Freeze-Casting

Freeze-casting processing steps. An aqueous suspension of particles (a) is placed onto a cold plate; ice crystals propagate in the direction of the temperature gradient, while pushing particles away from the moving freeze front (b). A region of accumulated particles develops ahead of the freeze front and particles are forced to assemble inbetween the ice crystals (c). After complete solidification (d), ice crystals are removed via freeze-dring (e). Lastly, the particle scaffold is heat-treated to densify particle-packed walls (f).


Read more

Microstructure

Lorem ipsum dolor sit amet, rhoncus aliquam lobortis, vulputate justo.

View the microstructure image gallery



Titanium dioxide freeze-cast material. 20wt.% TiO2 in water solidified at 253 K using a cooling rate of 5 K/min.

Image credit: Aaron Shelhamer





Freeze-cast iron foam. SEM micrograph showing the high surface area and microporosity of the scaffold walls created through freeze-casting and reduction

Dunand Research Group

Image credit: Amelia Plunk

Read more



Images showing the freeze cast silica/chitosan hybrid scaffolds. A light source was used to obtain a clearer scaffold appearance (shown on the right of the image). Oriented structures can be seen clearly and indicated by the arrows in the inset (the zoom-in image of the local area of the scaffold). X-ray micro-computed tomography (μCT) images of a freeze cast 60 wt% organic hybrid scaffold fabricated at a cooling rate of 10 °C min−1 (4060 GC4 10 °C min−1), which show the typical microstructures (b) perpendicular and (c) parallel to the freezing direction.

Wang, D., Romer, F., Connell, L., Walter, C., Saiz, E., Yue, S., & Jones, J. R. (2015). Highly flexible silica/chitosan hybrid scaffolds with oriented pores for tissue regeneration. Journal of Materials Chemistry B, 3(38), 7560-7576.

Figure and figure caption reprinted without modification under CC BY 3.0.

Properties

Lorem ipsum dolor sit amet, rhoncus aliquam lobortis, vulputate justo. Quis vestibulum nullam, tortor sit eget euismod montes quam mattis. Mattis hymenaeos, mattis lectus. Ornare felis arcu, justo tempor suspendisse sed lobortis dolor eros.

Mechanical

Detail of a buckling fracture in an ice-templated sample.

Seuba, J., Deville, S., Guizard, C., & Stevenson, A. J. (2016). Mechanical properties and failure behavior of unidirectional porous ceramics. Scientific reports, 6.

Figure and figure text reprinted without modification under CC BY 4.0.

Read more

Processing

Lorem ipsum dolor sit amet, rhoncus aliquam lobortis, vulputate justo. Quis vestibulum nullam, tortor sit eget euismod montes quam mattis. Mattis hymenaeos, mattis lectus. Ornare felis arcu, justo tempor suspendisse sed lobortis dolor eros.

Suspension preparation



Lorem ipsum dolor sit amet, rhoncus aliquam lobortis, vulputate justo. Quis vestibulum nullam, tortor sit eget euismod montes quam mattis.

Photo credit: Avendah Watson

Read more

Solidification



Lorem ipsum dolor sit amet, rhoncus aliquam lobortis, vulputate justo. Quis vestibulum nullam, tortor sit eget euismod montes quam mattis.

Read more

Sublimation



Lorem ipsum dolor sit amet, rhoncus aliquam lobortis, vulputate justo. Quis vestibulum nullam, tortor sit eget euismod montes quam mattis.

Photo credit: Avendah Watson

Sintering



Lorem ipsum dolor sit amet, rhoncus aliquam lobortis, vulputate justo. Quis vestibulum nullam, tortor sit eget euismod montes quam mattis.

Photo credit: Avendah Watson

Read more

Applications

Coming soon!