu, M., Wei, J., Chen, P., Wang, S., & Wang, Q. (2016). Hydrogel with Aligned and Tunable Pore Via ?Hot Ice? Template Applies as Bioscaffold. Advanced healthcare materials, 5(6), 648-652. | 2016 | 856 | 10.1002/adhm.201500707 | 4960 | polymer | NaAc-gelatin-agar (mixed) | water | 100 | 0.0 | 0 | 0.3 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 50.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
He, H., Liu, M., Wei, J., Chen, P., Wang, S., & Wang, Q. (2016). Hydrogel with Aligned and Tunable Pore Via ?Hot Ice? Template Applies as Bioscaffold. Advanced healthcare materials, 5(6), 648-652. | 2016 | 856 | 10.1002/adhm.201500707 | 4961 | polymer | NaAc-gelatin-agar (mixed) | water | 100 | 0.0 | 0 | 0.3 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
He, H., Liu, M., Wei, J., Chen, P., Wang, S., & Wang, Q. (2016). Hydrogel with Aligned and Tunable Pore Via ?Hot Ice? Template Applies as Bioscaffold. Advanced healthcare materials, 5(6), 648-652. | 2016 | 856 | 10.1002/adhm.201500707 | 4962 | polymer | NaAc-gelatin-agar (mixed) | water | 100 | 0.0 | 0 | 0.3 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 25.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Li, Y., Wu, C., Bai, Y., Liu, L., Wang, H., Wu, F., ... & Zou, Y. (2016). Hierarchical mesoporous lithium-rich Li [Li0. 2Ni0. 2Mn0. 6] O2 cathode material synthesized via ice templating for lithium-ion battery. ACS applied materials & interfaces, 8(29), 18832-18840. | 2016 | 869 | 10.1021/acsami.6b04687 | 5732 | ceramic | Li[Li0.2Ni0.2Mn0.6]O2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Liu, Z., Xu, K., She, P., Yin, S., Zhu, X., & Sun, H. (2016). Self-assembly of 2D MnO 2 nanosheets into high-purity aerogels with ultralow density. Chemical Science, 7(3), 1926-1932. | 2016 | 873 | 10.1039/C5SC03217B | 4772 | ceramic | MnO2 | water | 100 | 0.0 | 0 | 0.5 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 99.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Xu, K., Zhu, X., She, P., Shang, Y., Sun, H., & Liu, Z. (2016). Macroscopic porous MnO 2 aerogels for supercapacitor electrodes. Inorganic Chemistry Frontiers, 3(8), 1043-1047. | 2016 | 896 | 10.1039/c6qi00110f | 4548 | ceramic | MnO2 | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 0.0 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mansor, N., Jia, J., Miller, T., Suter, T., Jorge, A. B., Gibbs, C., ... & Brett, D. J. (2016). Graphitic Carbon Nitride-Graphene Hybrid Nanostructure as a Catalyst Support for Polymer Electrolyte Membrane Fuel Cells. ECS Transactions, 75(14), 885-897. | 2016 | 876 | 10.1149/07514.0885ecst | 4555 | carbon | carbon nitride-graphene | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mansor, N., Jia, J., Miller, T., Suter, T., Jorge, A. B., Gibbs, C., ... & Brett, D. J. (2016). Graphitic Carbon Nitride-Graphene Hybrid Nanostructure as a Catalyst Support for Polymer Electrolyte Membrane Fuel Cells. ECS Transactions, 75(14), 885-897. | 2016 | 876 | 10.1149/07514.0885ecst | 4556 | carbon/metal | carbon nitride-graphene-Pt (coated) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zare-Harofteh, A., Saber-Samandari, S., & Saber-Samandari, S. (2016). The effective role of akermanite on the apatite-forming ability of gelatin scaffold as a bone graft substitute. Ceramics International, 42(15), 17781-17791. | 2016 | 880 | 10.1016/j.ceramint.2016.08.106 | 5187 | ceramic/polymer | gelatin-15wt.% apatite | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 51.0 | 0.0 | 124.0 | 0.0 | 0.0 | 1.4 | 0.0 | 70.0 |
Zare-Harofteh, A., Saber-Samandari, S., & Saber-Samandari, S. (2016). The effective role of akermanite on the apatite-forming ability of gelatin scaffold as a bone graft substitute. Ceramics International, 42(15), 17781-17791. | 2016 | 880 | 10.1016/j.ceramint.2016.08.106 | 5188 | ceramic/polymer | gelatin-30wt.% apatite | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 77.0 | 0.0 | 110.0 | 0.0 | 0.0 | 1.1 | 0.0 | 105.0 |
Zare-Harofteh, A., Saber-Samandari, S., & Saber-Samandari, S. (2016). The effective role of akermanite on the apatite-forming ability of gelatin scaffold as a bone graft substitute. Ceramics International, 42(15), 17781-17791. | 2016 | 880 | 10.1016/j.ceramint.2016.08.106 | 5189 | ceramic/polymer | gelatin-50wt.% apatite | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 92.0 | 0.0 | 94.0 | 0.0 | 0.0 | 0.98 | 0.0 | 130.0 |
Zavareh, S., Hilger, A., Hirselandt, K., Goerke, O., Manke, I., Banhart, J., & Gurlo, A. (2016). Fabrication of cellular and lamellar LiFePO4/C Cathodes for Li-ion batteries by unidirectional freeze-casting method. Journal of the Ceramic Society of Japan, 124(10), 1067-1071. | 2016 | 881 | 10.2109/jcersj2.124.P1-1 | 2421 | ceramic | LiFePO4 | water | 100 | 0.0 | 0 | 16.0 | 92.0 | 0 | 0 | 0.0 | 1 | 0 | 0 | 178.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 77.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zavareh, S., Hilger, A., Hirselandt, K., Goerke, O., Manke, I., Banhart, J., & Gurlo, A. (2016). Fabrication of cellular and lamellar LiFePO4/C Cathodes for Li-ion batteries by unidirectional freeze-casting method. Journal of the Ceramic Society of Japan, 124(10), 1067-1071. | 2016 | 881 | 10.2109/jcersj2.124.P1-1 | 2422 | ceramic | LiFePO4 | water | 100 | 0.0 | 0 | 11.0 | 92.0 | 0 | 0 | 0.0 | 1 | 0 | 0 | 178.0 | 2.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 84.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zavareh, S., Hilger, A., Hirselandt, K., Goerke, O., Manke, I., Banhart, J., & Gurlo, A. (2016). Fabrication of cellular and lamellar LiFePO4/C Cathodes for Li-ion batteries by unidirectional freeze-casting method. Journal of the Ceramic Society of Japan, 124(10), 1067-1071. | 2016 | 881 | 10.2109/jcersj2.124.P1-1 | 2423 | ceramic | LiFePO4 | water | 100 | 0.0 | 0 | 11.0 | 92.0 | 0 | 0 | 0.0 | 1 | 0 | 0 | 178.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 82.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, B., Ye, F., Liu, Q., Zhang, H., Gao, Y., & Yang, C. (2016). Study on dielectric properties of BADCy/Ni0. 5Ti0. 5NbO4 composites fabricated by freeze casting combined with vacuum assisted infiltration process. Journal of Materials Science: Materials in Electronics, 27(11), 11986-11994. | 2016 | 882 | 10.1007/s10854-016-5345-0 | 2424 | ceramic | NiTiNbO4 | water | 100 | 0.0 | 0 | 40.0 | 91.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 61.28 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, B., Ye, F., Liu, Q., Zhang, H., Gao, Y., & Yang, C. (2016). Study on dielectric properties of BADCy/Ni0. 5Ti0. 5NbO4 composites fabricated by freeze casting combined with vacuum assisted infiltration process. Journal of Materials Science: Materials in Electronics, 27(11), 11986-11994. | 2016 | 882 | 10.1007/s10854-016-5345-0 | 2425 | ceramic | NiTiNbO4 | water | 100 | 0.0 | 0 | 40.0 | 91.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 50.55 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, B., Ye, F., Liu, Q., Zhang, H., Gao, Y., & Yang, C. (2016). Study on dielectric properties of BADCy/Ni0. 5Ti0. 5NbO4 composites fabricated by freeze casting combined with vacuum assisted infiltration process. Journal of Materials Science: Materials in Electronics, 27(11), 11986-11994. | 2016 | 882 | 10.1007/s10854-016-5345-0 | 2426 | ceramic | NiTiNbO4 | water | 100 | 0.0 | 0 | 40.0 | 91.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 61.17 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, B., Ye, F., Liu, Q., Zhang, H., Gao, Y., & Yang, C. (2016). Study on dielectric properties of BADCy/Ni0. 5Ti0. 5NbO4 composites fabricated by freeze casting combined with vacuum assisted infiltration process. Journal of Materials Science: Materials in Electronics, 27(11), 11986-11994. | 2016 | 882 | 10.1007/s10854-016-5345-0 | 2427 | ceramic | NiTiNbO4 | water | 100 | 0.0 | 0 | 40.0 | 91.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 60.97 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, B., Ye, F., Liu, Q., Zhang, H., Gao, Y., & Yang, C. (2016). Study on dielectric properties of BADCy/Ni0. 5Ti0. 5NbO4 composites fabricated by freeze casting combined with vacuum assisted infiltration process. Journal of Materials Science: Materials in Electronics, 27(11), 11986-11994. | 2016 | 882 | 10.1007/s10854-016-5345-0 | 2428 | ceramic | NiTiNbO4 | water | 100 | 0.0 | 0 | 40.0 | 91.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 58.33 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, B., Ye, F., Liu, Q., Zhang, H., Gao, Y., & Yang, C. (2016). Study on dielectric properties of BADCy/Ni0. 5Ti0. 5NbO4 composites fabricated by freeze casting combined with vacuum assisted infiltration process. Journal of Materials Science: Materials in Electronics, 27(11), 11986-11994. | 2016 | 882 | 10.1007/s10854-016-5345-0 | 2429 | ceramic | NiTiNbO4 | water | 100 | 0.0 | 0 | 40.0 | 91.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 55.17 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, B., Ye, F., Liu, Q., Zhang, H., Gao, Y., & Yang, C. (2016). Study on dielectric properties of BADCy/Ni0. 5Ti0. 5NbO4 composites fabricated by freeze casting combined with vacuum assisted infiltration process. Journal of Materials Science: Materials in Electronics, 27(11), 11986-11994. | 2016 | 882 | 10.1007/s10854-016-5345-0 | 2430 | ceramic | NiTiNbO4 | water | 100 | 0.0 | 0 | 40.0 | 91.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 203.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 51.03 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, B., Ye, F., Liu, Q., Zhang, H., Gao, Y., & Yang, C. (2016). Study on dielectric properties of BADCy/Ni0. 5Ti0. 5NbO4 composites fabricated by freeze casting combined with vacuum assisted infiltration process. Journal of Materials Science: Materials in Electronics, 27(11), 11986-11994. | 2016 | 882 | 10.1007/s10854-016-5345-0 | 2431 | ceramic | NiTiNbO4 | water | 100 | 0.0 | 0 | 40.0 | 91.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 61.24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Zhang, B., Ye, F., Liu, Q., Zhang, H., Gao, Y., & Yang, C. (2016). Study on dielectric properties of BADCy/Ni0. 5Ti0. 5NbO4 composites fabricated by freeze casting combined with vacuum assisted infiltration process. Journal of Materials Science: Materials in Electronics, 27(11), 11986-11994. | 2016 | 882 | 10.1007/s10854-016-5345-0 | 2432 | ceramic | NiTiNbO4 | water | 100 | 0.0 | 0 | 40.0 | 91.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 51.96 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Stolze, C., Janoschka, T., Flauder, S., Mu?ller, F. A., Hager, M. D., & Schubert, U. S. (2016). Investigation of Ice-Templated Porous Electrodes for Application in Organic Batteries. ACS applied materials & interfaces, 8(36), 23614-23623. | 2016 | 886 | 10.1021/acsami.6b05018 | 5799 | polymer | VGCF-PTMA | water | 100 | 0.0 | 0 | 50.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 12.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 65.0 | 0.0 | 31.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Stolze, C., Janoschka, T., Flauder, S., Mu?ller, F. A., Hager, M. D., & Schubert, U. S. (2016). Investigation of Ice-Templated Porous Electrodes for Application in Organic Batteries. ACS applied materials & interfaces, 8(36), 23614-23623. | 2016 | 886 | 10.1021/acsami.6b05018 | 5800 | polymer | VGCF-PTMA | water | 100 | 0.0 | 0 | 50.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 12.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 65.0 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Stolze, C., Janoschka, T., Flauder, S., Mu?ller, F. A., Hager, M. D., & Schubert, U. S. (2016). Investigation of Ice-Templated Porous Electrodes for Application in Organic Batteries. ACS applied materials & interfaces, 8(36), 23614-23623. | 2016 | 886 | 10.1021/acsami.6b05018 | 5801 | polymer | VGCF-PTMA | water | 100 | 0.0 | 0 | 50.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 12.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 65.0 | 0.0 | 35.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Stolze, C., Janoschka, T., Flauder, S., Mu?ller, F. A., Hager, M. D., & Schubert, U. S. (2016). Investigation of Ice-Templated Porous Electrodes for Application in Organic Batteries. ACS applied materials & interfaces, 8(36), 23614-23623. | 2016 | 886 | 10.1021/acsami.6b05018 | 5802 | polymer | VGCF-PTMA | water | 100 | 0.0 | 0 | 50.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 3.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 65.0 | 0.0 | 48.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Stolze, C., Janoschka, T., Flauder, S., Mu?ller, F. A., Hager, M. D., & Schubert, U. S. (2016). Investigation of Ice-Templated Porous Electrodes for Application in Organic Batteries. ACS applied materials & interfaces, 8(36), 23614-23623. | 2016 | 886 | 10.1021/acsami.6b05018 | 5803 | polymer | VGCF-PTMA | water | 100 | 0.0 | 0 | 50.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 12.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 65.0 | 0.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Stolze, C., Janoschka, T., Flauder, S., Mu?ller, F. A., Hager, M. D., & Schubert, U. S. (2016). Investigation of Ice-Templated Porous Electrodes for Application in Organic Batteries. ACS applied materials & interfaces, 8(36), 23614-23623. | 2016 | 886 | 10.1021/acsami.6b05018 | 5804 | polymer | VGCF-PTMA | water | 100 | 0.0 | 0 | 50.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 24.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 65.0 | 0.0 | 23.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Wang, Y., Shen, P., Guo, R. F., Hu, Z. J., & Jiang, Q. C. (2017). Developing high toughness and strength Al/TiC composites using ice-templating and pressure infiltration. Ceramics International, 43(4), 3831-3838. | 2016 | 894 | 10.1016/j.ceramint.2016.12.038 | 4437 | metal/ceramic | Al-24wt.% TiC (impregnate-Al) | water | 100 | 0.0 | 0 | 0.0 | 55.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 355.0 | 100000.0 |
Wang, Y., Shen, P., Guo, R. F., Hu, Z. J., & Jiang, Q. C. (2017). Developing high toughness and strength Al/TiC composites using ice-templating and pressure infiltration. Ceramics International, 43(4), 3831-3838. | 2016 | 894 | 10.1016/j.ceramint.2016.12.038 | 4438 | metal/ceramic | Al-38wt.% TiC (impregnate-Al) | water | 100 | 0.0 | 0 | 0.0 | 55.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 417.0 | 114000.0 |
Wang, Y., Shen, P., Guo, R. F., Hu, Z. J., & Jiang, Q. C. (2017). Developing high toughness and strength Al/TiC composites using ice-templating and pressure infiltration. Ceramics International, 43(4), 3831-3838. | 2016 | 894 | 10.1016/j.ceramint.2016.12.038 | 4439 | metal/ceramic | Al-44wt.% TiC (impregnate-Al) | water | 100 | 0.0 | 0 | 0.0 | 55.0 | 100 | powder | 2.5 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 500.0 | 136000.0 |
Yang, Y., He, F., & Ye, J. (2016). Preparation, mechanical property and cytocompatibility of freeze-cast porous calcium phosphate ceramics reinforced by phosphate-based glass. Materials Science and Engineering: C, 69, 1004-1009. | 2016 | 901 | 10.1016/j.msec.2016.08.008 | 4460 | ceramic | BCP-5wt.% 50P2O5-18CaO-12MgO-20Na2O | water | 100 | 0.0 | 0 | 13.0 | 8.0 | 94 | powder | 7.6 | 1 | 0 | 0 | 263.0 | 0.0 | 0.0 | incline | constant | 0.0 | 0.0 | 0 | 0 | 1 | lamellar | sintered | 0.0 | 0.0 | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, Y., He, F., & Ye, J. (2016). Preparation, mechanical property and cytocompatibility of freeze-cast porous calcium phosphate ceramics reinforced by phosphate-based glass. Materials Science and Engineering: C, 69, 1004-1009. | 2016 | 901 | 10.1016/j.msec.2016.08.008 | 4461 | ceramic | BCP-10wt.% 50P2O5-18CaO-12MgO-20Na2O | water | 100 | 0.0 | 0 | 13.0 | 8.0 | 89 | powder | 7.6 | 1 | 0 | 0 | 263.0 | 0.0 | 0.0 | incline | constant | 0.0 | 0.0 | 0 | 0 | 3 | lamellar | sintered | 0.0 | 0.0 | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, Y., He, F., & Ye, J. (2016). Preparation, mechanical property and cytocompatibility of freeze-cast porous calcium phosphate ceramics reinforced by phosphate-based glass. Materials Science and Engineering: C, 69, 1004-1009. | 2016 | 901 | 10.1016/j.msec.2016.08.008 | 4462 | ceramic | BCP-15wt.% 50P2O5-18CaO-12MgO-20Na2O | water | 100 | 0.0 | 0 | 13.0 | 8.0 | 85 | powder | 7.6 | 1 | 0 | 0 | 263.0 | 0.0 | 0.0 | incline | constant | 0.0 | 0.0 | 0 | 0 | 18 | lamellar | sintered | 58.0 | 0.0 | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, Y., He, F., & Ye, J. (2016). Preparation, mechanical property and cytocompatibility of freeze-cast porous calcium phosphate ceramics reinforced by phosphate-based glass. Materials Science and Engineering: C, 69, 1004-1009. | 2016 | 901 | 10.1016/j.msec.2016.08.008 | 4463 | ceramic | BCP-17.5wt.% 50P2O5-18CaO-12MgO-20Na2O | water | 100 | 0.0 | 0 | 13.0 | 8.0 | 82 | powder | 7.6 | 1 | 0 | 0 | 263.0 | 0.0 | 0.0 | incline | constant | 0.0 | 0.0 | 0 | 0 | 23 | lamellar | sintered | 66.0 | 0.0 | 75.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yang, Y., He, F., & Ye, J. (2016). Preparation, mechanical property and cytocompatibility of freeze-cast porous calcium phosphate ceramics reinforced by phosphate-based glass. Materials Science and Engineering: C, 69, 1004-1009. | 2016 | 901 | 10.1016/j.msec.2016.08.008 | 4464 | ceramic | BCP-20wt.% 50P2O5-18CaO-12MgO-20Na2O | water | 100 | 0.0 | 0 | 13.0 | 8.0 | 80 | powder | 7.6 | 1 | 0 | 0 | 263.0 | 0.0 | 0.0 | incline | constant | 0.0 | 0.0 | 0 | 0 | 34 | lamellar | sintered | 58.0 | 0.0 | 75.0 | 0.0 | 0.0 | 5.8 | 0.0 | 0.0 |
Yan, J., Wu, T., Ding, Z., & Li, X. (2016). Preparation and characterization of carbon nanotubes/chitosan composite foam with enhanced elastic property. Carbohydrate polymers, 136, | 2016 | 902 | 10.1016/j.carbpol.2015.10.049 | 4899 | carbon/polymer | chitosan-0.1wt.% CNTs (mixed) | water | 100 | 0.0 | 0 | 1.34 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 100.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yan, J., Wu, T., Ding, Z., & Li, X. (2016). Preparation and characterization of carbon nanotubes/chitosan composite foam with enhanced elastic property. Carbohydrate polymers, 136, | 2016 | 902 | 10.1016/j.carbpol.2015.10.049 | 4900 | carbon/polymer | chitosan-0.1wt.% CNTs (mixed) | water | 100 | 0.0 | 0 | 1.34 | 39.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 167.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yan, J., Wu, T., Ding, Z., & Li, X. (2016). Preparation and characterization of carbon nanotubes/chitosan composite foam with enhanced elastic property. Carbohydrate polymers, 136, | 2016 | 902 | 10.1016/j.carbpol.2015.10.049 | 4901 | carbon/polymer | chitosan-0.3wt.% CNTs (mixed) | water | 100 | 0.0 | 0 | 1.34 | 39.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 100.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yan, J., Wu, T., Ding, Z., & Li, X. (2016). Preparation and characterization of carbon nanotubes/chitosan composite foam with enhanced elastic property. Carbohydrate polymers, 136, | 2016 | 902 | 10.1016/j.carbpol.2015.10.049 | 4902 | carbon/polymer | chitosan-0.3wt.% CNTs (mixed) | water | 100 | 0.0 | 0 | 1.34 | 39.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 167.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yan, J., Wu, T., Ding, Z., & Li, X. (2016). Preparation and characterization of carbon nanotubes/chitosan composite foam with enhanced elastic property. Carbohydrate polymers, 136, | 2016 | 902 | 10.1016/j.carbpol.2015.10.049 | 4903 | carbon/polymer | chitosan-0.5wt.% CNTs (mixed) | water | 100 | 0.0 | 0 | 1.34 | 39.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 100.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 35.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 |
Yan, J., Wu, T., Ding, Z., & Li, X. (2016). Preparation and characterization of carbon nanotubes/chitosan composite foam with enhanced elastic property. Carbohydrate polymers, 136, | 2016 | 902 | 10.1016/j.carbpol.2015.10.049 | 4904 | carbon/polymer | chitosan-0.5wt.% CNTs (mixed) | water | 100 | 0.0 | 0 | 1.34 | 39.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 167.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 35.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 |
Yan, J., Wu, T., Ding, Z., & Li, X. (2016). Preparation and characterization of carbon nanotubes/chitosan composite foam with enhanced elastic property. Carbohydrate polymers, 136, | 2016 | 902 | 10.1016/j.carbpol.2015.10.049 | 4905 | carbon/polymer | chitosan-0.66wt.% CNTs (mixed) | water | 100 | 0.0 | 0 | 1.34 | 39.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 100.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yan, J., Wu, T., Ding, Z., & Li, X. (2016). Preparation and characterization of carbon nanotubes/chitosan composite foam with enhanced elastic property. Carbohydrate polymers, 136, | 2016 | 902 | 10.1016/j.carbpol.2015.10.049 | 4906 | carbon/polymer | chitosan-0.66wt.% CNTs (mixed) | water | 100 | 0.0 | 0 | 1.34 | 39.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 167.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yan, J., Wu, T., Ding, Z., & Li, X. (2016). Preparation and characterization of carbon nanotubes/chitosan composite foam with enhanced elastic property. Carbohydrate polymers, 136, | 2016 | 902 | 10.1016/j.carbpol.2015.10.049 | 4907 | carbon/polymer | chitosan-0.8wt.% CNTs (mixed) | water | 100 | 0.0 | 0 | 1.34 | 39.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 100.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yan, J., Wu, T., Ding, Z., & Li, X. (2016). Preparation and characterization of carbon nanotubes/chitosan composite foam with enhanced elastic property. Carbohydrate polymers, 136, | 2016 | 902 | 10.1016/j.carbpol.2015.10.049 | 4908 | carbon/polymer | chitosan-0.8wt.% CNTs (mixed) | water | 100 | 0.0 | 0 | 1.34 | 39.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 167.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yan, J., Wu, T., Ding, Z., & Li, X. (2016). Preparation and characterization of carbon nanotubes/chitosan composite foam with enhanced elastic property. Carbohydrate polymers, 136, | 2016 | 902 | 10.1016/j.carbpol.2015.10.049 | 4909 | carbon/polymer | chitosan-1wt.% CNTs (mixed) | water | 100 | 0.0 | 0 | 1.34 | 39.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 100.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Yan, J., Wu, T., Ding, Z., & Li, X. (2016). Preparation and characterization of carbon nanotubes/chitosan composite foam with enhanced elastic property. Carbohydrate polymers, 136, | 2016 | 902 | 10.1016/j.carbpol.2015.10.049 | 4910 | carbon/polymer | chitosan-1wt.% CNTs (mixed) | water | 100 | 0.0 | 0 | 1.34 | 39.0 | 0 | dissolved | 0.0 | 0 | 0 | 0 | 77.0 | 0.0 | 0.0 | immersion | constant | 167.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sahoo, P. K., Aepuru, R., Panda, H. S., & Bahadur, D. (2015). Ice-templated synthesis of multifunctional three dimensional graphene/noble metal nanocomposites and their mechanical, electrical, catalytic, and electromagnetic shielding properties. Scientific reports, 5, 17726. | 2015 | 910 | 10.1038/srep17726 | 4546 | carbon/metal | graphene-Pt (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Sahoo, P. K., Aepuru, R., Panda, H. S., & Bahadur, D. (2015). Ice-templated synthesis of multifunctional three dimensional graphene/noble metal nanocomposites and their mechanical, electrical, catalytic, and electromagnetic shielding properties. Scientific reports, 5, 17726. | 2015 | 910 | 10.1038/srep17726 | 4547 | carbon/metal | graphene-Ag (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, H., Oh, H. H., Kawazoe, N., Yamagishi, K., & Chen, G. (2012). PLLA?collagen and PLLA?gelatin hybrid scaffolds with funnel-like porous structure for skin tissue engineering. Science and technology of advanced materials, 13(6), 064210. | 2012 | 917 | 10.1088/1468-6996/13/6/064210 | 5295 | polymer | PLLA-collagen (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lu, H., Oh, H. H., Kawazoe, N., Yamagishi, K., & Chen, G. (2012). PLLA?collagen and PLLA?gelatin hybrid scaffolds with funnel-like porous structure for skin tissue engineering. Science and technology of advanced materials, 13(6), 064210. | 2012 | 917 | 10.1088/1468-6996/13/6/064210 | 5296 | polymer | PLLA-gelatin (mixed) | water | 100 | 0.0 | 0 | 0.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Park, H., Choi, H., Nam, K., Lee, S., Um, J. H., Kim, K., ... & Choe, H. (2017). Anode Design Based on Microscale Porous Scaffolds for Advanced Lithium Ion Batteries. Journal of Electronic Materials, 46(6), 3789-3795. | 2017 | 925 | 10.1007/s11664-017-5289-z | 4512 | metal | Co | water | 100 | 0.0 | 0 | 0.0 | 103.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 77.0 | 0.0 | 20.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5648 | metal/polymer | Ti6Al4V/PMMA | water | 100 | 0.0 | 0 | 5.0 | 87.0 | 100 | powder | 10.0 | 10 | 5 | 0 | 123.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5649 | metal/polymer | Ti6Al4V/PMMA | water | 100 | 0.0 | 0 | 5.0 | 87.0 | 100 | powder | 10.0 | 10 | 5 | 0 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5650 | metal/polymer | Ti6Al4V/PMMA | water | 100 | 0.0 | 0 | 5.0 | 87.0 | 100 | powder | 10.0 | 10 | 5 | 0 | 123.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5651 | metal/polymer | Ti6Al4V/PMMA | water | 100 | 0.0 | 0 | 10.0 | 87.0 | 100 | powder | 10.0 | 5 | 3 | 0 | 123.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5652 | metal/polymer | Ti6Al4V/PMMA | water | 100 | 0.0 | 0 | 10.0 | 87.0 | 100 | powder | 10.0 | 5 | 3 | 0 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5653 | metal/polymer | Ti6Al4V/PMMA | water | 100 | 0.0 | 0 | 10.0 | 87.0 | 100 | powder | 10.0 | 5 | 3 | 0 | 123.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5654 | metal/polymer | Ti6Al4V/PMMA | water | 100 | 0.0 | 0 | 20.0 | 87.0 | 100 | powder | 10.0 | 1 | 1 | 0 | 123.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5655 | metal/polymer | Ti6Al4V/PMMA | water | 100 | 0.0 | 0 | 20.0 | 87.0 | 100 | powder | 10.0 | 1 | 1 | 0 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5656 | metal/polymer | Ti6Al4V/PMMA | water | 100 | 0.0 | 0 | 20.0 | 87.0 | 100 | powder | 10.0 | 1 | 1 | 0 | 123.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5657 | metal/polymer | Ti6Al4V/PMMA | water | 100 | 0.0 | 0 | 30.0 | 87.0 | 100 | powder | 10.0 | 1 | 1 | 0 | 123.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5658 | metal/polymer | Ti6Al4V/PMMA | water | 100 | 0.0 | 0 | 30.0 | 87.0 | 100 | powder | 10.0 | 1 | 1 | 0 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5659 | metal/polymer | Ti6Al4V/PMMA | water | 100 | 0.0 | 0 | 30.0 | 87.0 | 100 | powder | 10.0 | 1 | 1 | 0 | 123.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5660 | metal/polymer | Ti6Al4V/PMMA | water | 100 | 0.0 | 0 | 40.0 | 87.0 | 100 | powder | 10.0 | 0 | 0 | 0 | 123.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5661 | metal/polymer | Ti6Al4V/PMMA | water | 100 | 0.0 | 0 | 40.0 | 87.0 | 100 | powder | 10.0 | 0 | 0 | 0 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5662 | metal/polymer | Ti6Al4V/PMMA | water | 100 | 0.0 | 0 | 40.0 | 87.0 | 100 | powder | 10.0 | 0 | 0 | 0 | 123.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5663 | metal/polymer | Ti6Al4V/PMMA | water | 100 | 0.0 | 0 | 5.0 | 87.0 | 100 | powder | 10.0 | 3 | 5 | 0 | 123.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5664 | metal/polymer | Ti6Al4V/PMMA | water | 100 | 0.0 | 0 | 5.0 | 87.0 | 100 | powder | 10.0 | 3 | 5 | 0 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5665 | metal/polymer | Ti6Al4V/PMMA | water | 100 | 0.0 | 0 | 5.0 | 87.0 | 100 | powder | 10.0 | 3 | 5 | 0 | 123.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5666 | metal/polymer | Ti6Al4V/PMMA | water | 100 | 0.0 | 0 | 10.0 | 87.0 | 100 | powder | 10.0 | 1 | 3 | 0 | 123.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5667 | metal/polymer | Ti6Al4V/PMMA | water | 100 | 0.0 | 0 | 10.0 | 87.0 | 100 | powder | 10.0 | 1 | 3 | 0 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5668 | metal/polymer | Ti6Al4V/PMMA | water | 100 | 0.0 | 0 | 10.0 | 87.0 | 100 | powder | 10.0 | 1 | 3 | 0 | 123.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5669 | metal/polymer | Ti6Al4V/PMMA | water | 100 | 0.0 | 0 | 20.0 | 87.0 | 100 | powder | 10.0 | 0 | 1 | 0 | 123.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 193.0 | 0.0 | 4860.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5670 | metal/polymer | Ti6Al4V/PMMA | water | 100 | 0.0 | 0 | 20.0 | 87.0 | 100 | powder | 10.0 | 0 | 1 | 0 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5671 | metal/polymer | Ti6Al4V/PMMA | water | 100 | 0.0 | 0 | 20.0 | 87.0 | 100 | powder | 10.0 | 0 | 1 | 0 | 123.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5672 | metal/polymer | Ti6Al4V/PMMA | water | 100 | 0.0 | 0 | 30.0 | 87.0 | 100 | powder | 10.0 | 0 | 1 | 0 | 123.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5673 | metal/polymer | Ti6Al4V/PMMA | water | 100 | 0.0 | 0 | 30.0 | 87.0 | 100 | powder | 10.0 | 0 | 1 | 0 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5674 | metal/polymer | Ti6Al4V/PMMA | water | 100 | 0.0 | 0 | 30.0 | 87.0 | 100 | powder | 10.0 | 0 | 1 | 0 | 123.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5675 | metal/polymer | Ti6Al4V/PMMA | water | 100 | 0.0 | 0 | 40.0 | 87.0 | 100 | powder | 10.0 | 0 | 0 | 0 | 123.0 | 1.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5676 | metal/polymer | Ti6Al4V/PMMA | water | 100 | 0.0 | 0 | 40.0 | 87.0 | 100 | powder | 10.0 | 0 | 0 | 0 | 123.0 | 6.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Weaver, J. S., Kalidindi, S. R., & Wegst, U. G. (2017). Structure-processing correlations and mechanical properties in freeze-cast Ti-6Al-4V with highly aligned porosity and a lightweight Ti-6Al-4V-PMMA composite with excellent energy absorption capability. Acta Materialia, 132, 182-192. | 2017 | 936 | 10.1016/j.actamat.2017.02.031 | 5677 | metal/polymer | Ti6Al4V/PMMA | water | 100 | 0.0 | 0 | 40.0 | 87.0 | 100 | powder | 10.0 | 0 | 0 | 0 | 123.0 | 10.0 | 0.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jiang, C., Tian, X., & Shi, G. (2016). K0. 5Na0. 5NbO3 piezoelectric ceramics and its composites fabricated from hydrothermal powders. | 2016 | 937 | 10.2991/icsma-16.2016.58 | 5678 | ceramic | K0.5Na0.5NbO3 | water | 100 | 0.0 | 0 | 18.0 | 113.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 6.0 | 0.0 | 0 | 0 | 31 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jiang, C., Tian, X., & Shi, G. (2016). K0. 5Na0. 5NbO3 piezoelectric ceramics and its composites fabricated from hydrothermal powders. | 2016 | 937 | 10.2991/icsma-16.2016.58 | 5679 | ceramic | K0.5Na0.5NbO3 | water | 100 | 0.0 | 0 | 18.0 | 113.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 6.0 | 0.0 | 0 | 0 | 36 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jiang, C., Tian, X., & Shi, G. (2016). K0. 5Na0. 5NbO3 piezoelectric ceramics and its composites fabricated from hydrothermal powders. | 2016 | 937 | 10.2991/icsma-16.2016.58 | 5680 | ceramic | K0.5Na0.5NbO3 | water | 100 | 0.0 | 0 | 18.0 | 113.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 6.0 | 0.0 | 0 | 0 | 41 | lamellar | sintered | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Jiang, C., Tian, X., & Shi, G. (2016). K0. 5Na0. 5NbO3 piezoelectric ceramics and its composites fabricated from hydrothermal powders. | 2016 | 937 | 10.2991/icsma-16.2016.58 | 5681 | ceramic | K0.5Na0.5NbO3 | water | 100 | 0.0 | 0 | 18.0 | 113.0 | 100 | powder | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | one-sided | constant | 6.0 | 0.0 | 0 | 0 | 41 | lamellar | sintered | 85.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Control of the structure and mechanical property of porous WS2 | 2017 | 947 | 10.1007/s10934-017-0418-x | 5864 | ceramic/polymer | WS2-1wt.% gelatin | water | 100 | 0.0 | 0 | 3.0 | 118.0 | 100 | powder | 5.1 | 0 | 0 | 0 | 253.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Control of the structure and mechanical property of porous WS2 | 2017 | 947 | 10.1007/s10934-017-0418-x | 5865 | ceramic/polymer | WS2-1wt.% gelatin | water | 100 | 0.0 | 0 | 3.0 | 118.0 | 100 | powder | 5.1 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Control of the structure and mechanical property of porous WS2 | 2017 | 947 | 10.1007/s10934-017-0418-x | 5866 | ceramic/polymer | WS2-1wt.% gelatin | water | 100 | 0.0 | 0 | 3.0 | 118.0 | 100 | powder | 5.1 | 0 | 0 | 0 | 233.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Control of the structure and mechanical property of porous WS2 | 2017 | 947 | 10.1007/s10934-017-0418-x | 5867 | ceramic/polymer | WS2-1wt.% gelatin | water | 100 | 0.0 | 0 | 3.0 | 118.0 | 100 | powder | 5.1 | 0 | 0 | 0 | 223.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Control of the structure and mechanical property of porous WS2 | 2017 | 947 | 10.1007/s10934-017-0418-x | 5868 | ceramic/polymer | WS2-2wt.% gelatin | water | 100 | 0.0 | 0 | 3.0 | 118.0 | 100 | powder | 5.1 | 1 | 0 | 0 | 253.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 93.87 | 320.0 | 290.0 | 30.0 | 0.0 | 0.22 | 0.0 | 0.0 |
Control of the structure and mechanical property of porous WS2 | 2017 | 947 | 10.1007/s10934-017-0418-x | 5869 | ceramic/polymer | WS2-2wt.% gelatin | water | 100 | 0.0 | 0 | 3.0 | 118.0 | 100 | powder | 5.1 | 1 | 0 | 0 | 243.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 93.87 | 180.0 | 165.0 | 15.0 | 0.0 | 0.25 | 0.0 | 0.0 |
Control of the structure and mechanical property of porous WS2 | 2017 | 947 | 10.1007/s10934-017-0418-x | 5870 | ceramic/polymer | WS2-2wt.% gelatin | water | 100 | 0.0 | 0 | 3.0 | 118.0 | 100 | powder | 5.1 | 1 | 0 | 0 | 233.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 93.87 | 140.0 | 130.0 | 10.0 | 0.0 | 0.28 | 0.0 | 0.0 |
Control of the structure and mechanical property of porous WS2 | 2017 | 947 | 10.1007/s10934-017-0418-x | 5871 | ceramic/polymer | WS2-2wt.% gelatin | water | 100 | 0.0 | 0 | 3.0 | 118.0 | 100 | powder | 5.1 | 1 | 0 | 0 | 223.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 93.87 | 110.0 | 103.0 | 7.0 | 0.0 | 0.29 | 0.0 | 0.0 |
Control of the structure and mechanical property of porous WS2 | 2017 | 947 | 10.1007/s10934-017-0418-x | 5872 | ceramic/polymer | WS2-3wt.% gelatin | water | 100 | 0.0 | 0 | 3.0 | 118.0 | 100 | powder | 5.1 | 2 | 0 | 0 | 253.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 92.56 | 0.0 | 0.0 | 0.0 | 0.0 | 0.43 | 0.0 | 0.0 |
Control of the structure and mechanical property of porous WS2 | 2017 | 947 | 10.1007/s10934-017-0418-x | 5873 | ceramic/polymer | WS2-3wt.% gelatin | water | 100 | 0.0 | 0 | 3.0 | 118.0 | 100 | powder | 5.1 | 2 | 0 | 0 | 243.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 92.56 | 0.0 | 0.0 | 0.0 | 0.0 | 0.45 | 0.0 | 0.0 |
Control of the structure and mechanical property of porous WS2 | 2017 | 947 | 10.1007/s10934-017-0418-x | 5874 | ceramic/polymer | WS2-3wt.% gelatin | water | 100 | 0.0 | 0 | 3.0 | 118.0 | 100 | powder | 5.1 | 2 | 0 | 0 | 233.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 92.56 | 0.0 | 0.0 | 0.0 | 0.0 | 0.46 | 0.0 | 0.0 |
Control of the structure and mechanical property of porous WS2 | 2017 | 947 | 10.1007/s10934-017-0418-x | 5875 | ceramic/polymer | WS2-3wt.% gelatin | water | 100 | 0.0 | 0 | 3.0 | 118.0 | 100 | powder | 5.1 | 2 | 0 | 0 | 223.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 92.56 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 |
Control of the structure and mechanical property of porous WS2 | 2017 | 947 | 10.1007/s10934-017-0418-x | 5876 | ceramic/polymer | WS2-4wt.% gelatin | water | 100 | 0.0 | 0 | 3.0 | 118.0 | 100 | powder | 5.1 | 3 | 0 | 0 | 253.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 91.05 | 0.0 | 0.0 | 0.0 | 0.0 | 0.71 | 0.0 | 0.0 |
Control of the structure and mechanical property of porous WS2 | 2017 | 947 | 10.1007/s10934-017-0418-x | 5877 | ceramic/polymer | WS2-4wt.% gelatin | water | 100 | 0.0 | 0 | 3.0 | 118.0 | 100 | powder | 5.1 | 3 | 0 | 0 | 243.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 91.05 | 0.0 | 0.0 | 0.0 | 0.0 | 0.73 | 0.0 | 0.0 |
Control of the structure and mechanical property of porous WS2 | 2017 | 947 | 10.1007/s10934-017-0418-x | 5878 | ceramic/polymer | WS2-4wt.% gelatin | water | 100 | 0.0 | 0 | 3.0 | 118.0 | 100 | powder | 5.1 | 3 | 0 | 0 | 233.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 91.05 | 0.0 | 0.0 | 0.0 | 0.0 | 0.75 | 0.0 | 0.0 |
Control of the structure and mechanical property of porous WS2 | 2017 | 947 | 10.1007/s10934-017-0418-x | 5879 | ceramic/polymer | WS2-4wt.% gelatin | water | 100 | 0.0 | 0 | 3.0 | 118.0 | 100 | powder | 5.1 | 3 | 0 | 0 | 223.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 91.05 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8 | 0.0 | 0.0 |
Control of the structure and mechanical property of porous WS2 | 2017 | 947 | 10.1007/s10934-017-0418-x | 5880 | ceramic/polymer | WS2-5wt.% gelatin | water | 100 | 0.0 | 0 | 3.0 | 118.0 | 100 | powder | 5.1 | 5 | 0 | 0 | 253.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 90.23 | 320.0 | 290.0 | 30.0 | 0.0 | 1.16 | 0.0 | 0.0 |
Control of the structure and mechanical property of porous WS2 | 2017 | 947 | 10.1007/s10934-017-0418-x | 5881 | ceramic/polymer | WS2-5wt.% gelatin | water | 100 | 0.0 | 0 | 3.0 | 118.0 | 100 | powder | 5.1 | 5 | 0 | 0 | 243.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 90.23 | 0.0 | 0.0 | 0.0 | 0.0 | 1.2 | 0.0 | 0.0 |
Control of the structure and mechanical property of porous WS2 | 2017 | 947 | 10.1007/s10934-017-0418-x | 5882 | ceramic/polymer | WS2-5wt.% gelatin | water | 100 | 0.0 | 0 | 3.0 | 118.0 | 100 | powder | 5.1 | 5 | 0 | 0 | 233.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 90.23 | 0.0 | 0.0 | 0.0 | 0.0 | 1.22 | 0.0 | 0.0 |
Control of the structure and mechanical property of porous WS2 | 2017 | 947 | 10.1007/s10934-017-0418-x | 5883 | ceramic/polymer | WS2-5wt.% gelatin | water | 100 | 0.0 | 0 | 3.0 | 118.0 | 100 | powder | 5.1 | 5 | 0 | 0 | 223.0 | 0.0 | 0.0 | wedge | bidirectional | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 90.23 | 90.0 | 85.0 | 5.0 | 0.0 | 1.3 | 0.0 | 0.0 |
Choi, H., Shil'ko, S., Gubicza, J., & Choe, H. (2017). Study of the compression and wear-resistance properties of freeze-cast Ti and Ti?5W alloy foams for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 72, 66-73. | 2017 | 952 | 10.1016/j.jmbbm.2017.04.020 | 5949 | metal | Ti-0.5wt.%O2 | water | 100 | 0.0 | 0 | 19.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 10.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 32.0 | 0.0 | 0.0 | 0.0 | 0.0 | 256.2 | 19800.0 | 0.0 |
Choi, H., Shil'ko, S., Gubicza, J., & Choe, H. (2017). Study of the compression and wear-resistance properties of freeze-cast Ti and Ti?5W alloy foams for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 72, 66-73. | 2017 | 952 | 10.1016/j.jmbbm.2017.04.020 | 5950 | metal | Ti-5wt.%W-0.5wt%O2 | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0 | 10.0 | one-sided | linear | 0.0 | 0.0 | 0 | 0 | 0 | cellular | sintered | 39.0 | 0.0 | 0.0 | 0.0 | 0.0 | 322.6 | 25400.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6098 | ceramic/polymer | collagen-40 wt.% HAP | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 2.4 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 400.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6099 | ceramic/polymer | collagen-40 wt.% HAP | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 2.4 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 400.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6100 | ceramic/polymer | collagen-40 wt.% HAP | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 2.4 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 700.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6101 | ceramic/polymer | collagen-40 wt.% HAP | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 2.4 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 700.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6102 | ceramic/polymer | collagen-40 wt.% HAP | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 2.6 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 350.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6103 | ceramic/polymer | collagen-40 wt.% HAP | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 2.6 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 650.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6104 | ceramic/polymer | collagen-40 wt.% HAP | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 3.6 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 21.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6105 | ceramic/polymer | collagen-40 wt.% HAP | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 3.6 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 280.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6106 | ceramic/polymer | collagen-40 wt.% HAP | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 3.6 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 310.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6107 | ceramic/polymer | collagen-40 wt.% HAP | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 4.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 300.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6108 | ceramic/polymer | collagen-40 wt.% HAP | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.03 | 0.0 | one-sided | linear | 4.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 350.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6109 | ceramic/polymer | collagen-40 wt.% HAP | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.5 | 0.0 | one-sided | linear | 8.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 200.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6110 | ceramic/polymer | collagen-40 wt.% HAP | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.5 | 0.0 | one-sided | linear | 8.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 200.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6111 | ceramic/polymer | collagen-40 wt.% HAP | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.5 | 0.0 | one-sided | linear | 9.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 200.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6112 | ceramic/polymer | collagen-40 wt.% HAP | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.5 | 0.0 | one-sided | linear | 9.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 180.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Pawelec, K. M., van Boxtel, H. A., & Kluijtmans, S. G. (2017). Ice-templating of anisotropic structures with high permeability. Materials Science and Engineering: C, 76, 628-636. | 2017 | 959 | 10.1016/j.msec.2017.08.023 | 6113 | ceramic/polymer | collagen-40 wt.% HAP | water | 100 | 0.0 | 0 | 20.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0.0 | 0.5 | 0.0 | one-sided | linear | 9.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 0.0 | 0.0 | 150.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dong, S., Wang, L., Gao, X., Zhu, W., Wang, Z., Ma, Z., & Gao, C. (2017). Freeze casting of novel porous silicate cement supports using tert-butyl alcohol-water binary crystals as template: Microstructure, strength and permeability. Journal of Membrane Science. | 2017 | 990 | 10.1016/j.cej.2016.03.023 | 6165 | ceramic | Silicate | water | 100 | 0.0 | 0 | 18.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | lamellar | green | 59.0 | 0.0 | 11.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dong, S., Wang, L., Gao, X., Zhu, W., Wang, Z., Ma, Z., & Gao, C. (2017). Freeze casting of novel porous silicate cement supports using tert-butyl alcohol-water binary crystals as template: Microstructure, strength and permeability. Journal of Membrane Science. | 2017 | 990 | 10.1016/j.cej.2016.03.023 | 6166 | ceramic | Silicate | water | 80 | TBA | 20 | 18.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 57.0 | 0.0 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dong, S., Wang, L., Gao, X., Zhu, W., Wang, Z., Ma, Z., & Gao, C. (2017). Freeze casting of novel porous silicate cement supports using tert-butyl alcohol-water binary crystals as template: Microstructure, strength and permeability. Journal of Membrane Science. | 2017 | 990 | 10.1016/j.cej.2016.03.023 | 6167 | ceramic | Silicate | water | 50 | TBA | 50 | 18.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | cellular | green | 54.0 | 0.0 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dong, S., Wang, L., Gao, X., Zhu, W., Wang, Z., Ma, Z., & Gao, C. (2017). Freeze casting of novel porous silicate cement supports using tert-butyl alcohol-water binary crystals as template: Microstructure, strength and permeability. Journal of Membrane Science. | 2017 | 990 | 10.1016/j.cej.2016.03.023 | 6168 | ceramic | Silicate | water | 30 | TBA | 70 | 18.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | dendritic | green | 52.0 | 0.0 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dong, S., Wang, L., Gao, X., Zhu, W., Wang, Z., Ma, Z., & Gao, C. (2017). Freeze casting of novel porous silicate cement supports using tert-butyl alcohol-water binary crystals as template: Microstructure, strength and permeability. Journal of Membrane Science. | 2017 | 990 | 10.1016/j.cej.2016.03.023 | 6169 | ceramic | Silicate | water | 10 | TBA | 90 | 18.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | needle | green | 48.0 | 0.0 | 6.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Dong, S., Wang, L., Gao, X., Zhu, W., Wang, Z., Ma, Z., & Gao, C. (2017). Freeze casting of novel porous silicate cement supports using tert-butyl alcohol-water binary crystals as template: Microstructure, strength and permeability. Journal of Membrane Science. | 2017 | 990 | 10.1016/j.cej.2016.03.023 | 6170 | ceramic | Silicate | TBA | 100 | 0.0 | 0 | 18.0 | 0.0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 243.0 | 0.0 | 0.0 | one-sided | 0 | 0.0 | 0.0 | 0 | 0 | 0 | honeycomb | green | 52.5 | 0.0 | 8.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |